1. ABSTRACT MANIFOLDS AND THE WHITNEY EMBEDDING THEOREM

Theorem 1.1. Let X be a compact Hausdorff space, and let {M;} be a set of n-
manifolds. Suppose we are given f; : M; — X which are open maps and homeomor-
phisms onto their image, so that X = | f;(M;). Finally, suppose that, for every
pair i,j, the homeomorphism f; ' o f; : f;l(fi(Mi) N fi(My) — f7H(fi(M;) 0
fi(M;)) is smooth. Then X is an n-manifold.

Note. If X is not compact, but second countable, the theorem remains true. Usu-
ally, the hypotheses of the theorem are taken as the definition of an abstract n-
manifold. Then the Whitney embedding theorem, stated in the traditional way, is
“any (abstract) manifold can be realized as a submanifold of RY for some N”.

Lemma 1.2. Let M be a manifold. Then there is a locally finite open covering
{U;} of M, so that U; is compact, and smooth functions ¢; : M — [0,00) so that
@;(x) > 0 if and only if x € U;.

Proof: Choose an arbitrary locally finite open covering of M by charts {V;}, so
that each Vj is diffeomorphic to an open subset of R®. Any open set V; C R"
admits a locally finite open covering {U;;} so that UTJ C R™ is diffeomorphic to the
closed ball. The totality of these collections defines the necessary covering of M.
To construct the functions ¢, simply note that the open ball B"(1) C R™ admits
such a function:
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Proof of Whitney’s embedding theorem: Since X is compact we can find finitely
many i = 1,..., K so that X = f:(M;), we will only use these M;. For each M;,
find a covering {U;;} as in the lemma, and corresponding functions ¢;;. We can
extend the domain of definition of ¢;; : X — [0, 00) by letting it be zero outside of
fi(M;); then this extension is continuous since X.

(Let A C [0,00) be a closed set, and consider <pi_jl(A). If 0 € A then ¢1(]0,00)\
A) C fi(M;) so this set is open since f; is an open map. If 0 ¢ A then <pi_j1(A) is
compact (since Uy; is compact), and since X is Hausdorff this set is closed.)

Define v; : X — [0, 00) by
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then >, ¢; = 1 and if ¢;(z) > 0 then x € f;(M;). Suppose that M; C RV,
let e; : M; — RY be the inclusion map. Then define e : X — RNE+E by ¢(z) =
(v1(z)(er o fy (@), ... u(®)(ex © fx') (@), 1 (2), ..., ¥k (x)). Notice that e is
well defined since whenever z ¢ f;(M;) then ¢;(x) = 0. e is obviously continuous,
and it is injective because if e(x) = e(y) then ¥;(x) = ¥;(y) for all i. Choosing such
an i so that 1;(z) # 0, we get (e; 0 f; 1) (x) = (e;o f; ') (y), and the map e; o f; " is
injective. Since X is compact it follows that e is a homeomorphism onto its image.

It remains to show that e(X) is smooth. Given = € e(X), choose i so that ¢;(z) #
0. Let y = (f; ' oe !)(2) € M;. Since M; is a manifold y has a neighborhood V
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which is diffeomorphic to R”™. But near z, e(X) is a graph of the smooth function
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Theorem 1.3. Suppose M is a compact n-manifold. Then M is diffeomorphic to
a submanifold of RZ"+1,

Note. This theorem also holds for non-compact M, but the proof is more difficult
to write down (but not conceptually much more difficult).

Proof: Suppose M C R¥ we show that M embeds into RN~ as long as N > 2n+1.
To do this, we simply project M onto a suitably chosen hyperplane (codimension
1 linear subspace).

Let RPY~! denote the space of hyperplanes in RY. We claim that RPY ! is an
(abstract!) N — I-manifold. Indeed, given a hyperplane H € RPY~! with a normal
vector v, every nearby hyperplane has a unique normal vector of the form v 4+ w,
where w € H. This gives a diffeomorphism between the set of hyperplanes near H
with an open subset of H.

For any H € RPN~! let 7z : M — H be the orthogonal projection. Given
x # y € RN let & be the line through them. Then 7y (z) = mg(y) if and only
if (%))t = H (or z = y). With this in mind, notice that (z,y) — (Z§)* is a
smooth map (M x M)\ A — RP¥~! (here A C M x M is the diagonal). By Sard’s
theorem the set of regular values is generic, but since N — 1 > 2n the dimension of
the domain is smaller than the dimension of the range, and therefore regular values
are exactly those values in the complement of the image. Therefore, for a generic
set in RPY~! the map 7y is injective.

Next, notice that for v € TM, drg (v) = 0 if and only if (R-v)* = H. v+ (R-v)+
is a smooth map TM \ Z — RPN ! (here Z is the set of zero vectors in each TM,;
7 is called the zero section of TM). Again the complement of the image is a generic
set in RPNV ~! (for exactly the same reasons), and this set gives the hyperplanes H
so that dmy is injective.

Since the intersection of two generic sets is generic (and therefore non-empty),
we can find a hyperplane H so that g and dmpg are both injective. Since M is
compact it follows that 7y is a smooth embedding. ([
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