18.952Problem set #3(due Wednesday, March 2)

1. (a) Let V be an n-dimensional vector space and ω an element of $\Lambda^k(V^*)$. Define a k-tensor $A\omega \in \mathcal{L}^k(V)$ by setting

$$A\omega(\mathbf{v}_1,\ldots,\mathbf{v}_k) = \iota_{\mathbf{v}_k}\cdots\iota_{\mathbf{v}_1}\omega$$
.

Show that A is alternating.

(b) Show that the map,

$$\omega \to \frac{1}{k}!A\omega$$

is the inverse of the projection map $\pi : \mathcal{A}^k(V) \to \Lambda^k(V^*)$.

- 2. $\S1.9$, problems 4, 11, 12^{*}.
- 3. $\S2.1$, problems 1, 2, 3.