18.952 Problem set \#3
 (due Wednesday, March 2)

1. (a) Let V be an n-dimensional vector space and ω an element of $\Lambda^{k}\left(V^{*}\right)$. Define a k-tensor $A \omega \in \mathcal{L}^{k}(V)$ by setting

$$
A \omega\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}\right)=\iota_{\mathrm{v}_{k}} \cdots \iota_{\mathrm{v}_{1}} \omega
$$

Show that A is alternating.
(b) Show that the map,

$$
\omega \rightarrow \frac{1}{k}!A \omega
$$

is the inverse of the projection map $\pi: \mathcal{A}^{k}(V) \rightarrow \Lambda^{k}\left(V^{*}\right)$.
2. $\S 1.9$, problems $4,11,12^{*}$.
3. §2.1, problems 1, 2, 3.

