Math 966: Homework 2

1: Consider the three symplectic surfaces: $S^{+}\left(S^{1}\right), T^{*} S^{1}$, and $\left(\mathbb{R}^{2} \backslash\{(0,0)\}, d x \wedge d y\right)$. All three are diffeomorphic, and have infinite volume. Which of these are symplectomorphic? (Give symplectomorphisms between them, and/or prove that there can be no symplectomorphisms between the distinct ones.)

2: Let $(M, \operatorname{ker} \alpha)$ be a contact manifold, and let X_{h} be a contact vector field on M defined by $\alpha\left(X_{h}\right)=h$. We mentioned in class that X lifts to a Hamiltonian vector field X_{H} on $S^{+}(M, \operatorname{ker} \alpha)$, meaning that $X_{H}=X_{h}+f \partial_{r}$. But the function f is not the zero function!

2a: In terms of h and α, calculate f, and also calculate H, so that $d H=$ $\left.X_{H}\right\lrcorner d \lambda_{\text {std }}$.

2b: Let $\varphi: S^{1} \rightarrow S^{1}$ be the diffeomorphism which is the long-time flow of the gradient of the height function. That is, $\pi, 0 \in \mathbb{R} / 2 \pi \mathbb{Z}$ are the fixed points of φ, and $\varphi([-\pi+\epsilon, \pi-\epsilon]) \subseteq(-\epsilon, \epsilon)$ for a small value ϵ. Then φ lifts to a Hamiltonian symplectomorphism ψ of $S^{+}\left(S^{1}, \operatorname{ker} d \theta\right)$. Draw a picture of ψ, that is, draw a picture of $\psi(\{r=0\})$.

3: A Weinstein structure on an (open!) manifold W is a pair (λ, φ). Here $d \lambda$ is symplectic, and $\varphi: W \rightarrow[0, \infty)$ is a proper Morse function, that is, a proper function with non-degenerate critical points. We require that the Liouville vector field Y is gradient-like for φ, which is to say that $K_{1}\|Y\|^{2}<d \varphi(Y)<K_{2}\|Y\|^{2}$ for some metric $\|\cdot\|$ on W and some constants K_{1}, K_{2}. It immediately follow that every non-critical level set $\varphi^{-1}(c) \subseteq W$ is a contact hypersurface, since they are transverse to Y. Let $\psi_{t}: W \rightarrow W$ be the flow of Y.

3a: Let $p \in W$ be a critical point of p, and let $D_{p}^{k} \subseteq W$ be the descending manifold of p, that is, $D_{p}^{k}=\left\{q \in W ; \lim _{t \rightarrow \infty} \psi_{t}(q)=p\right\}$. Prove that $\left.\lambda\right|_{D_{p}^{k}}=0$. (Hint: you may assume the standard result from Morse theory that $\left(D_{p}^{k},\left.Y\right|_{D_{p}^{k}}\right)$ is diffeomorphic to $\left(D^{k} \subseteq \mathbb{R}^{k},-\rho \partial_{\rho}\right)$, where ρ is the radial coordinate. Consider the function $\left.\lambda\left(\psi_{t *} Y\right)\right)$.

3b: Let $W \subseteq \mathbb{C}^{N}$ be holomorphically embedded, that is, $\sqrt{-1} T W_{q}=T W_{q}$ at every point $q \in W$. Let φ be the function $\left.\|\cdot\|^{2}\right|_{W}, \lambda=\left.\lambda_{\text {std }}\right|_{W}$, and $\omega=$ $d \lambda$. We proved that ω is a symplectic form on W, and furthermore that $g(\cdot, \cdot)=$ $\omega_{\text {std }}(\cdot, \sqrt{-1} \cdot)$ is the Riemannian metric on W (called the Kähler metric). Let $Y \in$ $\Gamma(T W)$ be the Liouville vector field associated to λ, that is $Y\lrcorner \omega=\lambda$. Show that Y is the gradient of φ with respect to the Kähler metric.
(It follows that whenever W is embedded so that $\left.\|\cdot\|^{2}\right|_{W}$ has non-degenerate critical points, that (W, λ, φ) is Weinstein. It is a remarkable fact that this is the essentially unique example: every Weinstein manifold is isotopic to a Weinstein structure induced by a holomorphic embedding into \mathbb{C}^{N}.)

3c: For any closed manifold Q, Prove that $\left(T^{*} Q, \omega_{\text {std }}\right)$ admits a Weinstein structure. (You cannot choose $\lambda=\lambda_{\text {std }}$, since $\lambda_{\text {std }}$ its zeros are non-isolated.)

3 d : Let (W, λ, φ) be a Weinstein manifold, and let $c \in \mathbb{R}$ be a number so that all critical points of φ are less than c. Show that $W_{\mathrm{end}}=\varphi^{-1}(c, \infty)$ is a "half symplectization", that is, give a Lioville form preserving symplectomorphism from $W_{\text {end }}$ to $(M \times(a, \infty), r \alpha)$ for some contact manifold $(M, \operatorname{ker} \alpha)$ and $a>0$.

4a: Define an embedding $f: S^{2} \hookrightarrow\left(\mathbb{R}^{3}, \operatorname{ker}\left(d z+r^{2} d \theta\right)\right)$, so that there exists a orientation reversing diffomorphism $\psi: S^{2} \rightarrow S^{2}$ preserving \mathcal{F}_{ξ}. (Note: for the standard round embedding no such diffeomorphism exists, because the "swirly elliptic" singularities (ie those with complex eigenvalues) define an orientation by which direction they rotate).

4b: Let $\left(M_{1}, \xi_{1}\right),\left(M_{2}, \xi_{2}\right)$ be two contact manifolds. Choose Darboux charts $U_{j} \subseteq$ M_{j}, and then choose embeddings of the closed ball $B_{j}^{3} \subseteq U_{j}$, so that the characteristic foliation on ∂B_{j}^{3} is diffeomorphic to \mathcal{F}_{ξ} from Problem 4a. Define $\left(M_{1}, \xi_{1}\right) \#\left(M_{2}, \xi_{2}\right)=$ $\left(M_{1} \backslash \operatorname{Int} B_{1}^{3}\right) \cup_{\psi}\left(M_{2} \backslash \operatorname{Int} B_{2}^{3}\right)$, where the contact structure is defined by the gluing map φ from Theorem 7.4.

Show that $\left(M_{1}, \xi_{1}\right) \#\left(M_{2}, \xi_{2}\right)$ is well defined; that it doesn't depend on the choices B_{j}^{3} or U_{j} (after fixing a specific choice of \mathcal{F}_{ξ} on S^{2}). (Hint: $(x, y, z) \mapsto\left(e^{t} x, e^{t} y, e^{2 t} z\right)$ is a contact isotopy of $\mathbb{R}_{\text {std }}^{3}$. Combine this with a Mazur swindle argument.)

