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1 Integrability of distributions

Definition 1.1. LetMn be a smooth manifold of dimension n. A k-dimensional
foliation on M is a smooth atlas ϕU : U ⊆ Rk×Rn−k →M , so that all transition
maps ψUV = ϕ−1

V ◦ϕU |ϕ−1
U (ϕV (V )) are of the form ψUV (x, y) = (ψ1(x, y), ψ2(y)),

where (x, y) ∈ Rk × Rn−k.

Notice that the transition maps of a foliation F preserve the k-dimensional
submanifolds {y = constant}, and therefore a foliation defines a decomposition
of M as a (setwise disjoint, but not topologically disjoint) union of k-dimensional
submanifolds, called the leaves of F . Given a foliation F on M a diffeomorphism
f : M → N defines a foliation f∗(F) on N in the obvious way. We say that two
foliations F1 and F2 on M1 and M2 respectively are diffeomorphic if there is a
diffeomorphism f : M1 → M2 so that f∗(F1) = F2. It’s easy to check that any
diffeomorphism f : M1 → M2 which sends the leaves of F1 to those of F2 is a
diffeomorphism of foliations.

Example 1.2. If M = Mk
1 ×M l

2, there is clearly an l-dimensional foliation F1

on M whose leaves are {x = constant ∈M1}. Similarly there is a k-dimensional
foliation F2 whose leaves are {y = constant ∈M2}.

More generally, let f : M → N be a fiber bundle, ie a proper submersion.
Then there is a foliation F whose leaves are f−1(constant). The dimension of
the foliation is dimM − dimN .

On the torus Tn = S1 × . . . × S1, consider the 1-dimensional foliation
F(a1,...,an) whose leaves are given by (θ1, . . . θn) = t(a1, . . . , an) +

−−−−−→
constant for

some fixed numbers a1, . . . , an. Unless all of the aj are rational multiples of
each other, the leaves will be diffeomorphic to R rather than S1. Leaves of a
foliation will typically not be properly embedded. If all of the aj are mutually
irrational, then any single leaf will be dense in Tn. What is the closure of a leaf
if some of the aj are rational multiples and others are not?

Definition 1.3. Let Mn be a smooth manifold. A k-dimensional distribution
ξk is a smooth choice of k-dimensional plane in TMp for all points p ∈M .

Note. To make the definition more precise, note that for any m-vector bundle
E → M we can form the bundle of k-planes in E, denoted by Grk(E) →
M . This is a fiber bundle whose fiber is Grm,k = {k − planes in Rm} =
GLm(R)/(GLk(R) × GLm−k(R)). Then a k-dimensional distribution is simply
a smooth section σ : M → Grk(TM).

Given a foliation F the distribution TF is defined by the tangent fibers of
the leaves. In fact this distribution determines F uniquely:

Proposition 1.4. Let F1,F2 be foliations of equal dimension on M , and sup-
pose f : M → M is a diffeomorphism so that f∗(TF1) = TF2. Then f is a
diffeomorphism of foliations from F1 to F2.

Proof: If f maps local pieces of leaves to local pieces of leaves everywhere, then
clearly f maps leaves to leaves globally. Given p ∈ M , choose open sets U
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containing p and V containing f(p) which come from the atlases defining F1

and F2 respectively. The leaves near p are given by {y = constant} ⊆ U and
the leaves near f(p) are given by {y = constant} ⊆ V . Therefore at each point
TF1 = span{∂xj} and similarly for TF2. In coordinates f∗(TF1) = TF2 means

that ∂f
∂xj

is a vector in span{∂xj}. It follows that f(x, y) = (f1(x, y), f2(y)), that

is, f maps F1 to F2. �

Note. The coordinates in the above proof may perhaps obscure the central idea,
which intuitively is this. The leaf of any foliation locally looks like a graph of
a function g : Rk → Rn−k. For f to preserve TF means exactly that the first
derivatives of g are preserved. But any two functions passing through the same
point with equal first derivatives are equal.

Definition 1.5. Let ξ be a distribution on a manifold M . We say that ξ
is integrable if ξ = TF for some foliation F on M (which by the previous
proposition is uniquely defined by ξ if it exists).

Proposition 1.6. Let ξ be an integrable distribution on M . Then for any vector
fields X,Y which are tangent to ξ, [X,Y ] is tangent to ξ as well.

Proof: The statement is local. Since ξ is integrable it follows that in foliated
coordinates ξ = span{∂xj}, and therefore X = gj(x, y)∂xj and Y = hj(x, y)∂xj
(standard summation convention). We simply calculate [X,Y ] = XY − Y X =

gj ∂h
i

∂xj
∂xi − hj

∂gi

∂xj
∂xi ∈ ξ. �

Note. The word integrability means exactly what it means in vector calculus.
As described in the previous note, foliations F are locally given as graphs of
functions, and TF is the data of the first derivatives of those functions. Asking
then if a given distribution is integrable is locally the same as asking for func-
tions with given first derivatives. The previous proposition describes an obvious
necessary condition: second order mixed partial derivatives must be equal.

The converse of the above proposition is much more interesting, it says that
the only obstruction to integrability is first order and local.

Theorem 1.7 (Frobenius Integrability). Let ξ be a distribution on M with the
property that [X,Y ] ∈ Γ(ξ) for all X,Y ∈ Γ(ξ). Then ξ is integrable. (We use
the notation Γ(ξ) ⊆ Γ(TM) for all vector fields tangent to ξ.)

We first prove a

Lemma 1.8. Given a vector field X, let ϕXt : M → M be the flow of X
(perhaps only defined for small t and subsets of M if X is not complete). Given
X,Y ∈ Γ(TM), [X,Y ] = 0 if and only if ϕXt ◦ ϕYs = ϕYs ◦ ϕXt .

Proof: Notice that for any diffeomorphism f , ϕ
f∗(X)
t = f ◦ ϕXt ◦ f−1 (by the

chain rule, and uniqueness of flows). Our lemma reduces then to [X,Y ] = 0
iff X = ϕYs∗(X) for all s. Differentiating ϕYs∗(X) − X with respect to s at
s = 0 gives the definition of LYX, which is equal to −[X,Y ]. Since ϕYs0+s =
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ϕYs0 ◦ ϕ
Y
s , if we instead differentiate at s = s0 we get ϕYs0∗[X,Y ], but since ϕYs0

is a diffeomorphism ϕYs0∗ sends only the vector 0 to 0. �
Proof of Frobenius Integrability: First, notice that Proposition 1.4 implies that
integrability is a priori a local question: if ξ is integrable on two open sets which
intersect, then the foliation must agree on the overlap and it follows that we
can glue.

For a point p ∈M we therefore choose coordinates so that ξp = span{∂yj}kj=1

(at the point p = 0 ∈ Rn only!) (since we have no foliation yet we denote coor-
dinates on Rn by (y1, . . . , yn)). Let π : Rn → Rk be the orthogonal projection.
Then π∗|ξp : ξp → TRk is an isomorphism (in fact it is the identity), it fol-
lows by continuity of ξ that π∗|ξq : ξq → TRk will be an isomorphism for all
nearby q (and thus by shrinking our chart we assume it is true everywhere).
Define Xj

q = π∗|−1
ξq

(∂yj ). This defines smooth vector fields Xj on our chart,

and furthermore π∗[X
j , Xi] = [π∗X

j , π∗X
i] = [∂yj , ∂yi ] = 0. By assumption

[Xj , Xi]q ∈ ξq, and since π∗ is an isomorphism on this subspace it follows that
[Xj , Xi] = 0 everywhere.

We now define new coordinates on our chart by (x1, . . . , xk, yk+1, . . . , yn) 7→
ϕX

1

x1
◦ . . . ◦ϕXkxk (0, . . . , 0, yk+1, . . . , yn). We see immediately that ∂x1 = X1. But

since [Xj , Xi] = 0 the lemma implies than all of these flows commute, and
therefore ∂xj = Xj . That is to say, span{∂xj} = ξ, which is to say that these
coordinates define a foliation F with TF = ξ. �

Definition 1.9. Let ξ be a distribution on M . Define ωξ : Γ(ξ) ⊗ Γ(ξ) →
Γ(TM/ξ) to simply be the induced operation from [·, ·], that is, ωξ = π ◦ [·, ·]|ξ,
where π : TM → TM/ξ is the projection.

This definition allows us to state the Frobenius theorem very succinctly: a
distribution ξ is integrable if and only if ωξ ≡ 0. An important property of ωξ
is that it is tensorial:

Proposition 1.10. ωξ is C∞(M)-linear.

For f ∈ C∞(M), X,Y ∈ Γ(ξ), ωξ(X, fY ) = π[X, fY ] = π(f [X,Y ] +
X(f)Y ) = fπ[X,Y ]+X(f)π(Y ) = fωξ(X,Y )+0. Since ωξ(X,Y ) = −ωξ(Y,X)
(a property inherited from [·, ·]) it is also C∞ linear in the first slot. �

This implies that for p ∈M , ωξ(X,Y )p only depends on Xp and Yp, that is,
ωξ is a smooth family of linear maps ωξ,p : ξp ⊗ ξp → (TM/ξ)p. The advantage
of this is that it turns integrability into an infinitesimal question rather than a
local question: it makes sense to say that ξ is integrable at a point p (which
is NOT the same thing as ξ being integrable in a neighborhood of p). It also
gives us a way to measure “how non-integrable” a distribution is: because ωξ,p
is a map of finite dimensional vector spaces, we can think of ξ as being “nearly
integrable” if the rank of ωξ,p is small, or “very non-integrable” if the rank is
large.

Definition 1.11. Let ξn−1 be a hyperplane distribution on a smooth manifold
Mn. We say that ξ is a contact structure if ωξp is non-degenerate (as a bilinear
form) for every point p ∈M .
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Often times this definition is stated simply as “a contact structure is a maxi-
mally non-integrable hyperplane field”. To be more concrete, suppose we choose
a metric on M . This gives a canonical (up to ±) identification of (TM/ξ)p ∼= R,
and then ωξ,p can be presented as ωξ,p(Xp, Yp) = 〈ApXp, Yp〉 for some linear
map Ap : ξp → ξp. To say that ωξ,p is non-degenerate simply means that the
determinant of Ap is non-zero. Notice also that Ap is skew-symmetric. Be-
fore we explore the geometry of contact structures it’s essential to have a good
understanding of the linear structure.

2 Symplectic linear algebra

Definition 2.1. A symplectic structure ω on a (finite dimensional) vector space
V is a skew, non-degenerate bilinear map.

Proposition 2.2. Let ω be a skew bilinear map on a vector space V . The
following are equivalent characterizations of non-degeneracy:

• for every nonzero v ∈ V there is w ∈ V so that ω(v, w) 6= 0

• the map ω∗ : V → V ∗ defined by ω∗(v) = ω(v, ·) is an isomorphism

• ω∧. . .∧ω 6= 0, where the number of terms on the left hand side is 1
2 dimV .

In particular, the third condition implies that any vector space with a symplectic
structure is even dimensional.

Proof: The first and second conditions are obviously equivalent. To show that
the third condition implies the first, suppose we have a vector v ∈ V so that
ω(v, w) = 0 for all w ∈ V . Let {v, v2, . . . , v2n} be any basis for V including the
vector v. Then by definition, ω∧n(v, v2, . . . , v2n) = 1

(2n)!

∑
σ∈S2n

sign(σ)ω(vσ(1), vσ(2)) . . . ω(vσ(2n−1), vσ(2n)),

where S2n is the group of permutations on 2n elements. We see that every term
in the sum is zero, and since ω∧n is a top dimensional alternating tensor it is
determined by its value on any basis.

Finally we show that the first condition implies the third; to do this, we
construct a basis {v1, . . . , v2n} of V so that ω∧n is nonzero on this basis. Choose
v1 ∈ V arbitrarily, and then choose v2 so that ω(v1, v2) 6= 0. We then define the
subspace V2 ⊆ V to be V2 = {v ∈ V ;ω(v, v1) = ω(v, v2) = 0}. First note that
dimV2 = dimV −2: by definition V2 = kerω∗(v1)∩kerω∗(v2), and since ω∗ is an
isomorphism we know the covectors ω∗(v1) and ω∗(v2) are linearly independent.
We further claim that ω|V2 also satisfies the first property of the proposition.
Indeed given v ∈ V2, we can choose w ∈ V so that ω(v, w) 6= 0. But v1 and v2

span V/V2, and therefore w = av1 + bv2 + w′ for some real numbers a, b and
w′ ∈ V2; it follows that ω(v, w′) 6= 0.

