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CHAPTER 5

COHOMOLOGY VIA FORMS

5.1 The DeRham cohomology groups of a manifold

In the last four chapters we’ve frequently encountered the question:
When is a closed k-form on an open subset of R

N (or, more generally
on a submanifold of R

N ) exact? To investigate this question more
systematically than we’ve done heretofore, let X be an n-dimensional
manifold and let

Zk(X) = {ω ∈ Ωk(X) ; dω = 0}(5.1.1)

and

Bk(X) = {ω ∈ Ωk(X) ; ω in dΩk−1(X)}(5.1.2)

be the vector spaces of closed and exact k-forms. Since (1.1.2) is a
vector subspace of (1.1.1) we can form the quotient space

(5.1.3) Hk(X) = Zk(X)/Bk(X) ,

and the dimension of this space is a measure of the extent to which
closed forms fail to be exact. We will call this space the kth DeRham
cohomology group of the manifold, X. Since the vector spaces (1.1.1)
and (1.1.2) are both infinite dimensional there is no guarantee that
this quotient space is finite dimensional, however, we’ll show later in
this chapter that it is in lots of interesting cases.

The spaces (1.1.3) also have compactly supported counterparts.
Namely let

Zk
c (X) = {ω ∈ Ωk

c (X) ; dω = 0}(5.1.4)

and

Bk
c (X) = {ω ∈ Ωk

c (X) , ω in dΩk−1
c (X)} .(5.1.5)

Then as above Bk
c (X) is a vector subspace of Zk

c (X) and the vector
space quotient

(5.1.6) Hk
c (X) = Zk

c (X)/Bk
c (X)
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is the kth compactly supported DeRham cohomology group of X.
Given a closed k-form, ω ∈ Zk(X), we will denote by [ω] the image

of ω in the quotient space (1.1.3) and call [ω] the cohomology class
of ω. We will also use the same notation for compactly supported
cohomology. If ω is in Zk

c (X) we’ll denote by [ω] the cohomology
class of ω in the quotient space (1.1.6).

Some cohomology groups of manifolds we’ve already computed in
the previous chapters (although we didn’t explicitly describe these
computations as “computing cohomology”). We’ll make a list below
of some of the things we’ve already learned about DeRham cohomol-
ogy:

1. If X is connected, H0(X) = R. Proof: A closed zero form is
a function, f ∈ C∞(X) having the property, df = 0, and if X is
connected the only such functions are constants.

2. If X is connected and non-compact H0
c (X) = {0}. Proof: If f

is in C∞
0 (X) and X is non-compact, f has to be zero at some point,

and hence if df = 0 it has to be identically zero.

3. If X is n-dimensional,

Ωk(X) = Ωk
c (X) = {0}

for k less than zero or k greater than n, hence

Hk(X) = Hk
c (X) = {0}

for k less than zero or k greater than n.

4. If X is an oriented, connected n-dimensional manifold, the in-
tegration operation is a linear map

(5.1.7)

∫
: Ωn

c (X) → R

and, by Theorem 4.8.1, the kernel of this map is Bn
c (X). Moreover, in

degree n, Zn
c (X) = Ωn

c (X) and hence by (1.1.6), we get from (1.1.7)
a bijective map

(5.1.8) IX : Hn
c (X) → R .

In other words

(5.1.9) Hn
c (X) = R .
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5. Let U be a star-shaped open subset of R
n. In §2.5, exercises 4–

7, we sketched a proof of the assertion: For k > 0 every closed form,
ω ∈ Zk(U) is exact, i.e., translating this assertion into cohomology
language, we showed that

(5.1.10) Hk(U) = {0} for k > 0 .

6. Let U ⊆ R
n be an open rectangle. In §3.2, exercises 4–7, we

sketched a proof of the assertion: If ω ∈ Ωk
c (U) is closed and k is less

than n, then ω = dµ for some (k− 1)-form, µ ∈ Ωk−1
c (U). Hence we

showed

(5.1.11) Hk
c (U) = 0 for k < n .

7. Poincaré’s lemma for manifolds: Let X be an n-dimensional
manifold and ω ∈ Zk(X), k > 0 a closed k-form. Then for every
point, p ∈ X, there exists a neighborhood, U of p and a (k− 1)-form
µ ∈ Ωk−1(U) such that ω = dµ on U . Proof: For open subsets of R

n

we proved this result in §2.3 and since X is locally diffeomorphic at
p to an open subset of R

n this result is true for manifolds as well.

8. Let X be the unit sphere, Sn, in R
n+1. Since Sn is compact,

connected and oriented

(5.1.12) H0(Sn) = Hn(Sn) = R .

We will show that for k 6=, 0, n

(5.1.13) Hk(Sn) = {0} .

To see this let ω ∈ Ωk(Sn) be a closed k-form and let p = (0, . . . , 0, 1) ∈
Sn be the “north pole” of Sn. By the Poincaré lemma there exists
a neighborhood, U , of p in Sn and a k − 1-form, µ ∈ Ωk−1(U) with
ω = dµ on U . Let ρ ∈ C∞

0 (U) be a “bump function” which is equal
to one on a neighborhood, U0 of U in p. Then

(5.1.14) ω1 = ω − dρµ

is a closed k-form with compact support in Sn −{p}. However stere-
ographic projection gives one a diffeomorphism

ϕ : R
n → Sn − {p}
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(see exercise 1 below), and hence ϕ∗ω1 is a closed compactly sup-
ported k-form on R

n with support in a large rectangle. Thus by
(1.1.14) ϕ∗ω = dν, for some ν ∈ Ωk−1

c (Rn), and by (1.1.14)

(5.1.15) ω = d(ρµ+ (ϕ−1)∗ν)

with (ϕ−1)∗ν ∈ Ωk−1
c (Sn − {p}) ⊆ Ωk(Sn), so we’ve proved that for

0 < k < n every closed k-form on Sn is exact.

