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Example 1. Show that “p ⇒ q” is equivalent to “not(q) ⇒ not(p)” for any two
propositions p and q.

Hint: Recall that the validity of p⇒ q is defined by the validity of the statement
“not(p) or q”.

Proof. Let p and q be given propositions. Suppose first that p⇒ q holds, i.e. that
the statement “not(p) or q” is true. We want to show that

“ not(not(q)) or not(p)′′ (1)

is true, which, by definition, is equivalent to not(q) ⇒ not(p) (thus implying the
first half of the desired equivalence). The validity of the statement (1) follows by
observing that, for every proposition r, the proposition “not(not(r))” is equivalent
to r, and that, for every proposition r and s, the propositions “r or s” and “s or r”
are equivalent (each of these equivalences can be verified by examining the relevant
truth tables).

Conversely, suppose that not(q)⇒ not(p) holds. By definition, this means that
either not(not(q)) or not(p) are true. As in the previous argument, this pair of
conditions is equivalent to q or not(p), which is equivalent to p⇒ q, as desired. �

Example 2. Let X be a given set and let A,B be two arbitrary subsets of X. Show
that

A ∩B ⊂ A.

Proof. Let x ∈ A ∩ B be given. By the definition of the intersection of sets, we
then have the statement “x ∈ A and x ∈ B” (so that in particular x ∈ A holds).
Since x ∈ A ∩B was arbitrary, this shows the desired set inclusion. �

Example 3. Let X, A and B be as above. Show that

(A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Proof. We show the desired equality in two steps: by showing (i) (A\B)∪(B\A) ⊂
(A ∪B) \ (A ∩B), and (ii) (A ∪B) \ (A ∩B) ⊂ (A \B) ∪ (B \A).

(i): Let x ∈ (A \ B) ∪ (B \ A) be given. Then either x ∈ A \ B or x ∈ B \ A.
Suppose first that x ∈ A \B. We then have x ∈ A ⊂ A ∪B. In order to show x ∈
(A∪B)\(A∩B), it remains to show that x 6∈ A∩B. Suppose for contradiction that
x ∈ A ∩B holds. This in particular implies x ∈ B, contradicting x ∈ A \B (which
holds by assumption). It follows that our original assumption x ∈ A ∩ B is false,
so that x 6∈ A∩B holds as desired. We have therefore shown x ∈ (A∪B) \ (A∩B)
in this case.

Alternatively, suppose that x ∈ B \A, so that x ∈ B and x 6∈ A. It now follows
from B ⊂ A∪B that x ∈ A∪B, while x 6∈ A implies x 6∈ A∩B (note that A∩B ⊂ A,
so that if x ∈ A ∩ B held, we would have x ∈ A)1. Thus x ∈ (A ∪ B) \ (A ∩ B)
holds in this case as well.

1This is really just a rephrasing of the argument in the previous paragraph.
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Since x was arbitrary, we have shown the desired inclusion.

(ii): Let x ∈ (A ∪B) \ (A ∩B) be given. We then have x ∈ A ∪B and x 6∈ A ∩B.
We split into two cases:

Case 1: x ∈ A.

In this case, x 6∈ A ∩B implies x 6∈ B (this is the contrapositive of the fact that
for x ∈ A one has the implication x ∈ B implies x ∈ A ∩ B). We therefore have
x ∈ A \B ⊂ (A \B) ∪ (B \A).

Case 2: x 6∈ A.

In this case, the condition x ∈ A ∪B implies x ∈ B. On the other hand, x ∈ B
and x 6∈ A ∩B together imply x 6∈ A (otherwise, we would have �

Remark 1. Some duplication in the previous proof can be avoided by noticing that
the two cases in each of (i) and (ii) are symmetric in A and B. In particular, the
proof of the second case in each of (i) and (ii) can be obtained from the first case
by interchanging the roles of A and B. This can be made precise by formulating
an intermediary claim; for instance note that in (i) both cases in the proof can be
handled by showing the claim: For every C,D ⊂ X, one has C\D ⊂ (C∪D)\(C∩D)
(which can be established by proceeding as in the argument for either case), and
taking (C,D) = (A,B) followed by (C,D) = (B,A).