We then choose v3 ∈ V2 arbitrarily, v4 ∈ V2 satisfying ω(v3, v4) 6= 0, de-
fine V3 = {v ∈ V2;ω(v, v3) = ω(v, v4) = 0}, and continue the process induc-
tively. Because dimVk+1 = dimVk − 2, we must either end up with a Vn
whose dimension is either 1 or 0. But dimVn = 1 is impossible: we proved
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that ω|Vn satisfies the first property of the proposition, but every skew bilin-
ear form on a 1-dimensional vector space obviously vanishes. Therefore Vn
is zero dimensional and thus this process defines a basis {v1, . . . , v2n}. By
construction, ω(vi, vj) = 0 unless {i, j} = {2k − 1, 2k} for some k. Then
ω∧n(v, v2, . . . , v2n) = 2n

(2n)!ω(v1, v2) . . . ω(v2n−1, v2n) 6= 0. �

Definition 2.3. Let V be a vector space with a symplectic structure ω. Then
a subspace L ⊆ V is called isotropic if ω|L = 0.

Proposition/Definition 2.4. Let L be an isotropic subspace in (V, ω). Then
dimL 6 1

2 dimV . If dimL = 1
2 dimV we say that L is Lagrangian.

Proof: Let {v1, . . . , vk} be a basis for L, and let ηj = ω∗(vj). Let C = ker η1 ∩
. . . ∩ ker ηk. Because ω∗ is an isomorphism {ηj} is a linearly independent set
in V ∗, therefore dimC = dimV − k. Notice that the isotropic condition is
equivalent to L ⊆ C, which implies k 6 dimV − k. �

Example 2.5. Let V = R2n with coordinates (x1, y1, . . . , xn, yn), and let ωstd =∑n
i=1 x

∗
i∧y∗i . Then ω∧n = x∗1∧y∗1∧. . .∧x∗n∧y∗n = det 6= 0 and so ω is a symplectic

structure. The subspace L0 = {xj = 0} is a Lagrangian. If A : Rn → Rn is any
symmetric matrix then L = {y = Ax} is also a Lagrangian. Check that every
Lagrangian which is transverse to L0 is of this form (the graph of a symmetric
matrix). Also check that this example is essentially unique: every symplectic
vector space (V, ω) is isomorphic to (R2n, ωstd).

3 Contact structures defined by differential forms

For many purposes (especially computational), it is often useful to write a hyper-
plane distribution ξ as the kernel of a non-zero 1-form α ∈ Ω1(M) := Γ(TM∗).
This can always be done locally. Globally there is an orientability obstruc-
tion: the bundle TM/ξ is a 1-dimensional vector bundle, and α descends to a
non-vanishing section of (TM/ξ)∗, implying that this bundle (and its dual) is
trivial. Conversely, if ξ is a hyperplane distribution so that TM/ξ is orientable,
we can choose a non-vanishing section V ∈ Γ(TM/ξ) (since any orientable 1-
dimensional vector bundle is trivial). We can then α ∈ Ω1(M) by α(V ) = 1 and
α|ξ = 0 so that ξ = kerα. We say that a hyperplane distribution is coorientable
if this property holds.

If ξ is a contact structure on M , call α ∈ Ω1(M) a contact form for ξ if
kerα = ξ. The main goal of this section is the following

Proposition 3.1. Let α ∈ Ω1(M) = Γ(TM∗) be a nowhere vanishing 1-form
on a smooth (2n + 1)-manifold M . Then ξ := kerα is a contact structure if
and only if α ∧ (dα)∧n is a volume form (ie a nowhere vanishing element of
Ω2n+1(M)).

Note. When 2n + 1 = 4k + 3 the sign of α ∧ (dα)∧n does not depend on the
sign of α. Thus, a contact structure on M4k+3 (coorientable or not) defines
a canonical orientation on M . When dimM = 4k + 1 a coorientation of ξ is
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necessary to define an orientation on M , and indeed non-coorientable contact
structures can exist only on non-orientable manifolds.

There are two main ingredients in Proposition 3.1, one is Proposition 2.2,
and the other is

Proposition 3.2 (Cartan’s formula). Let η ∈ Ωk(M) be a differential form,
and let X ∈ Γ(TM) be a vector field. Then LXη = X y dη + d(X y η).

Proof: First, notice that

X y d(η1 ∧ η2) + d(X y (η1 ∧ η2))

= X y (dη1 ∧ η2 + (−1)kη1 ∧ dη2) + d(X y η1 ∧ η2 + (−1)kη1 ∧X y η2)

= X y dη1∧η2+(−1)k+1dη1∧X y η2+(−1)kX y η1∧dη2+(−1)k(−1)kη1∧X y dη2

+d(X y η1)∧η2+(−1)k−1X y η1∧dη2+(−1)kdη1∧X y η2+(−1)k(−1)kη1∧d(X y η2)

= (X y dη1 + d(X y η1)) ∧ η2 + 0 + 0 + η1 ∧ (X y dη2 + d(X y η2)).

Since both operators LX and X y d + dX y are Leibnizian with respect to ∧
it suffices to demonstrate their equality for 1-forms η. Also since it is local
it suffices to work in a chart. Suppose X 6= 0, and choose coordinates where

X = ∂x1
and write η = f jdxj for some smooth functions f j . LXη = ∂fj

∂x1
dxj

and d(X y η) = df1 = ∂f1

∂xj
dxj . X y dη = ∂x1

y ∂f
j

∂xi
dxi ∧ dxj = ∂fj

∂x1
dxj − ∂f1

∂xi
dxi.

This establishes Cartan’s formula for non-vanishing vector fields. Finally we
note that, since the formula is linear in X and any vector field can be locally
written as the sum of non-vanishing vector fields, the result follows. �
Proof of Proposition 3.1: By choosing a (local) basis for TM so that all but
one element is contained in ξ = kerα, we see that α ∧ (dα)∧n is nonvanish-
ing if and only if (dα)∧n|ξ is nonvanishing. Applying Proposition 2.2 we see
this is equivalent to dα|ξ being non-degenerate at each point. We claim that
dα(X,Y ) = −α(ωξ(X,Y )) for any vector fields X,Y tangent to ξ. This claim
completes the proof since then ωξ is non-degenerate exactly when dα|ξ is.

To prove the claim, recall that the Lie derivative is Leibnizian with respect
to evaluation of 1-forms on vector fields: LX(α(Y )) = (LXα)(Y ) + α(LXY ).
In our case the left hand side is zero (since α(Y ) = 0), the right hand side
equals (X y dα+ d(α(X))) (Y ) + α([X,Y ]) = (X y dα+ d(0))(Y ) + α([X,Y ]) =
dα(X,Y ) + α([X,Y ]). �

Example 3.3. On R2n+1 with coordinates (x1, y1, . . . , xn, yn, z), let αstd =
dz−

∑n
i=1 yidxi. Then ξstd = kerαstd is contact, since α∧(dα)∧n is the standard

volume form.
Alternatively, let αrot = dz−

∑n
i=1 yidxi− xidyi. This contact form is rota-

tionally symmetric: with respect to polar coordinates (xi, yi) = (ri cos θi, ri sin θi),
we have αrot = dz +

∑n
i=1 r

2
i dθi. In fact this example is contactomorphic to

the previous one: there exists a diffeomorphism f : R2n+1 → R2n+1 so that
f(ξstd) = ξrot.
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On T 3, let α1 = cos(y)dz − sin(y)dx (x, y, z ∈ R/2πZ). Then ξ1 = kerα1 is
contact. More generally, let αk = cos(ky)dz− sin(ky)dx for any k ∈ Z>0. These
all define contact structures, and are mutually non-contactomorphic. Notice
furthermore that if we define α 1/2 = cos(y2 )dz − sin(y2 )dx, while this is not
a well-defined 1-form, it does have a well defined kernel. ξ = kerα 1/2 is an
example of a non-coorientable contact structure.

4 Contact isotopies

4.1 Contact vector fields

At first, the definition of a contact structure may seem quite strange. Like any
geometry, the best way to get an intuitive understanding of it is to study its
symmetries.

Definition 4.1. Let ξ1, ξ2 be contact structures on M1 and M2 respectively.
A diffeomorphism ϕ : M1 → M2 is called a contactomorphism if ϕ∗(ξ1) = ξ2.
A contact isotopy is an isotopy through contactomorphisms, that is, a smooth
1-parameter family of contactomorphisms ϕt : M1 → M1 so that ϕ0 = id and
ϕt∗(ξ1) = ξ1.

The nice thing about contact isotopies rather than contactomorphisms is
that we can view them as flows of vector fields.

Definition 4.2. Let (M, ξ) be a contact manifold. We say X ∈ Γ(TM) is a
contact vector field if [X,Y ] ∈ Γ(ξ) for all vector fields Y ∈ Γ(ξ).

Remark 4.3. A contact vector field is not the same thing as a vector field
tangent to ξ. We call this latter type of vector field tangent vector fields.
Thus the defining property of contact vector fields X is that LX sends tangent
vector fields to tangent vector fields. In fact, these two types of vector field are
somewhat opposites: a contact vector field is never tangent to ξ on an
open set. Indeed, the non-degeneracy property defining a contact structure
says exactly that.

Proposition 4.4. Let ϕt be a contact isotopy on a contact manifold (M, ξ).
Then Xt := dϕt

dt ◦ ϕ
−1
t is a contact vector field for all t ∈ [0, 1]. Conversely, let

Xt be a smooth family of contact vector fields. Then the flow of Xt is a contact
isotopy.

Proof: Suppose ϕt is a contact isotopy, and let Y be a vector field tangent to
ξ. Then ϕt∗(Y )p ∈ ξp at each point p ∈ M , by definition of contact isotopy.
So ϕt+h∗(Y )p − ϕt∗(Y )p ∈ ξp as well, and but putting lim

h→0

1
h in front of this

equation we get L dϕt
dt

(Y ◦ ϕt) = [dϕtdt , Y ◦ ϕt] = [Xt, Y ] ◦ ϕt ∈ ξ.
Now suppose Xt is given, then the flow ϕXt is defined by the equation

dϕXt
dt ◦ϕ

−1
t = Xt (together with ϕX0 = id). For a given point p ∈M and a vector

field Y ∈ Γ(ξ), let c : [0, 1]→ (TM/ξ)p be defined by c(t) = πϕXt∗(Y )p (where
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π : TM → TM/ξ is the projection). Then c(0) = 0 and c′(t) = π([Xt, Y ]) = 0.
Thus c(t) = 0 for all t which implies that ϕXt is a contact isotopy. �

Because of this proposition, we use the notation T Cont(M, ξ)id to denote
the space of all contact vector fields (read literally as the tangent fiber to the
group of contactomorphisms). This is clearly a vector space, though be careful
to note that a smooth function times a contact vector field is not typically a
contact vector field.

Theorem 4.5. Let (M, ξ) be a contact manifold. Let π : T Cont(M, ξ)id →
Γ(TM/ξ) be the restriction of the projection Γ(TM) → Γ(TM/ξ). Then π is
an isomorphism of vector spaces.

Proof: π is linear so to show that it is injective we show it has trivial kernel.
If π(X) = 0 then X is tangent to ξ everywhere. If X 6= 0 then the contact
condition implies there is a vector field Y tangent to ξ so that [X,Y ] /∈ ξ, which
contradicts the fact that X is contact.

To show π is surjective, suppose we are given a section σ : M → Γ(TM/ξ).
Choose a random (not contact) vector field Z so that π(Z) = σ. Define a
function E : Γ(ξ)→ Γ(TM/ξ) by E(Y ) = π([Z, Y ]), notice that Z is a contact
vector field iff E = 0. It’s easy to see that E is C∞(M)-linear (just as in the
proof of Proposition 1.10), so in fact E descends to a map E : ξ → TM/ξ.

The contact condition (interpreted as the second property in Proposition
2.2) implies that there is a vector field V = (ω∗ξ )−1(E) so that V is tangent to
ξ and ωξ(V, ·) = E. We let X = Z − V . Then for any Y ∈ Γ(ξ), π([X,Y ]) =
π([Z, Y ])−π([V, Y ]) = E(Y )−E(Y ) = 0. Therefore X is contact and π(X) = σ
(since V ∈ Γ(ξ)), so π is surjective. �

The power of this theorem is that it shows us that contact isotopies are easy
to construct: the space of contact isotopies is infinite dimensional, and admits
cutoff functions (ie they are locally constructable). For example:

Corollary 4.6 (isotopy extension). Let (M, ξ) and (U, ζ) be two contact man-
ifolds of equal dimension. Let ft : U → M be a smooth path of contact embed-
dings. Then there is a contact isotopy ϕt on M , so that ϕt◦f0 = ft. Furthmore,
we can assume that ϕt is the identity outside any open set Vt ⊆ M containing
the closure of ft(U).

Proof: Xp = dft(p)
dt defines a contact vector field on M which is defined over

ft(U). Using Theorem 4.5 we can represent this vector field as a section σt :
ft(U)→ (TM/ξ)|ft(U). We can then extend this section to all of M by cutting
it off to zero (in a neighborhood of Vt). The flow of this section defines the
desired ϕt. �

4.2 Contact isotopy conditions with a contact form

We would also like to understand contact isotopies and vector fields from the
point of view of contact forms.
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Proposition 4.7. Let (M, kerα) be a contact manifold with contact form α.
A diffeomorphism ϕ : M → M is a contactomorphism if and only if ϕ∗α =
fα for some nowhere vanishing function f ∈ C∞(M). A vector field X is a
contact vector field if and only if LXα = gα for some (possibly zero) function
g ∈ C∞(M).

