
1. Abstract manifolds and the Whitney embedding theorem

Theorem 1.1. Let X be a compact Hausdorff space, and let {Mi} be a set of n-
manifolds. Suppose we are given fi : Mi → X which are open maps and homeomor-
phisms onto their image, so that X =

⋃
fi(Mi). Finally, suppose that, for every

pair i, j, the homeomorphism f−1i ◦ fj : f−1j (fi(Mi) ∩ fj(Mj)) → f−1i (fi(Mi) ∩
fj(Mj)) is smooth. Then X is an n-manifold.

Note. If X is not compact, but second countable, the theorem remains true. Usu-
ally, the hypotheses of the theorem are taken as the definition of an abstract n-
manifold. Then the Whitney embedding theorem, stated in the traditional way, is
“any (abstract) manifold can be realized as a submanifold of RN for some N”.

Lemma 1.2. Let M be a manifold. Then there is a locally finite open covering
{Uj} of M , so that U j is compact, and smooth functions ϕj : M → [0,∞) so that
ϕj(x) > 0 if and only if x ∈ Uj.

Proof: Choose an arbitrary locally finite open covering of M by charts {Vj}, so
that each Vj is diffeomorphic to an open subset of Rn. Any open set Vj ⊆ Rn

admits a locally finite open covering {Uij} so that Uij ⊆ Rn is diffeomorphic to the
closed ball. The totality of these collections defines the necessary covering of M .
To construct the functions ϕj , simply note that the open ball Bn(1) ⊆ Rn admits
such a function:

ϕ(x) =

{
exp( −11−r ) r ∈ [0, 1)

0 r > 1
.

�
Proof of Whitney’s embedding theorem: Since X is compact we can find finitely
many i = 1, . . . ,K so that X =

⋃
fi(Mi), we will only use these Mi. For each Mi,

find a covering {Uij} as in the lemma, and corresponding functions ϕij . We can
extend the domain of definition of ϕij : X → [0,∞) by letting it be zero outside of
fi(Mi); then this extension is continuous since X.

(Let A ⊆ [0,∞) be a closed set, and consider ϕ−1ij (A). If 0 ∈ A then ϕ−1([0,∞)\
A) ⊆ fi(Mi) so this set is open since fi is an open map. If 0 /∈ A then ϕ−1ij (A) is

compact (since Uij is compact), and since X is Hausdorff this set is closed.)
Define ψi : X → [0,∞) by

ψi =

∑
j

ϕij∑
i

∑
j

ϕij

then
∑

i ψi = 1 and if ψi(x) > 0 then x ∈ fi(Mi). Suppose that Mi ⊆ RN ,
let ei : Mi → RN be the inclusion map. Then define e : X → RNK+K by e(x) =(
ψ1(x)(e1 ◦ f−11 )(x), . . . , ψk(x)(eK ◦ f−1K )(x), ψ1(x), . . . , ψK(x)

)
. Notice that e is

well defined since whenever x /∈ fi(Mi) then ψi(x) = 0. e is obviously continuous,
and it is injective because if e(x) = e(y) then ψi(x) = ψi(y) for all i. Choosing such
an i so that ψi(x) 6= 0, we get (ei ◦ f−1i )(x) = (ei ◦ f−1i )(y), and the map ei ◦ f−1i is
injective. Since X is compact it follows that e is a homeomorphism onto its image.

It remains to show that e(X) is smooth. Given x ∈ e(X), choose i so that ψi(x) 6=
0. Let y = (f−1i ◦ e−1)(x) ∈ Mi. Since Mi is a manifold y has a neighborhood V
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which is diffeomorphic to Rn. But near x, e(X) is a graph of the smooth function

z 7→
(

(ψ1 ◦ fi)(z)
(ψi ◦ fi)(z)

(e1 ◦ f−11 ◦ fi)(z), . . . ,
(ψK ◦ fi)(z)
(ψi ◦ fi)(z)

(eK ◦ f−1K ◦ fi)(z), (ψ1 ◦ fi)(z), . . . , (ψK ◦ fi)(z)
)

for z ∈ V . �

Theorem 1.3. Suppose M is a compact n-manifold. Then M is diffeomorphic to
a submanifold of R2n+1.

Note. This theorem also holds for non-compact M , but the proof is more difficult
to write down (but not conceptually much more difficult).

Proof: Suppose M ⊆ RN , we show that M embeds into RN−1 as long as N > 2n+1.
To do this, we simply project M onto a suitably chosen hyperplane (codimension
1 linear subspace).

Let RPN−1 denote the space of hyperplanes in RN . We claim that RPN−1 is an
(abstract!) N −1-manifold. Indeed, given a hyperplane H ∈ RPN−1 with a normal
vector v, every nearby hyperplane has a unique normal vector of the form v + w,
where w ∈ H. This gives a diffeomorphism between the set of hyperplanes near H
with an open subset of H.

For any H ∈ RPN−1, let πH : M → H be the orthogonal projection. Given
x 6= y ∈ RN let ←→xy be the line through them. Then πH(x) = πH(y) if and only
if (←→xy)⊥ = H (or x = y). With this in mind, notice that (x, y) 7→ (←→xy)⊥ is a
smooth map (M ×M)\∆→ RPN−1 (here ∆ ⊆M ×M is the diagonal). By Sard’s
theorem the set of regular values is generic, but since N − 1 > 2n the dimension of
the domain is smaller than the dimension of the range, and therefore regular values
are exactly those values in the complement of the image. Therefore, for a generic
set in RPN−1, the map πH is injective.

Next, notice that for v ∈ TM , dπH(v) = 0 if and only if (R·v)⊥ = H. v 7→ (R·v)⊥

is a smooth map TM \Z → RPN−1 (here Z is the set of zero vectors in each TMx;
Z is called the zero section of TM). Again the complement of the image is a generic
set in RPN−1 (for exactly the same reasons), and this set gives the hyperplanes H
so that dπH is injective.

Since the intersection of two generic sets is generic (and therefore non-empty),
we can find a hyperplane H so that πH and dπH are both injective. Since M is
compact it follows that πH is a smooth embedding. �
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