Proof: The first statement is obvious: by definition of pullback we have that
(ϕ∗α)(Y ) = α(ϕ∗Y ). For the second statement, let Y be a vector field tangent
to ξ. Then 0 = LX(α(Y )) = (LXα)(Y ) + α([X,Y ]). X being contact means
that α([X,Y ]) = 0 for all Y ∈ kerα, therefore it follows that kerLXα ⊇ kerα.
�

Proposition/Definition 4.8. Let (M, kerα) be a contact manifold with con-
tact form α. α induces a map α : T Cont(M, kerα)|id → C∞M ; this map is
an isomorphism of vector spaces. We define the Reeb vector field Rα to be
the contact vector field that is sent to the constant function 1 ∈ C∞M . Then
Rα y dα = 0.

Proof: The first statement is simply a rephrasing of Theorem 4.5: a 1-form α
with kerα = ξ defines an identification of TM/ξ with R ×M , and under this
identification the projection of vector fields π : TM → TM/ξ is the same as
evaluation α : TM → R×M . Rα is then defined to be the unique contact vector
field with α(Rα) = 1. Proposition 4.7 says that LRαα is a multiple of α. By
Cartan’s formula this is equal to Rα y dα+d(Rα yα) = Rα y dα+d(1) = Rα y dα.
Since Rα y dα is a multiple of α it is zero when restricted to kerα, but it is also
zero on Rα since dα is skew. Thus it is zero on TM . �

4.3 Gray stability

Theorem 4.9 (Gray stability). Let M be a smooth manifold, and let {ξt}t∈[0,1]

be a homotopy of contact structures on M . Assume that ξt is compactly sup-
ported (ξt = ξ0 for all t outside of a compact set in M). Then there exists a
smooth isotopy ϕt : M →M so that ϕt∗(ξ0) = ξt.

Philosophically this theorem should be thought of as saying “contact struc-
tures have no deformation theory”. Said differently, the space of contact struc-
tures on M modulo Diff0(M) is discrete.

Corollary 4.10. Let (M, ξ0) be a contact manifold, and suppose ξ1 is another
contact structure C1 close to ξ0. Then ξ1 is isotopic to ξ0.

Proof: Let ξt be a homotopy through distributions between ξ0 and ξ1; since ξ1
is C1 close to ξ0 this homotopy can be chosen to be C1 small. However, the
condition on distributions to be contact is C1 open (ie α ∧ (dα)∧n 6= 0 is an
open condition on α and its first derivative), and therefore ξt is contact for all
t. Applying Gray stability we get an isotopy ϕt : M →M so that ϕ1∗(ξ0) = ξ1.
�
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Before proving the theorem, we need to define some basic notions from dif-
ferential topology: the time derivative of a family of distributions, and the Lie
derivative of a distribution.

Definition 4.11. Let ξ be a distribution on M , and let X be a vector field.
Define LXξ : ξ → TM/ξ to be the bundle map defined by (LXξ)(Y ) = π(LXY )
for Y ∈ Γ(ξ). Note that by the standard argument LXξ is tensorial.

Notice that this definition gives us a particularly clean way to define the
contact condition: a hyperplane field ξ is contact if and only if every bundle
map F : ξ → TM/ξ can be realized as F = LXξ for some tangent vector field
X ∈ Γ(ξ).

Definition 4.12. Let ξt be a 1-parameter family of distributions on a man-
ifold M . Suppose that ξt is locally given as the span of a basis {Y tj }j=1,...,k.

Define ξ̇t = dξt
dt as the linear bundle map ξt → TM/ξt which maps

k∑
j=1

ajY
t
j to∑

j ajπt(Ẏ
t
j ), where πt : TM → TM/ξt is the projection. Note that ξ̇t is well

defined independent the choice of {Yj}. Also note that ξt is constant in t if and

only if ξ̇t = 0 for all t.

Proposition 4.13. Let M be a manifold with a family of distributions ξt, and
let ϕt be any smooth isotopy, which is a flow of the vector field Xt. Then
d
dt (ϕt∗(ξt)) = ϕt∗

(
LXtξt + ξ̇t

)
.

Proof: This is an immediate consequence of the corresponding identity for vector

fields: d
dt (ϕt∗(Y

t)) = ϕt∗

(
LXtY t + Ẏ t

)
. �

Proof of Gray stability: The idea is to construct the isotopy as the flow of a
vector field. Let us define Xt to be the vector field tangent to ξt satisfying
LXtξt = −ξ̇t which we know exists because of the contact condition. Notice
that Xt = 0 everywhere ξt is constant, so the condition that the homotopy is
compactly supported ensures the flow of Xt is well defined; call this flow ϕt.

Since d
dtϕt∗(ξt) = ϕt∗

(
LXtξt + ξ̇t

)
= 0 we see that ϕt∗(ξt) = ξ0 for all t. �

Recall that R2n+1 has a standard contact structure, ξstd = kerαstd, where
αstd = dz −

∑
i yidxi. As an application of Gray stability, we show that this

model is in fact a universal local model.

Theorem 4.14 (Darboux’s theorem). Let (M, ξ) be a contact manifold. Then
given p ∈ M there is an open neighborhood U ⊆ M containing p and a contact
embedding ϕ : (U, ξ|U ) → (R2n+1, ξstd) so that ϕ(p) = 0. Furthermore, given
ξ = kerα, we can find a (perhaps smaller) neighborhood U ′ 3 p and a embedding
ψ : U ′ → R2n+1 satisfying ψ∗(αstd) = α|U ′ and ψ(p) = 0.

Proof: Since every contact structure locally admits a contact form, the second
statement implies the first. First, find a smooth embedding f : U → R2n+1 so
that f(p) = 0 and f∗(αstd)p = αp. Define αt = (1− t)α+ tf∗(αstd), notice that
αt is constant at the point p. In particular kerαt is a contact structure for all
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t ∈ [0, 1] at the point p, so by possibly shrinking U we can assume that kerαt is
a contact structure everywhere on U for all t. We also shrink U so that it has
the property that Rαt has no closed orbits anywhere in U .

We would now like to apply Gray’s theorem to get an isotopy realizing this
homotopy. But our case here is different from the statement of the theorem:
we have contact forms rather than contact structures, and non-compactly sup-
ported homotopies. So we re-run the argument. Imagine we had an isotopy ϕt
so that ϕ∗t (αt) = α0 = α. Differentiating this equation gives ϕ∗t (LXtαt + α̇t) =
0. Dropping the ϕ∗t and applying Cartan’s formula then gives us Xt y dαt +
d(αt(X

t)) + α̇t = 0. We write Xt = Y t + htRαt where αt(Yt) = 0. (In our
earlier proof of Gray stability, we were able to choose ht = 0 everywhere, but
this was not forced on us. It is this additional freedom that we exploit in order
to get an isotopy of contact forms.)

The above equation becomes Y t y dαt + dht + α̇t = 0. Plugging Rαt into
this 1-form gives Rαt(h

t) + α̇t(Rαt) = 0. Because Rαt has no closed orbits we
can always solve this equation for ht by integration: ht = −

∫
γ

α̇t(Rαt)ds, where

γ : (a, b)→ U is an orbit of Rαt : that is dγ
ds |s=s0 = Rαt,γ(s0). h

t is only defined
modulo a function which is constant on all Rαt-orbits: we exploit this freedom
to choose ht(p) = 0 and dhtp|kerαt = 0. dhtp(Rαt) = −α̇t(Rαt)p is forced on us,
but since α̇tp = 0 we in fact have dhtp = 0 on all of TUp.

We now return to the equation Y t y dαt + dht + α̇t = 0 having solved for
ht. Restricting to kerαt, we know that there is a unique solution Y t by the
contact condition. Notice that Y tp = 0. Thus we have found an Xt satisfying
LXtαt + α̇t = 0.

We would now like to take the flow of Xt, but since this vector field is not
complete this flow is not defined as an isotopy of U . However, given any q ∈ U
we can still define the curve ϕXt(q) ∈ U which exists for some time t ∈ [0, Tq).
Since Xt

p = 0 for all t the flow ϕXt(p) is constant and therefore it is defined for
all t ∈ [0, 1]. The set {(t, q); t < Tq} ⊆ [0, 1] × U describing the times where
the flow is defined is an open set, therefore there is some set U ′ ⊆ U so that
ϕXt : U ′ → U is defined for all t ∈ [0, 1]. We then let ψ = f ◦ϕX1 : U ′ → R2n+1.
�

Remark 4.15. In order to make the proof work for contact forms, we relied
on the fact that αt had no closed Rαt-orbits, which we achieved by shrinking
the set U (working locally). Thus while we can prove a Darboux theorem for
contact forms, the proof cannot be extended to reprove Gray’s theorem (which
is a global theorem). Indeed, Gray’s theorem for contact forms is false.

Note. For any constant C, the map (xi, yi, z) 7→ (Cxi, Cyi, C
2z) is a contacto-

morphism of R2n+1
std . This says that R2n+1

std =
⋃
Ui, where each Ui is contacto-

morphic to the unit ball in R2n+1
std , and Ui ⊆ Ui+1. A “telescoping” argument

then shows that R2n+1
std is contactmorphic to the unit ball B2n+1 ⊆ R2n+1

std .
Combining this observation with Darboux’s theorem tells us that around every
point in a contact manifold, there is a neighborhood which is contactomorphic
to R2n+1

std .
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5 Symplectic geometry

5.1 The basics

Symplectic geometry is an even dimensional geometry, intimately connected
with contact geometry. Not only are these connections of abstract interest,
they also give us a wealth of examples in contact geometry.

Definition 5.1. Let W 2n be a smooth manifold. A symplectic structure on
W is a 2-form ω ∈ Ω2W which is both closed and non-degenerate: dω = 0
and ω∧n is never vanishing. A diffeomorphism between symplectic manifolds
ϕ : (W1, ω1)→ (W2, ω2) is called a symplectomorphism if ϕ∗(ω2) = ω1.

Example 5.2. Given any smooth manifold Q, we claim that the total space
T ∗Q is canonically symplectic. First we claim there is a 1-form λstd ∈ Ω1T ∗Q
defined by the property that for any section σ : Q → T ∗Q, σ∗λstd = σ (make
sure this formula makes sense to you). Together with the condition λstd|{fibers} =
0 guarantees the uniqueness of such a λstd. To check existence we define λstd

in coordinates. Given any local coordinates (q1, . . . , qn) on Q, let (p1, . . . , pn)
be dual coordinates on the fiber T ∗Qq, defined by pj(∂qj ) = pj and pi(∂qj ) = 0

for i 6= j. Then λstd =
n∑
j=1

pjdqj . Check that λstd has the property described

above, showing that it is independent of coordinates and therefore glues to a
global 1-form.

We then define ωstd = dλstd. ωstd is closed because it is exact, and it is

non-degenerate because in coordinates it is equal to
n∑
j=1

dpj ∧ dqj . (Note that

many authors instead use −ωstd as the canonical symplectic form.)

The previous example is a particular type of symplectic manifold where ω is
an exact 2-form. We call such symplectic manifolds exact. Note that a compact
manifold cannot have an exact symplectic structure. Indeed if W is compact,
ω∧n ∈ Ω2nW never being zero implies that [ω∧n] 6= 0 ∈ H2n

dRW
∼= R, which

implies that [ω] 6= 0 ∈ H2W since ∧ descends to an operation on homology
(cup product).

Definition 5.3. Let W be a complex manifold. A symplectic structure ω on W
is called Kähler if the function (v, w) 7→ ω(v,

√
−1w) is a Riemannian metric.

A nice property of Kähler manifolds is that complex submanifolds are auto-
matically Kähler (this is immediate to prove). This gives us a wealth of examples
of symplectic manifolds. Indeed, (Cn, ωstd =

∑
j dxj∧dyj) is Kähler, so the zero

set of any holomorphic functions on Cn is symplectic (as long as it is smooth).
Similarly, CPn is Kähler, with the Fubini-Study symplectic form. This implies
that any smooth complex projective variety is symplectic.

Definition 5.4. Let (W,ω) be a symplectic manifold. A vector field X on
W is called a symplectic vector field if its flow generates an isotopy through
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symplectomorphisms (a symplectic isotopy). Equivalently, X is a symplectic
vector field if and only if LXω = 0.

Proposition 5.5. Let (W,ω) be symplectic; non-degeneracy implies that ω∗ :
Γ(TW )→ Ω1W is an isomorphism. Under this isomorphism, symplectic vector
fields are identified with closed 1-forms.

Proof: This is immediate from Cartan’s formula: X is symplectic iff 0 = LXω =
X y dω + d(X yω) = d(X yω). �

In some ways the symplectic world is not as nice as the contact case: there
are often cohomological conditions which does not appear in the contact world.
For example, the isotopy extension theorem 4.6 does not hold in the symplectic
world. The reason is simple: closed 1-forms do not admit cutoffs. For example,
dθ is a closed 1-form on the annulus A = {a < x2 + y2 < b} ⊆ R2, but it cannot
extend to a closed 1-form on R2. Indeed, any closed 1-form on R2 is exact, but
[dθ] 6= 0 ∈ H1(A). If we choose a symplectic form ω on R2 then the flow of
the symplectic vector field (ω∗)−1(dθ) gives a path of symplectic embeddings
A→ R2 which doesn’t extend to a symplectic isotopy of R2.

To counter this, we define Hamiltonian vector fields to be symplectic vector
fields X so that X yω is exact. Then Hamiltonian vector fields do admit cutoff
functions.

For the purpose of relating symplectic geometry to the contact world, we are
interested in a different type of vector field.

Definition 5.6. Let (W,ω) be a symplectic manifold. A Liouville vector field
is a vector field Y so that LY ω = ω.

Liouville vector fields are not symplectic, so the flow of a Liouville vector
field doesn’t preserve ω, but it does preserve it conformally. Indeed, if ϕt is the
flow of a Liouville vector field, then ϕ∗t (ω) = etω.

ω∗ identifies Liouville vector fields on W with primitives of ω: ω = LY ω =
d(Y yω). Therefore Liouville vector fields can only exist on exact symplectic
manifolds, and a choice of λ satisfying dλ = ω gives a Liouville vector field
Y = (ω∗)−1(λ).

Notice that it is possible for Y to be zero on a subset of W , even though
LY ω 6= 0 (since LY ω is not tensorial in Y ). But Y yω is tensorial in Y , therefore
the set where Y vanishes is identical to the set where λ vanishes.

5.2 Contact and symplectic hypersurfaces

Proposition 5.7. Let (W,ω) be a symplectic manifold, and let M ⊆ W be a
hypersurface (a codimension 1 submanifold). Suppose there is a Liouville vector
field Y defined in a neighborhood of M , so that Y is transverse to M everywhere.
Then ker(Y yω|M ) is a contact structure on M .

Proof: Let λ = Y yω, so dλ = ω. Along M , TW = TM⊕〈Y 〉, and therefore ω∧n

being non-vanishing implies that (Y yω∧n)|M is non-vanishing. But Y yω∧n =
n(Y yω) ∧ ω∧n−1 = nλ ∧ (dλ)∧n−1. �

This proposition gives us a wealth of compact contact manifolds:
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Example 5.8. On (T ∗Q,ωstd), the primitive λstd defines a Liouville vector field
Y which is radial expansion along the fibers (in coordinates, Y =

∑
j pj∂pj ).

Choose a metric g on Q, and let S∗Q = {(q, p) ∈ T ∗Q; g∗(p, p) = 1} be the unit
sphere bundle in the cotangent space. Then αg = λstd|S∗Q is a contact form.
Each cosphere fiber S∗Qq is tangent to kerαg. One can check that the flow of
Rαg is equal to the geodesic flow of the metric g, after identifying S∗Q with the
unit sphere bundle in the tangent bundle, using g.

Notice that S∗Q is always cooriented, even if Q is non-orientable. On the
other hand, P(T ∗Q) = S∗Q/(q, p) ∼ (q,−p) is never coorientable, even if Q is
oriented. The contact structures kerα1 and kerα1/2 on T 3 given in Example
3.3 are contactomorphic to S∗T 2 and P(T ∗T 2), respectively.

Example 5.9. Let W be any complex submanifold of CN , and let M = S2N−1∩
W , where S2N−1 is a round sphere centered at the origin, with radius chosen so
that the intersection with W is transverse. Then we claim that M is contact.
Since W is complex ω = ωstd|W is a symplectic structure. Let λ = 1

2

∑
j xjdyj−

yjdxj |W . Notice that λ(
√
−1X) = 1

2 (
∑
j xjdxj + yjdyj)(X) = 1

4X(
∑
j x

2
j + y2

j )
for any vector X. λ is a primitive of ω, so it defines a Liouville vector field
Y on W . Since S2N−1 is transverse to W , the form

∑
j xjdxj + yjdyj |W is

never zero along M , which implies that λ is also non-vanishing, and thus Y
is nonzero along M . The Kähler condition then implies that at each point,
0 < ω(Y,

√
−1Y ) = (Y yω)(

√
−1Y ) = λ(

√
−1Y ) = 1

4Y (
∑
j x

2
j + y2

j ). Therefore

Y t S2N−1, meaning Y tM , so λ|M is a contact form.
We can describe the contact structure in another way. Suppose X ∈ TM ,

then as above λ(X) = 1
2 (
∑
j xjdxj+yjdyj)(−

√
−1X). Therefore, X ∈ kerλ|M =

ξ if and only if −
√
−1X is tangent to S2N−1. −

√
−1X is always tangent to

W (since W is a complex submanifold), therefore X ∈ ξ iff −
√
−1X ∈ TM .

Therefore ξ = TM ∩
√
−1TM .

The previous proposition says that a hypersurface in a symplectic manifold
is contact, given that it is transverse to a Liouville vector field. Conversely, we
show that hypersurfaces in contact manifolds are exact symplectic manifolds,
given a transversality condition.

Proposition 5.10. Let (M, ξ) be a contact manifold, and let W ⊆ M be a
hypersurface. Suppose there is a contact vector field X defined near W , so that
X is transverse to W , and never contained in ξ. Then W inherits a canonical
exact symplectic structure (with a canonical Liouville vector field).

Proof: Given such an X, we can define a contact form α for ξ by defining
α|ξ = 0, α(X) = 1 (thus Rα = X). Since TM |W = TW ⊕ 〈X〉, the fact that
α ∧ (dα)∧n 6= 0 implies that (dα)∧n|W = α(X)(dα)∧n = X yα ∧ (dα)∧n 6= 0.
Thus ω = dα|W is symplectic, and λ = α|W is a primitive of ω (which in turn
defines a Liouville vector field). �

Generally, this proposition is less useful than the previous one, for two rea-
sons. First of all, since exact symplectic structures only exist on open manifolds,
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we know that the previous proposition only applies when W is an open hyper-
surface, which is a major drawback. Secondly, in terms of generating examples,
the earlier proposition is far more useful since it allows us to construct contact
manifolds from symplectic manifolds, which in turn can be constructed from
holomorphic manifolds. But since we are generally short on contact examples,
constructing symplectic manifolds from contact manifolds tends to not give us
anything new.

5.3 Symplectizations and contactizations

We now investigate another way in which contact and symplectic geometry in-
tertwine: rather than looking at hypersurfaces, we look at R-equivariant struc-
tures.

Proposition/Definition 5.11. Let ξ be a hyperplane distribution on a (2n−
1)-dimensional manifold M . Let S(M, ξ) = {(q, p); q ∈ M,p ∈ T ∗Mq, ker p =
ξq} ⊆ T ∗M . Then ωstd|S(M,ξ) is a symplectic structure if and only if ξ is contact.
In this case, we call the symplectic manifold S(M, ξ) the full symplectization of
(M, ξ).

Proof: The statement is local in M , so we can choose α ∈ Ω1M with kerα = ξ.
Then for any (q, p) ∈ S(M, ξ), p = rαq for some r ∈ R∗ = R\{0}. Thus S(M, ξ)
is diffeomorphic to M × R∗. (This is only true locally. Globally, S(M, ξ) is an
R∗ bundle over M , bundle isomorphic to (TM/ξ) \ {zero section}.)

We claim that λstd|S(M,ξ) = rα with this coordinate identification. The
easiest way to check this is simply to notice that is σ : M → S(M, ξ) is a section,
then σ = fα for some non-vanishing function f ∈ C∞M , and σ = fα = σ∗(rα).
Since this is the defining property of λstd it follows that they are equal. But
then ωstd|S(M,ξ) = d(rα) = dr ∧α+ rdα, and so (ωstd|S(M,ξ))

∧n = rn−1dr ∧α∧
(dα)∧n−1. The result follows. �

If (M, ξ) is not coorientable, then S(M, ξ) is connected. However if ξ has a
coorientation, then S(M, ξ) is the disjoint union of two components S+(M, ξ)
and S−(M, ξ). If (M, ξ) is a cooriented contact manifold, we define the positive
symplectization to be the symplectic manifold S+(M, ξ). Notice that S+(M, ξ)
and S−(M, ξ) are symplectomorphic, so if ξ is only coorientable (but without a
given coorientation) S+(M, ξ) is still a well defined symplectic manifold, up to
symplectomorphism. If we simply say the symplectization of a contact manifold
(M, ξ), we will assume that we are talking about the positive symplectization
whenever ξ is coorientable, and the full symplectization if not.

Supposing that (M, ξ) is coorientable, a section α : M → S(M, ξ) is the same
as choosing a contact form for ξ, by definition of S(M, ξ). This also be seen in
the following way. A section α embeds M into S(M, ξ) as a hypersurface which
is transverse to the Liouville vector field. Then Proposition 5.10, λstd|α(M) is a
contact form on M . But by the canonical property of λstd, λstd|α(M) = α∗λstd =
α.

In the presence of a contact form, we can write S+(M, kerα, λstd) ∼=
(R+×M, rα). This is because S+(M, kerα) is a R+ bundle over M , so the sec-
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tion α : M → S+(M, kerα) defines a diffeomorphism S+(M, kerα) ∼= R+ ×M ,
so that α(M) = {1} ×M . Notice LY λstd = Y y dλstd + d(λstd(Y )) = Y yωstd +
d(ωstd(Y, Y )) = λstd. So Lr∂rλstd = λstd and λstd|{1}×M = α; interpreting this
as a differential equation with given initial conditions it follows that λstd = rα.

Because the symplectization is defined as a submanifold of T ∗M , it comes
not only with a symplectic structure, but also a Liouville structure λstd|S(M,ξ),
which defines a Liouville vector field Y (in the coordinates above, Y = r∂r).
Y is a complete vector field (in both directions), therefore its flow induces an
action of R on S(M, ξ). Conversely,

Proposition 5.12. Let (W,ω) be a connected symplectic manifold with a Li-
ouville R-action, that is, for any t ∈ R we get a diffeomorphism ϕt : W → W
satisfying ϕ∗tω = etω. Suppose the quotient M = W/R is a smooth manifold.
Then (W,ω) is a positive symplectization of a contact manifold (M, ξ), uniquely
defined up to contactomorphism.

Proof: Let Y = dϕt
dt |t=0, by assumption Y is a Liouville vector field on W , and

therefore λ = Y yω satisfies dλ = ω. Then LY λ = Y y dλ+ d(λ(Y )) = Y yω +
d(ω(Y, Y )) = λ + 0. Since R is contractible it follows that W is diffeomorphic
to M ×R, by a diffeomorphism sending Y to ∂t, where t is the coordinate in R.
This diffeomorphism is not canonical, but we choose one arbitrarily.

Let α = λ|M×{0}. L∂tλ = λ implies that φ∗tλ = etλ, which implies that
λ = et(α + fdt) for some function f ∈ C∞M . But since λ(∂t) = λ(Y ) = 0,
the function f is identically zero. Therefore λ = etα, so the coordinate change
r = et identifies W with the symplectization. �

Example 5.13. In the previous section, we defined the contact manifold S∗Q ⊆
T ∗Q by choosing a metric on Q. We give an alternative viewpoint of this contact
manifold by defining it in a metric invariant way. Notice that on T ∗Q, the
Liouville form λstd is zero exactly along the zero section Z = {p = 0} ⊆ T ∗Q.
The Liouville flow ϕt : T ∗Q → T ∗Q acts by ϕt(q, p) = (q, etp). Therefore
pt|T∗Q\Z defines a free action, and its quotient is diffeomorphic to a manifold.
Indeed it is diffeomorphic to S∗Q, since a choice of metric of Q defines an
embedding S∗Q ↪→ T ∗Q \ Z which intersects each Liouville orbit exactly once.
So (T ∗Q \ Z, λstd) is a positive symplectization of some contact structure on
S∗Q, but since the natural contact structure kerαg on S∗Q is defined as αg =
λstd|S∗Q, we see that (T ∗Q \ Z, λstd) = C(S∗Q, kerαg).

For yet another viewpoint, we define P+(T ∗Q) = {(q, P );P is a cooriented
hyperplane at the point q ∈ Q}. We define a contact structure ξstd on P+T ∗Q
as follows. At a point (q, P ) ∈ P+T ∗Q, a vector (∂q, ∂P ) is contained in ξstd iff
∂q ∈ P . Perhaps the easiest way to show that ξstd is contact is by showing that
ker : S∗Q→ P+T ∗Q is a contactomorphism from kerαg to ξstd (for any choice
of metric g). Given a point (q, p) ∈ S∗Q, (αg)(q,p)(∂q, ∂p) = p(∂q) (since αg is
the restriction of λstd ∈ Ω1T ∗Q). Therefore (∂q, ∂p) ∈ kerαg iff ∂q ∈ ker p = P .

We also note that the identification in Proposition 5.12 is functorial: con-
tact isotopies correspond to R-equivariant Hamiltonian isotopies. Let (M, ξ) be
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a coorientable contact manifold, and let Y be the canonical Liouville vector field
on W = S+(M, ξ). Then sections h : M → TM/ξ are in bijective correspon-
dence with functions H : W → R satisfying Y (H) = H. Indeed, any function
H of this form can be written as H(q, p) = p(h(q)), giving the correspondence.

The function H defines a Hamiltonian vector field XH = (ω∗)−1(dH) on W ,
and the function h defines a contact vector field Xh on M . Since dH = XH yω,
we see

LY dH = LY (XH yω)

Y y d2H + d(dH(Y )) = [Y,XH ] yω +XH y (LY ω)

d(H) = [Y,XH ] yω +XH yω

which implies that [Y,XH ] yω = 0, so [Y,XH ] = 0 by non-degeneracy of ω.
Therefore XH projects to a vector field on M , we claim that it projects to Xh.
(Since this is a local statement, it can be checked by calculating with a contact
form on M , or even by choosing Darboux coordinates.)

Note. This correspondence of contact and Hamiltonian flows also holds for the
full symplectization of a contact manifold, with a slight restatement: the con-
dition Y (H) = H is not enough to guarantee that H(q, p) = p(h(q)). We
must further assume that H(q,−p) = −H(q, p), with this additional condition
everything above holds for the full symplectization.

We now define a similar construction, in the opposite direction.

Proposition/Definition 5.14. Let W be an even dimensional manifold, and
let λ ∈ Ω1(W ). Let C(W,λ) be the manifold W ×R, equipped with the 1-form
αstd = dz − λ (z ∈ R). Then dλ is symplectic if and only if kerαstd is contact.
In this case, we call C(W,λ) the contactization of (W,λ).

In a symplectization, any section M → S(M, ξ) defines a contact form by
restricting λstd. Similarly, the restriction of αstd to a section W → C(W,λ)

defines a 1-form λ̃ = λ + df satisfying dλ̃ = dλ (it chooses a primitive for the
symplectic structure dλ). Notice that Rαstd

= ∂z for any contactization.

Proposition 5.15. Let (M, kerα) be a contact manifold, then the flow ϕt of
Rα defines an action on M of the group R. Assume that this action has no
fixed points, and that the quotient M/R is a smooth manifold. Then (M, ξ) is
contactomorphic to C(W,λ) for some exact symplectic manifold (W,λ).

Similar to the symplectization case, this identification is also functorial with
respect to flows. If f ∈ C∞W × R is a function satisfying Rαstd

(f) = 0, then f
descends to a function of W , and the contact flow of f on C(W,λ) projects to
the Hamiltonian flow of f on W .

An important example of a contactization is the contactization of a cotagent
bundle, which we call the first jet bundle of Q, (J 1Q,αstd) = C(T ∗Q,λstd) =
(T ∗Q×R, dz−

∑
pidqi). Notice that R2n+1

std = J 1Rn. We will see the significance
of this example in the next section.
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6 Legendrian submanifolds

Definition 6.1. Let (M, ξ) be a contact manifold. A submanifold Λ ⊆ M is
called isotropic if it is tangent to ξ, that is TΛq ⊆ ξq for all q ∈ Λ.

Of course, since ξ is a non-integrable plane field it is not possible for TΛq =
ξq; the dimension of any isotropic submanifold must be less than the dimension
of ξ. Since Λ is a submanifold, we know that any two vector fields X,Y ∈ Γ(TΛ)
which are tangent to Λ have a Lie bracket which is also tangent to Λ: [X,Y ] ∈
Γ(TΛ). Therefore, ωξ|Λ = 0. Proposition 2.4 immediately tells us

Proposition/Definition 6.2. Let (M2n+1, ξ) be a contact manifold, and let
Λ ⊆M be an isotropic submanifold. Then dim Λ 6 n. If dim Λ = n we say that
Λ is Legendrian.

If ξ = kerα, then of course TΛ ⊆ ξ iff α|Λ = 0. This of course implies that
dα|Λ = 0, which is the same as the above claim ωξ|Λ = 0.

Example 6.3. Let Q be any smooth manifold, and let Λ ⊆ J 1Q be an n-
dimensional submanifold so that the projection π : J 1Q → Q is a diffeomor-
phism when restricted to Λ. This condition is equivalent to Λ being the image of
a section σ : Q→ J 1Q. Since J 1Q ' T ∗Q×R, we can write σ = (β, f), where
β ∈ Ω1Q and f ∈ C∞Q. Then αstd|Λ = π∗σ∗αstd = π∗(β, f)∗(dz − λstd) =
π∗(f∗(dz)− β∗(λstd)) = π∗(df − β). Of course π∗ is an isomorphism, therefore
we see that Λ = σ(Q) is Legendrian iff df = β.

A nice interpretation of this perspective is reinterpreting first-order differen-
tial equations onQ. Such a differential equation can be written asG(q, f(q), dfq) =
0, and we are trying to understand the space of functions f ∈ C∞Q which satisfy
the equation. Then, G should be interpreted simply as a function G ∈ C∞J 1Q.
And solutions to the differential equation G are sections σ : Q → J 1Q which
satisfy two properties: G ◦ σ = 0, and σ(Q) is Legendrian. Notice that the
first condition is totally flexible: finding sections σ with σ(Q) ⊆ G−1(0) is a
question purely in the realm of differential topology. In this sense, all first
order differential equations can be reduced to a universal differential equation
σ∗αstd = 0.

Note. Though this business of reducing all differential equations to a Legendrian
condition may seem powerful, in fact it is something that any first-semester
student of ODEs knows how to do: given a differential equation G(x, y, ẏ) = 0,
we can reduce it to the algebraic equation G(x, y, u) = 0 and the “universal
differential equation” u = ẏ. This language of 1-jet spaces allows us to do the
same thing for first order PDEs on manifolds Q and to rephrase the differential
condition more geometrically (being tangent to ξstd), but the general idea is
exactly the same.

There are higher jet spaces J kQ which have identical properties for higher
order differential equations, but they do not have any natural contact structure.
The natural structure on J kQ is a non-integrable distribution of higher codi-
mension, but these plane fields do not satisfy the same nice geometric properties
as contact structures (Gray stability, Darboux theorems).
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Example 6.4. Let K ⊆ Q be any submanifold with positive codimension. We
define a Legendrian ν∗K ⊆ S∗Q, called the conormal bundle of K. ν∗K =
{(q, p) ∈ S∗Q; q ∈ K and p(TKq) = 0}. (In P+T ∗Q, this corresponds to ν∗K =
{(q, P ) ∈ P+T ∗Q; q ∈ K and TKq ⊆ P}). Check that ν∗K is Legendrian.
Notice that ν∗K is well defined for any immersed submanifold K, and as long as
the immersion is transverse to itself then ν∗K will be an embedded Legendrian.

We point out two extreme cases of this. When K is a point in Q, ν∗K is
just the fiber of S∗Q. If K is a hypersurface, then ν∗K is a two-to-one cover
of K, since ν∗K = {(q, p); ker p = TKq}. It is the coorientation double cover of
K. If K is cooriented in Q then this cover is disconnected, and we can choose
a canonical component ν∗+K = {(q, p); ker p = TKq as cooriented hyperplanes}.

Note. By choosing a metric on Q we get a contact form αg on S∗Q, which gives
rise to the Reeb flow ϕt : S∗Q → S∗Q. We noted in Example 5.8 that ϕt is
equal to the geodesic flow, using the identification under the diffeomorphism
g∗ : SQ→ S∗Q (where SQ = {(q, v) ∈ TQ; g(v, v) = 1}).

Given a cooriented hypersurface K ⊆ Q, ϕt acts on ν∗+K by flowing each
point of K in the direction orthogonal to K, at unit speed. (This is not the
same as mean curvature flow, which also flows hypersurfaces orthogonally; the
speed of the flow at a point is determined by the mean curvature. For instance,
the mean curvature flow acting on a round circle in flat R2 will shrink the radius
at a rate r = r0− t2, whereas ϕt will shrink the radius of an inwardly cooriented
circle linearly in time.)

Because ϕt has this unit speed property, it is very useful is geometric optics
for modeling the time evolution of wave fronts of light. In fact, this is one of the
earliest motivations for developing contact geometry. Suppose the point q ∈ Q
is to be thought of as a point source which is radiating light. We think of our
initial wavefront as the fiber Λ0 = S∗Qq: all the light in concentrated at q and it
is moving in every direction. Then ϕt(Λ0) is the time evolution of the wavefront
of the light. For small t we have ϕt(Λ0) = ν∗+S

n−1(q, t), where Sn−1(q, t) is
the sphere of radius t centered at q (outwardly cooriented). But for larger t
the wavefront π(ϕt(Λ0)) will have interesting geometry, self-intersections, and
singularities. (Here π : S∗Q → Q is the projection. Of course ϕt(Λ0) will be a
smooth embedded Legendrian for all t ∈ R, since ϕt is a contact isotopy.)

The next theorem should be thought of as a strengthening of the Darboux
theorem.

Theorem 6.5 (Legendrian Neighborhood Theorem). Let Λ ⊆ (M, ξ) be an
embedded Legendrian submanifold, and assume that ξ|Λ ⊆ TM |Λ is coorientable.
Then there is an open neighborhood U of Λ and a contact embedding ψ : U →
J 1Λ, so that ψ(Λ) is the zero section Z = {z = 0, p = 0} ⊆ J 1Λ. Furthermore,
given α ∈ Ω1M satisfying kerα = ξ, we can choose U and ψ so that ψ∗αstd = α.

Proof: The latter statement (ψ∗αstd = α) implies the former (ψ∗ξ = kerαstd).
First, we show that there is a bundle isomorphism f : TM |Λ → TJ 1Λ|Z , so
that f(TΛ) = TZ and f(ξ|Λ) = kerαstd|Λ. The diffeomorphism J 1Λ ' T ∗Λ×R
gives a canonical bundle isomorphism TJ 1Λ|Z ∼= TΛ ⊕ T ∗Λ ⊕ R, identifying
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TZ with TΛ and kerαstd|Λ with TΛ ⊕ T ∗Λ. By assumption we can choose
α ∈ Ω1ν with kerα = ξ|ν . We let f |TΛ be the identity map to TZ = TΛ,
and define f(Rα) = ∂z. A vector v ∈ ξq defines a covector (v y dαq)|TΛq , and
furthermore this covector is zero if and only if v ∈ TΛ. Therefore, · y dα defines
an isomorphism from ξ|Λ/TΛ to T ∗Λ, this completes the construction of f .

Being a normal bundle, we can identify U diffeomorphically with TM |Λ/TΛ.
Composing with f , we get a diffeomorphism g : U → TJ 1Λ|Z/TZ ∼= J 1Λ.
This diffeomorphism has the property g(Λ) = Z, and also g∗(αstd,q) = αq for
all q ∈ Λ.

We now run a standard Gray stability argument. We have two contact
forms on U , α and g∗αstd. For t ∈ [0, 1], let αt = tg∗αstd + (1 − t)α. When
restricted to Λ αt is constant, so αt is contact along Λ. By shrinking U , we can
therefore assume that kerαt is contact everywhere in U for all t ∈ [0, 1]. By
shrinking U further so that Rαt has no closed orbits in U , we can find functions
ht ∈ C∞U satisfying Rαt(h

t) = −α̇t(Rαt), so that ht(Λ) = 0 and dht|Λ = 0
(compare with the proof of Theorem 4.14). We also find Y t ∈ kerαt so that
Y t y dα = −dht − α̇t.

Then Xt = Y t + htRαt satisfies LXtαt = −α̇t everywhere. Xt = 0 along
Λ, so the flow of Xt is defined for all t ∈ [0, 1] along Λ. By choosing an open
U ′ ⊆ U we can define ϕt : U ′ → U to be the flow of Xt for all t ∈ [0, 1]. Then
ϕ∗t (αt) = α. Setting ψ = g ◦ ϕ1 completes the result. �

Note. The assumption that ξ is coorientable along Λ is essential: if ξ is defined
on S1 ×D2 = {(θ, x, y); θ ∈ R/Z, (x, y) ∈ D2} by ξ = ker(cos( θπ )dy − sin( θπ )dx)
then it’s easy to check that no neighborhood of the Legendrian Λ = {x = 0, y =
0} is contactomorphic to J 1S1, since (TM/ξ)|Λ is not orientable. However, one
can show that, given the line bundle isomorphism class of (TM/ξ)|Λ (which is
classified by H1(Λ;Z2)), a small tubular neighbrhood of Λ is uniquely deter-
mined.

Similarly, suppose we are given an isotropic manifold Kk ⊆ (M2n+1, ξ).
Assuming that ξ|K is coorientable, a neighborhood of K is contactomorphic to a
symplectic vector bundle E2n−2k → J1K. The symplectic bundle isomorphism
type of E is a local invariant of K, but note that this is an algebro-topological
invariant (it is classified by homotopy classes of maps K → BU(2n− 2k)). As
a general philosophy, the bundle isomorphism type of the normal bundle to an
isotropic submanifold determines the contactomorphism type of neighborhoods
of that manifold. The Darboux theorem is a special case of this, since a point
is an isotropic submanifold and any vector bundle over a point is trivial.

7 Hypersurfaces in 3-dimensional contact manifolds, part I

One of the most powerful approaches to low dimensional topology (and geomet-
ric topology in general) is cut-and-paste techniques: given a manifold, we can
hope to chop it up into pieces we understand, and then glue those pieces back
together. In order to apply this in the contact world, we need a way to say
which gluings are possible.
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Before embarking into the world of hypersurfaces, we make a note about con-
tact 3-manifolds and orientations. Any contact 3-manifold (M, ξ) is canonically
oriented, by declaring the basis (X,Y,−[X,Y ]) to be a positive orientation for
any linearly independent vector fields X,Y ∈ Γ(ξ) (why is this well defined?).
Note that this works even when ξ is not coorientable. In the language of con-
tact forms, notice that the sign of α∧ dα does not depend on the sign of α, and
therefore even local contact forms define a global orientation.

Note. Though we will not really rely on this fact, we note that any orientable
3-manifold is parallelizable, that is, TM ∼= M×R3 (but this identification is not
canonical). This is a modestly deep theorem, which we won’t have a chance to
prove. The difficult part is showing that any orientable 3-manifold is spin. The
standard proof follows from the Wu formulas relating Steenrod squares with
Stiefel-Whitney classes. Another proof due to Kirby works more geometrically,
relying on the fact that all homology classes in H2(M ;Z2) can be represented
by embedded surfaces.

7.1 Characteristic foliations as germs of contact structure

Definition 7.1. Let Σ2 be a surface in a three manifold (M, ξ) equipped with
a distribution. The characteristic foliation of ξ, denoted Fξ, is the singular
foliation on Σ defined by TΣ ∩ ξ.

Notice that in higher dimensions, there is no reason for the distribution TΣ∩ξ
to be integrable, even when it is non-singular. But of course any 1-dimensional
distribution is integrable.

While we haven’t defined the term singular foliation, we can take its meaning
to be exactly what is needed for our definition to work: a singular foliation is
a smooth hyperplane distribution ξ ⊆ TΣ ⊕ L, with the equivalence relation
ξ1 ∼ ξ2 iff A(ξ1) = ξ2 for some bundle automorphism A : TΣ ⊕ L → TΣ ⊕ L
satisfying A|TΣ = id (here L is an arbitrary line bundle). Because this definition
may feel abstract, we give an alternative characterization of the concept.

Proposition 7.2. Let F1 and F2 be coorientable singular foliations on an ori-
ented surface Σ. Then Fj is an equivalence class of distribution 2-dimensional
distribution ξj ⊆ TΣ ⊕ R. We can therefore write ξj = ker(βj + fjdt), where
βj ∈ Ω1Σ and fj ∈ C∞Σ. Notice that kerβj = Fj everywhere. Then F1 = F2

if and only if β1 = gβ2 for some nonvanishing function g ∈ C∞Σ.

Proof: Let Fj be the equivalence class of ker(βj+fjdt). A bundle automorphism
A : TΣ ⊕ R → TΣ ⊕ R satisfying A|TΣ = id can be written as A(v, t) =
(v + tX, ht) for some vector field X ∈ Γ(TΣ) and nonvanishing h ∈ C∞Σ (here
v ∈ TΣ, t ∈ R). So A∗(β2 + f2dt) = β2 + (β2(X) + hf2)dt. Then F1 = F2 iff
there exists A so that ker(β1 +f1dt) = ker(β2 +(β2(X)+hf2)dt) which happens
if and only if β1 +f1dt = gβ2 +g(β2(X)+hf2)dt. So F1 = F2 implies β1 = gβ2.

Conversely, assuming β1 = gβ2, we need to show that the equation f1 =
g(β2(X)+hf2) admits a solution for X and h. First, let C ⊆ Σ be the vanishing
set of β1. Then β2 also vanishes, so f1 and f2 must both be non-vanishing (since
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βj + fjdt 6= 0). Let U be an open neighborhood in Σ containing C, so that f2

is non-vanishing on U , and let h|U = f1
gf2

. Then extend h to Σ arbitrarily. It

remains to find X so that f1 − ghf2 = gβ2(X) = β1(X). The function on the
left hand side vanishes on U , and β1 is non-vanishing on Σ\C, so we can clearly
find such an X (supported in Σ \ U). �

This proposition is very useful in practice. Writing ξ = kerα allows us
to write β = α|Σ. Therefore, the singular foliation Fξ is determined by the
equivalence class of α|Σ under scaling by non-zero functions.

Remark 7.3. It is generally not enough to assume that singular sets of F1

and F2 are equal and the non-singular sets are equivalent as foliations. For
example, let β1 = xdx + ydy and β2 = (x2 + y2)β1 be defining 1-forms for
singular foliations on D2. Then kerβ1 = kerβ2 everywhere, but the singular
foliations are not equivalent.

Theorem 7.4. Let Σj ⊆ (Mj , ξj) be embedded orientable surfaces inside contact
3-manifolds, j = 1, 2. Suppose there is a diffeomorphism ψ : Σ1 → Σ2 satisfying
ψ∗(Fξ1) = Fξ2 . Then there are neighborhoods Uj ⊇ Σj and a contactomorphism
ϕ : U1 → U2, so that ϕ|Σ1

= ψ.

Proof: ψ∗ × id is a bundle isomorphism TΣ1 ⊕ R → TΣ2 ⊕ R. By choosing
identifications TMj |Σj ∼= TΣj ⊕R we get distributions ξj |Σj ⊆ TΣj ⊕R, which
define the characteristic foliations Fξj . By assumption ψ∗(Fξ1) = Fξ2 , which is
to say there exists a bundle automorphism A : TΣ2 ⊕ R → TΣ2 ⊕ R so that
(A ◦ (ψ∗ × id))(ξ1) = ξ2. Thus we get a bundle isomorphism ψ̃ : TM1|Σ1

→
TM2|Σ2

covering the diffeomorphism ψ : Σ1 → Σ2, so that ψ̃(ξ1|Σ1
) = ξ2|Σ2

.

Neighborhoods Uj ⊇ Σj are diffeomorphic to TMj |Σj/TΣj , therefore ψ̃ de-

fines a diffeomorphism ψ̂ : U1 → U2, satisfying ψ̂|Σ1
= ψ and ψ̂∗((ξ1)q) =

(ξ2)ψ(q) for all q ∈ Σ1. From here we run a Gray stability argument. Let ξt

be a homotopy of distributions on U2 connecting ξ2 and ψ̂∗(ξ1), which is fixed
on Σ2. Since it is fixed on Σ2 and being contact is an open condition, we can
assume that ξt is contact everywhere, by shrinking U2. By the contact condi-
tion, we can find vector fields Xt ∈ Γ(ξt) so that LXtξt = −ξ̇t. We can then
find U ′2 ⊆ U2 so that the flow of Xt, ϕt : U ′2 → U2 is defined for all t (since

Xt|Σ2
= 0), and ϕt∗(ξt) = ξ2. Then ϕ = ϕ1 ◦ ψ̂ : ψ̂−1(U ′2) ⊆ U1 → U2 is the

desired contactomorphism. �

Remark 7.5. In the proof, we never once took a second derivative of ψ.
Therefore if ψ is assumed only to be a C1-diffeomorphism, the entire proof
runs through, and we get a C1 contactomorphism ϕ : U1 → U2. Suppose
we use this contactomorphism to glue C∞ contact manifolds together, M =
(M1, ξ1) ∪ψ (M2, ξ2). Then M is a C1-smooth manifold with a C1-smooth con-
tact structure ξ.

But then, any C1 manifold is C1 diffeomorphic to a unique C∞ manifold
M̃ , and this diffeomorphism pushes forward ξ to a C1 contact structure on M̃ .
But then, if ζ1 and ζ2 are two C∞ contact structures which are C1 close to ξ,
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then they are C1 close to each other, and therefore Corollary 4.10 implies that
ζ1 is contactomorphic to ζ2.

The takeaway from all of this is: C1 gluings of C∞ contact manifolds are
good enough to define C∞ contact structures on C∞ manifolds, canonical up to
C∞ contactomorphism. Though we do not study this in depth, this is actually
very important for us, because it the C1 classification of singularities of Fξ is
known, whereas the C∞ classification is far more difficult.

Note. Notice that we assumed nowhere that ξ is coorientable at Σ; it follows that
Fξ actually keeps track of the isomorphism class of TM/ξ|Σ. Furthermore, we
only used the orientability of Σ in a mild way: since M is orientable it follows
that TMΣ

∼= TΣ ⊕ R if and only if Σ is orientable. If Σ is non-orientable,
TMΣ

∼= TΣ ⊕ detTΣ (where detTΣ is the line bundle TΣ ∧ TΣ). Other than
this small change, the proof above can be repeated verbatim for non-orientable
Σ.

In some ways, this theorem ends the story about surfaces in contact 3-
manifolds: there exists a contactomorphism ϕ : νΣ1 → νΣ2 so that ϕ(Σ1) = Σ2

if and only if there is a diffeomorphism ψ : Σ1 → Σ2 preserving characteristic
foliations. However in some ways, the condition ϕ(Σ1) = ϕ(Σ2) is very strong.
For example, it may be that Σ1 is embedded very non-generically with respect
to the contact structure. Then it may be that (Σ1,Fξ1) is non-diffeomorphic
to (Σ2,Fξ2), but after a C∞ small perturbation of Σ1 the foliations become
diffeomorphic. It follows then that a neighborhood of Σ2 admits a contact
embedding into any neighborhood of Σ1.

7.2 Generic singularities of characteristic foliations

We study singularities of the characteristic foliation of a generically embedded
surface in a contact manifold. Because our considerations are local, we will
assume that Σ is oriented and ξ = kerα is cooriented. Proposition 7.2 then
implies that Fξ is determined by β := α|Σ ∈ Ω1Σ up to multiplication by a
positive function.

Choose a volume form σ on Σ matching the orientation, and define X ∈
Γ(TΣ) by X yσ = β. Since both β and σ are well defined up to scaling with a
positive function (and since y is C∞ linear), Fξ determines X up to multipli-
cation by a positive function. Notice that X = 0 exactly where Fξ is singular,
and on the non-singular set span(X) = Fξ.

Therefore, singularities of characteristic foliations correspond to singularities
of vector fields (or more precisely, since X is only defined up to rescaling, we
are looking at singularities of integral curves of vector fields). The most basic
properties of such a singularity are defined by the linearization of the vector
field.

Let X = f∂x + g∂y be a vector field on R2 that vanishes at the origin. The
linearization of X at zero is the matrix

A =

(
∂f
∂x (0, 0) ∂f

∂y (0, 0)
∂g
∂x (0, 0) ∂g

∂y (0, 0)

)
.
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Let λ1, λ2 be the eigenvalues of A. Since a coordinate change of R2 has
the effect of conjugating A, they only depend on X. We say that the singular
point is non-degenerate if detA = λ1λ2 6= 0 (which implies in particular that the
singularity is isolated). We say that (0, 0) is an elliptic singular point if λ1λ2 > 0,
and hyperbolic if λ1λ2 < 0. Notice that, if Y = hX for a nonvanishing function
h on R2, then AY = hAX , so the elliptic/hyperbolic distinction is actually an
invariant of F (even after switching orientation).

This elliptic/hyperbolic dichotomy exists for arbitrary singular foliations,
but in the contact case we have additional information. Since β = α|Σ and
α ∧ dα 6= 0, it follows that whenever β = 0, dβ 6= 0. In the case where Σ and ξ
are oriented, the sign of dβ tells us whether TΣ = ξ with matching or opposite
orientations. Since d(X yσ) = dβ, we can let σ = dx ∧ dy on R2, and calculate
that dβ = d(fdy − gdx) = (∂f∂x + ∂g

∂y )dx ∧ dy = tr(A)σ. Thus in the case of
singularities of characteristic foliations λ1 + λ2 6= 0, and the sign tells us the
sign of the tangency TΣ = ξ (this is true even at degenerate singularities).

If Σ ⊆ (M, kerα), we would like to know that a C∞ generic perturbation of
Σ causes the singularities of Fξ to be non-degenerate. Of course a C∞ generic
vector field will have non-degenerate singularities, and since non-degeneracy is
invariant under functional scaling of X, it follows that a C∞ generic singular
foliation will have non-degenerate singularities. Therefore a generic perturba-
tion of ξ will create non-degenerate singularities. But by Gray stability this
perturbation of ξ is realized by a smooth isotopy of Σ. Since a generic isotopy
is not a contactomorphism (the set of contact vector fields has infinite codimen-
sion in the space of all vector fields) it follows that Fξ will have non-degenerate
singularities after C∞ perturbing Σ in a generic way.

Thus, assuming that Σ ⊆ (M, ξ) is embedded generically, all singularities will
be isolated and fall into either the class of elliptic or hyperbolic singularities.
Assuming that Σ is oriented and ξ is cooriented, each singularity can also be
regarded as positive or negative. Let e+, e−, h+, and h− denote the total number
of each type.

Proposition 7.6. Let (M, ξ) be a cooriented contact manifold, and let Σ ⊆M
be a closed oriented surface, generically immersed with respect to ξ. Then

χ(Σ) = (e+ − h+) + (e− − h−)

e(ξ|Σ) = (e+ − h+)− (e− − h−).

Proof: Let X be as above: X yσ = α|Σ for some contact form α for ξ and volume
form σ for Σ. Then X is a vector field in TΣ, and therefore the Poincaré-Hopf
Theorem tells us that χ(Σ) = e(TΣ) = etot − htot. For the second equation,
notice that X is also a vector field in ξ|Σ, so we can also apply the Poincaré-
Hopf Theorem here. However at the negative singularities, the orientation of
ξ is opposite to the orientation of TΣ, and therefore the contribution of those
zeros will count oppositely. �

Remark 7.7. Another way to see the the elliptic/hyperbolic distinction is as
follows. Suppose we are in the situation of Example 5.9, where M = W ∩S2N−1
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for some W of complex dimension 2 holomorphically embedded in CN . As we
noted there, the 2-plane field ξ = TM ∩

√
−1TM is a contact structure (equal

to kerλstd|M ).
Now if Σ is a surface in M , we immediately see that TΣq = ξq at a point q

if and only if TΣq =
√
−1TΣq. That is, Fξ will be singular exactly where TΣ

is a complex (or anti-complex!) line.
Let Gr+

2 (TW ) be the bundle of oriented 2-dimensional subspaces in TW .
(Since TM ∼= M ×R3 we see that TW |M ∼= M ×R4, so in fact Gr+

2 (TW )|M ∼=
M × Gr+

4,2, but we do not use this.) TΣ therefore defines a section T : Σ →
Gr+

2 (TW )|Σ. Sitting inside Gr+
2 (TW ) is the bundle PC(TW ), the bundle of

all complex lines in TW . Also there is a disjoint diffeomorphic subbundle
PC(TW ) ⊆ Gr+

2 (TW ), the bundle of anti-complex lines.
On can check that the fiber Gr+

4,2 is diffeomorphic to S2 × S2, but for our
purposes if suffices to know that this manifold is 4-dimensional. Of course
the fiber of PC(TW ) – CP1 – is 2-dimensional, therefore in the generic case
where T (Σ) t PC(TW ), they will intersect it in some finite number of points.
The positive intersections are the positive elliptic singularities, and the negative
intersections are the positive hyperbolic singularities. Similarly, the negative
elliptic/hyperbolic singularities of Fξ will correspond to the positive/negative
intersections of T (Σ) with PC(TW ).

The interesting part of this observation is that the embedding Σ ⊆W deter-
mines this information without reference to M , ξ or λ, it only uses the complex
structure on W . This is perhaps surprising, because the foliation Fξ itself can-
not be determined without reference to more structure. Also note that this trick
can be done for any contact manifold (M, ξ), by putting a cylindrical almost
contact structure on the positive symplectization.

Remark 7.8. A singularity is C1 diffeomorphic to its linearization, blah blah
to be filled in later.

8 Curves in contact 3-manifolds

Having outlined the basics of surfaces in contact 3-manifolds, we now turn our
attention to curves. There are two basic types of curves we can study: transverse
and Legendrian.

8.1 Transverse knots

Definition 8.1. Let (M, ξ) be a contact manifold. A curve γ ⊆ M is called
transverse if γ t ξ everywhere.

Notice that ξ is cooriented near any transverse curve γ, since Tγ ∼= TM/ξ|γ .
This also says that a coorientation of ξ determines an orientation of γ. Unless
stated otherwise we will assume that these orientations are chosen to match,
and reserve the term negatively transverse curve for a transverse curve whose
orientation is opposite of a given coorientation of ξ.

We describe a local neighborhood theorem of transverse curves.
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Proposition 8.2. Let γ be a connected transverse curve in (M, ξ). then there is
an open neighborhood U ⊇ γ and a contact embedding ϕ : U → (S1×R2, ker(dz−
ydx + xdy)), where (x, y) ∈ R2 and z ∈ S1 = R/Z. This contact embedding
satisfies ϕ(γ) = {x = y = 0}.

Proof: By now this should be an easy exercise for the reader: find a diffeomor-
phism which preserves the contact structure at the curve γ, and then use Gray
stability to construct a flow, giving a contactomorphism. The only subtlety is
noting that ξ must be an orientable bundle (why?), and that any orientable
2-plane bundle over a circle is trivial. �

Proposition/Definition 8.3. Let γ ⊆ (M, ξ) be a transverse curve in a coori-
entable contact manifold, and let F be a compact oriented surface with ∂F = γ.
Since ∂F 6= ∅ it follows that ξ|F is a trivial 2-plane bundle, therefore we can
find a non-zero vector field X ∈ Γ(ξ|F ). Let γX be a small perturbation of γ in
the direction of X. Then the linking number `k(γ, γX) does not depend on the
choice of vector field X. We call this number the self-linking number of γ, and
denote it by `(γ, F ).

The proof that `(γ, F ) does not depend on X follows from

Proposition 8.4. Let γ ⊆ (M, ξ) be a transverse curve in a cooriented con-
tact manifold, and let F a a compact oriented surface with ∂F = γ, which is
generically embedded with respect to ξ. Then `(γ, F ) = −(e+−h+)+(e−−h−).

Proof: : Choose a collar neighborhood F0 of γ in F so that TF0 t ξ on the
neighborhood, we identify this neighborhood with F0 = γ × [0, ε), so that the
fibers {point} × [0, ε) are the leaves of Fξ. Since ξF is trivial, we choose a
trivialization ξF0

∼= F0 × R2 so that Fξ = {0} × R ⊆ R2.
Let X ∈ Γ(ξF ) be a non-vanishing vector field, with the above identification

we identify X as a map X : γ × [0, ε) → R2. By homotopy we can of course
assume X only depends on the coordinate in γ. The linking number `k(γ, γX)
can be defined as the algebraic count of intersections of γX and F , therefore
`k(γ, γX) is equal to the algebraic intersection count of X(γ) with {0} × [0,∞)
in R2. Equivalently, we can count the intersections of X(γ) with {0}× (−∞, 0].

Choose a bump function f : [0, ε) → [0, 1] which is 0 near 0 and 1 near ε.

Let (q, t) ∈ γ × [0, ε), we define the vector field X̃ : γ × [0, ε) by X̃(q, t) = (1−
f(t))(0, 1)+f(t)X(q). Since X̃ = X outside of a compact subset, we extend X̃ to

all of F as being equal to X outside of F0. Notice span(X̃γ) = span(0, 1) = Fξ.
Notice also that for a fixed q ∈ γ, there is a t ∈ [0, ε) so that X̃(q, t) = 0 if and

only if X(q) ∈ {0}× (−∞, 0]. Therefore, the algebraic count of the zeroes of X̃
is equal to ±`k(γ, γX).

Now let Y be a vector field defining Fξ, since we are free to scale Y we

choose Y = (0, 1) on F0. Then X̃ and Y are both vector fields in ξF with
non-degenerate zeros, and they are equal outside of a compact set. It follows
that (e+ − h+)− (e− − h−) = ±`k(γ, γX).

To calculate the sign ambiguity, note that the Poincaré-Hopf theorem states
that the algebraic count of zeroes of X̃ and Y are equal, with sign. The sign
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Fig. 1: Calculation of `(γ, F ) for a simple transverse curve in R3
std.

ambiguity comes from the first part of the proof, when we compared the signed
count of zeroes of X̃ with `k(γ, γX). So this sign ambiguity happens completely
in a local neighborhood of γ, independent of F . Thus we can calculate this sign
for all transverse curves simply by calculating it in one example.

To this end consider (R3, ker(dz + r2dθ)), let γ = {z = 0, r = C}, and
F = {z = 0, r 6 C}. Then with the coorientation given by dz + r2dθ, γ is
oriented counterclockwise, and thus F is cooriented by ∂z. On Fξ has a unique
singularity at r = 0, and it is a positive elliptic. The projection ξ → TF is an
isomorphism, so let X be the vector field in ξ which projects to ∂x. Then γX
looks as in Figure 1, and we see that `(γ, F ) = −1. �

Remark 8.5. Suppose we switch the orientation of the curve γ. This will then
switch the orientation of F , but we should also switch the coorientation of ξ
to match γ. Then the numbers e+, h+, e−, h− do not change, since we have
switched the orientations of both TF and ξ. Therefore, the invariant `(γ, F )
does not depend on orientation choices, as long as the orientations are assumed
to be compatible.

Suppose we are given two surfaces F1, F2 both of which have γ as a boundary.
The surface framing of a nulhomologous smooth knot is well defined in any 3-
manifold (this follows from Poincare duality), therefore after smoothing corners
we can glue the surfaces together to get a smooth (immersed) surface F =
F1∪γ−F2. Since γ is transverse this corner smoothing does not induce any new
singularities of Fξ. Therefore, Propositions 8.4 and 7.6 together imply

`(γ, F1)− `(γ, F2) = e(ξ)[−F1 ∪γ F2].

In particular if e(ξ) = 0 ∈ H2(M), then `(γ) is a well defined integer that does
not depend on the choice of F .
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Fig. 2: The two local pictures which cannot exist as the (x, z)-projection of a
transverse curve.

Remark 8.6. Just as in Proposition 7.6, it follows immediately from the
Poincaré-Hopf theorem that χ(F ) = (e+ − h+) + (e− − h−) for a surface
F with transverse boundary. When we calculate modulo 2, we have that
`(∂F, F ) ≡ χ(F ) ≡ dimH0(∂F ) mod 2. In particular if ∂F is connected then
the self-linking number is always odd.

We now give a proposition that describes how to draw pictures of transverse
curves in (R3, ξstd = ker(dz − ydx)).

Proposition 8.7. Let D be an oriented knot diagram in R2 (a self-transverse
immersed curve with self-intersections assigned as over or under crossings).
Assume that D is never oriented downward at a vertical tangency, and that it
has no crossings as in Figure 2. Then D is the (x, z) projection of a transverse
curve in R3

std, and that transverse curve is unique up to isotopy.

Proof: Let γ : S1 → R3
std be a parametrized curve, we write it in components

γ = (γx, γy, γz). Then γ is a transverse curve iff γ̇z − γyγ̇x > 0 at every
point. A diagram D defines the functions γx and γz, therefore the proposition
is interpreted as existence and uniqueness of suitable functions γy.

First let us discuss existence. If γ̇x = 0 then we must have γ̇z > 0 in order
to satisfy the transverse condition, thus there can be no downward vertical
tangencies. Elsewhere the condition becomes

γy <
γ̇z
γ̇x

if γ̇x > 0

γy >
γ̇z
γ̇x

if γ̇x < 0.

Of course this can be solved away from the crossings of D. But the labeling of
under/over crossings of D gives us additional constraints, of the form γy(t1) >
γy(t2).

If the sign of γ̇x is equal for the two branches of a crossing then it is easy to
solve these constraints. If γ̇x takes opposite signs and the crossing is oriented
upward then we have

γy(t1) <
γ̇z
γ̇x

(t1) >
γ̇z
γ̇x

(t2) < γy(t2)
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Fig. 3: Because all crossings in both pictures are negative, we see that `(γ1) =
−1 and `(γ2) = −3.

and this equation we can solve with either ordering on the set {γy(t1), γy(t2)}.
But if γ̇x takes opposite signs and the crossing is oriented downwards then we
must solve

γy(t1) <
γ̇z
γ̇x

(t1) <
γ̇z
γ̇x

(t2) < γy(t2)

and therefore the sign of the crossing is constrained. To see that the crossing in
Figure 2 is the one which is not allowed notice that the y axis points into the
page, since dx ∧ dy ∧ dz is the canonical orientation on R3

std.
Finally to show uniqueness, note that if γ0

y and γ1
y are two transverse liftings

of the diagram D, then γsy = (1−s)γ0
y+sγ1

y defines an isotopy through transverse
curves. �

Finally, we note how to calculate the self-linking number of a transverse
curve in R3

std. But this is easy: the vector field ∂y is nonzero and contained in ξ
at every point, and therefore the self-linking number is equal to the blackboard
framing of the (x, z)-projection. This is equal to the writhe of the diagram: the
total number of positive crossings minus negative crossings.

Example 8.8. Figure 3 gives pictures of two transverse knots which are smoothly
unknotted, and calculates their self-linking number. By generalizing γ2 to a knot
with more twists, it’s easy to construct transverse unknots with any negative
odd self-linking number. Thus there are infinitely many transverse unknots
which are mutually distinct as transverse curves.

8.2 Legendrian knots

We discuss how to draw pictures of Legendrian curves Λ ⊆ R3
std. Just as in the

case of transverse curves, we will work in the (x, z) projection, which we denote
by π : R3

std → R2. Writing Λ(t) = (Λx(t),Λy(t),Λz(t)), the Legendrian condi-

tion is given by Λ̇z = ΛyΛ̇x. In particular π(Λ) cannot have vertical tangencies
anywhere, and whenever π(Λ) is smooth we can recover the y component of Λ

by Λy = Λ̇z
Λ̇x

.
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Fig. 4: Pictures of Legendrian curves in R3
std. The first curve is smoothly un-

knotted, the second is smoothly isotopic to the trefoil knot.

Because π(Λ) can have no vertical tangencies it may seem impossible to
have a closed Legendrian curve in R3

std. But in fact they exist in abundance,
the issue is that π(Λ) will not be a smooth curve, even when Λ is generically
embedded. Consider the curve Λ(t) = (t2, 3

2 t, t
3). Then Λ is a smoothly embed-

ded Legendrian curve, but π(Λ) is singular at t = 0, having a cusp singularity
(alternatively called a semi-cubic singularity). One can check that this singu-
larity persists after any C∞ perturbation of Λ. In fact this is the unique generic
singularity of (x, z) projections of Legendrian curves (together with transverse
self-intersections).

Because of the Legendrian condition, the over/under-crossings are uniquely
determined by the projection π(Λ): the branch with the smaller slope has
smaller y-coordinate, and therefore this branch is the overcrossing in the di-
agram. See Figure 4 for some examples.

The next theorem says that the space of Legendrian curves is C0 dense is
the space of all smooth curves.

Theorem 8.9. Let (M, ξ) be a contact 3-manifold, and let γ : S1 → M be a
smooth embedded curve. Then there exists a Legendrian curve Λ : S1 → M
which is arbitrarily C0 close to γ, and smoothly isotopic to it. Furthermore, if
γ is already Legendrian on a closed subset A ⊆ S1 then we can arrange that
Λ = γ on A.

We first prove a local lemma.

Lemma 8.10. Let γ : R → R3
std be a properly embedded curve which is Legen-

drian outside of a compact subset K ⊆ R3
std. Then there is a curve Λ : R→ R3

std

which is Legendrian everywhere, C0 close to γ and isotopic to γ via an isotopy
supported in K.

Proof: Let π : R3 → R2 be the projection onto the (x, z) coordinates. By
C∞ perturbation of γ ∩K we may assume that π(γ ∩K) is immersed. The y
coordinates of γ define a line field η in π∗TR2|γ , defined by η = ker(dz − ydx).
Since γ is an embedded curve, it follows that at all double points q, q′ ∈ γ,
π(q) = π(q′), we have that ηq 6= ηq′ (unless q = q′). Let V = γ × (ε, ε) be the
abstract normal bundle of π(γ), that is V = π∗TR2|γ/Tγ, and let ψ : V → R2
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Fig. 5: The proof of Lemma 8.10.

be the immersion of the normal bundle, so that ψ(γ × {0}) = π(γ) and every
point in ψ(V ) is within ε distance of π(γ). We extend η to V by translation.
Notice that, after possibly choosing a smaller ε, q 7→ (π(q), ηq) is an injective
map from V to R2 × RP1.

Notice that γ is Legendrian at a point q ∈ γ if and only if Tπ(γ)q = ηq. In
particular, a Legendrian curve Λ ⊆ R3

std is C0 close to γ if and only if π(Λ) is
C0 close to π(γ) and Tπ(Λ) is C0 close to η. Instead of constructing Λ ⊆ R3

std

directly, we will construct its projection π(Λ), which then has a unique lift to
R3 as a Legendrian.

The basic idea of the proof is contained in Figure 5. It is impossible to
approximate γ with a graphical Legendrian {z = f(x), y = f ′(x)}, but by
choosing a non-graphical Legendrian with cusp singularities we can get around
this. Let L = {q ∈ γ; | slope(Tπ(γ)q) − slope(ηq)| 6 ε} (if Tπ(γ)q is vertical
then q /∈ L). Over L, we simply define π(Λ) = π(γ). Then Λ is C0 close to γ,
and Λ = γ outside of K. γ \ L is then a union of open intervals, we denote one
such interval by (T0, T1). It suffices to show that we can approximate γ by Λ
on this interval.

Let V0 ⊆ V be the portion of the normal bundle over (T0, T1). Because η is
transverse to γ on V0, we can integrate η to give coordinates (q, r) on V0 where
q ∈ γ and ∂r is tangent to η. We orient r so that ∂r and ∂q are ε-close to parallel
on ∂V0. Let tk = T0 + k

N (T1 − T0), where N is a large integer we choose later.
Let vk be the intervals vk = {q = tk, |r| < ε}, and let wk be a smooth curve
connecting the endpoints of vk and vk+1. See Figure 6.

Notice that the q/r slope of the curves wk can be bounded above by 2 (T1−T0)
Nε ,

by rough estimation. Then define π(Λ) to be the union of the curves {wk}
(oriented as r), and {vk} (oriented as −r). Near the boundary, we cut off π(Λ)
however we like to match the given boundary conditions. Because ∂q and ∂r
are nearly parallel near ∂(T0, T1), Tπ(Λ) will be ε close to η for any cutoff
function we choose. The distortion between q/r slope and z/x − η is bounded
by a constant C, since it is bounded by ε near ∂(T0, T1). Then, by choosing
N > 2C(T1 − T0)ε−2, we get that Tπ(Λ) is ε close to η everywhere. Because
near the endpoints Tπ(Λ) is ε-close to eta, this is also true near the endpoints
for any increasing cutoff function we choose. �

Definition 8.11. Let Λ ⊆ (M, ξ) be a nulhomologous Legendrian knot, so that
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⇡(⇤)

q

r

vk

wk

Fig. 6: The construction of π(Λ) in q, r coordinates.

ξ is coorientable near Λ. Let X be a non-vanishing vector field along Λ which
is transverse to ξ everywhere. The linking number of Λ with the X-pushoff of
Λ is called the Thurston-Bennequin number of Λ, denoted tb(Λ) = `k(Λ,ΛX).

It is clear that tb(Λ) does not depend on the choice of X: once we choose a
coorientation of ξ, the set of X which are positively transverse to ξ make up a
convex set. And furthermore, any X which is negatively transverse to ξ differs
from one which is positively transverse to ξ by an 180 degree rotation.

Proposition/Definition 8.12. Let Λ ⊆ (M, ξ) be a Legendrian knot, and F
be an oriented surface so that ∂F = Λ. Assume that ξ is cooriented near F .
Then ξ|F ∼= F ×R2. Then q 7→ TΛq is a map S1 → R2 \ {0}. The degree of this
map is called the rotation number of Λ, denoted by r(Λ, F ). It does not depend
on the choice of trivialization ξ|F ∼= F × R2.

Proof: Given one trivialization ξ|F ∼= F × R2, another (orientation preserving)
trivialization is given by a map f : F → SO2. Since [Λ] = 0 ∈ H1(F ), we have
that [f(Λ)] = 0 ∈ H1(SO2). But since Λ and SO2 are both diffeomorphic to the
circle, homotopy classes of maps Λ → SO2 are determined by H1. Therefore
any re-trivialization of ξ along F restricts to a re-trivialization of ξ|Λ which is
homotopic to the original one. The result follows. �

Though the choice of trivialization does not affect r(Λ), the choice of orien-
tation on Λ and also the choice of coorientation of ξ do affect the sign of r(Λ, F ).
Furthermore, the choice of F affects r(Λ, F ) as the euler class of ξ:

Proposition 8.13. Let Λ ⊆ (M, ξ) be a oriented Legendrian knot in a coori-
entable contact manifold. Suppose ∂F1 = Λ = ∂F2. Then r(Λ, F1)− r(Λ, F2) =
e(ξ)[F1 ∪Λ −F2].

Proof:

Definition 8.14. stabilization

Proposition 8.15. Let Λ ⊆ (M, ξ) be a nulhomologous Legendrian knot, where
ξ is cooriented near Λ. Then tb(s+(Λ)) = tb(s−(Λ)) = tb(Λ) − 1. Suppose
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further that Λ = ∂F is oriented and ξ is cooriented near F . Then r(s±(Λ), F ) =
r(Λ)± 1.

Proof:

Theorem 8.16 (Fuchs-Tabachnikov, 1995). Let Λ0,Λ1 ⊆ (M, ξ) be Legen-
drian knots which are smoothly isotopic. Then for sufficiently large integers
m0,m1, n0, n1, sm0

+ sn0
− (Λ0) is Legendrian isotopic to sm1

+ sn1
− (Λ1).

Proof:

8.3 Transverse pushoffs of Legendrians

Proposition/Definition 8.17. Let Λ ⊆ (M, ξ) be a Legendrian knot so that
ξ is cooriented near Λ. Suppose Λ is equipped with an orientation. Then there
exists a transverse knot γ which is C1-close to Λ, and furthermore γ is uniquely
defined up to isotopy.

Proof: Choose 1-Jet coordinates J 1(S1) around Λ = {p = z = 0}. Any smooth
curve γ which is C1-close to Λ is graphical: γ = {z = z(q), p = p(q)}. Then the
condition for γ to be transverse is z′(q) > p(q). This set is non-empty (since
z = 0, p = −ε works) and convex (hence connected). �

Corollary 8.18. Let c : S1 → (M, ξ) be a smooth embedded curve, so that ξ is
coorientable near c(S1). Then there is a transverse curve γ which is C0 close
to c and smoothly isotopic to it.

Notice that in order to define the transverse pushoff, we need both an ori-
entation of Λ and a coorientation of ξ near Λ. If we switch the coorientation of
ξ but fix the orientation of Λ, the transverse pushoff will be a different curve
(for example given by {z = 0, p = +ε}). In the literature this is often called the
negative transverse push-off of Λ.

Proposition 8.19. Let Λ = ∂F ⊆ (M, ξ) be a Legendrian curve which is
oriented, so that ξ is cooriented near F . Let γ be the transverse push-off of Λ.
Then `(γ) = tb(Λ)− r(Λ).

Proof:

Corollary 8.20. Let Λ = ∂F ⊆ (M, ξ) be an oriented Legendrian knot with ξ
cooriented near F . Then tb(Λ) + r(Λ, F ) ≡ 1 mod 2.

Proof: Let γ be the transverse pushoff of Λ. Then tb(Λ) + r(Λ, F ) ≡ `(γ)
mod 2. By Remark 8.6 the latter number is always odd. �

9 Lutz-Martinet and overtwistedness

Up to this point we have not done any global contact geometry: we have only
studied contact structures near points, curves, and surfaces. The most funda-
mental global questions about contact 3-manifolds is existence and uniqueness:
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fixing a closed oriented 3-manifold M , does it admit a contact structure? And
given two contact structures on M , under what hypotheses can we conclude
they are isotopic?

Two contact structures are isotopic if and only if they are homotopic through
contact structures: any isotopy trivially induces a homotopy, and Gray’s theo-
rem is precisely the converse. The most basic invariant of a contact structure
is the homotopy class of plane field : obviously if ξ1 and ξ2 are not even homo-
topic as 2-plane distributions then they cannot possibly be homotopic as contact
structures. We therefore refine our previous question:

Question 9.1. Let M be a closed oriented 3-manifold, and let η be a 2-plane
distribution on M . Does there exist a contact structure ξ on M which is homo-
topic to η as a 2-plane distribution (so that the orientation induced by ξ matches
the orientation of M)? If ξ1 and ξ2 are two such contact structures, under what
conditions can we ensure that ξ1 and ξ2 are homotopic as contact structures?

Note. We think of the homotopy class of 2-plane field as an essentially unin-
teresting invariant, because it is defined in the world of algebraic topology and
therefore cannot detect any interesting geometric phenomena. For example, we
can identify homotopy classes of cooriented 2-plane fields as homotopy classes
of non-vanishing vector fields. Choosing a trivialization TM ∼= M × R3 (which
always exists but is non-canonical, see the note at the beginning of Section 7) we
can therefore identify homotopy classes of cooriented plane fields with homotopy
classes of maps M → S2.

Of course the euler class of a cooriented contact structure is defined by the
isomorphism class of 2-plane bundle, so it is an even weaker invariant than
the homotopy class of 2-plane field. For example on M = S3 the isomorphism
class of a 2-plane bundle η is uniquely determined (since π2(SO2) = {1}), but
homotopy classes of η ⊆ TM are classified by π3(S2) ∼= Z. (This identification
is not generally canonical since TM ∼= M ×R3 is non-canonical, however in the
special case of S3 we can choose an identification by choosing a diffeomorphism
S3 ∼= SU2, since any Lie group is canonically parallelizable.)

The main goal of this section is to demonstrate the existence portion of the
above question:

Theorem 9.2 (Lutz-Martinet, 1971). Let M3 be a closed oriented 3-manifold,
and let η be a 2-plane field on M . Then η is homotopic to a contact structure
ξ, so that the orientation induced by ξ matches the given orientation on M .
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