We will next discuss some “pull-back” operations in DeRham the-
ory. Let X and Y be manifolds and f : X → Y a C∞ map. For
ω ∈ Ωk(Y ), df∗ω = f∗ dω, so if ω is closed, f∗ω is as well. Moreover,
if ω = dµ, f∗ω = df∗µ, so if ω is exact, f∗ω is as well. Thus we have
linear maps

f∗ : Zk(Y ) → Zk(X)(5.1.16)

and

f∗ : Bk(Y ) → Bk(X)(5.1.17)

and comparing (1.1.16) with the projection

π : Zk(X) → Zk(X)/Bk(X)

we get a linear map

(5.1.18) Zk(Y ) → Hk(X) .

In view of (1.1.17), Bk(Y ) is in the kernel of this map, so by Theo-
rem 1.2.2 one gets an induced linear map

(5.1.19) f ♯ : Hk(Y ) → Hk(Y ) ,

such that f ♯ ◦ π is the map (1.1.18). In other words, if ω is a closed
k-form on Y f ♯ has the defining property

(5.1.20) f ♯[ω] = [f∗ω] .

This “pull-back”operation on cohomology satisfies the following
chain rule: Let Z be a manifold and g : Y → Z a C∞ map. Then if
ω is a closed k-form on Z

(g ◦ f)∗ω = f∗g∗ω
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by the chain rule for pull-backs of forms, and hence by (1.1.20)

(5.1.21) (g ◦ f)♯[ω] = f ♯(g♯[ω]) .

The discussion above carries over verbatim to the setting of com-
pactly supported DeRham cohomology: If f : X → Y is a proper
C∞ map it induces a pull-back map on cohomology

(5.1.22) f ♯ : Hk
c (Y ) → Hk

c (X)

and if f : X → Y and g : Y → Z are proper C∞ maps then the chain
rule (1.1.21) holds for compactly supported DeRham cohomology as
well as for ordinary DeRham cohomology. Notice also that if f :
X → Y is a diffeomorphism, we can take Z to be X itself and g to
be f−1, and in this case the chain rule tells us that the maps (1.1.19)
and (1.1.22) are bijections, i.e., Hk(X) and Hk(Y ) and Hk

c (X) and
Hk

c (Y ) are isomorphic as vector spaces.
We will next establish an important fact about the pull-back op-

eration, f ♯; we’ll show that it’s a homotopy invariant of f . Recall
that two C∞ maps

(5.1.23) fi : X → Y , i = 0, 1

are homotopic if there exists a C∞ map

F : X × [0, 1] → Y

with the property F (p, 0) = f0(p) and F (p, 1) = f1(p) for all p ∈ X.
We will prove:

Theorem 5.1.1. If the maps (1.1.23) are homotopic then, for the
maps they induce on cohomology

(5.1.24) f ♯
0 = f ♯

1 .

Our proof of this will consist of proving this for an important
special class of homotopies, and then by “pull-back” tricks deducing
this result for homotopies in general. Let v be a complete vector field
on X and let

ft : X → X , −∞ < t <∞

be the one-parameter group of diffeomorphisms it generates. Then

F : X × [0, 1] → X , F (p, t) = ft(p) ,
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is a homotopy between f0 and f1, and we’ll show that for this ho-
motopic pair (1.1.24) is true. Recall that for ω ∈ Ωk(X)

(
d

dt
f∗t ω

)
(t = 0) = Lv = ι(v) dω + dι(v)ω

and more generally for all t

d

dt
f∗t ω =

(
d

ds
f∗s+tω

)
(s = 0)

=

(
d

ds
(fs ◦ ft)

∗ω

)
(s = 0)

=

(
d

ds
f∗t f

∗
sω

)
(s = 0) = f∗t

(
d

ds
f∗sω

)
(s = 0)

= f∗t Lvω

= f∗t ι(v) dω + df∗t ι(v)ω .

Thus if we set

(5.1.25) Qtω = f∗t ι(v)ω

we get from this computation:

(5.1.26)
d

dt
f∗ω = dQt +Qt dω

and integrating over 0 ≤ t ≤ 1:

(5.1.27) f∗1ω − f∗0ω = dQω +Qdω

where
Q : Ωk(Y ) → Ωk−1(X)

is the operator

(5.1.28) Qω =

∫ 1

0
Qtω dt .

The identity (1.1.24) is an easy consequence of this “chain homo-
topy” identity. If ω is in Zk(X), dω = 0, so

f∗1ω − f∗0ω = dQω

and
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f ♯
1[ω] − f ♯

0[ω] = [f∗1ω − f∗0ω] = 0 .

Q.E.D.

We’ll now describe how to extract from this result a proof of The-
orem 1.1.1 for any pair of homotopic maps. We’ll begin with the
following useful observation.

Proposition 5.1.2. If fi : X → Y , i = 0, 1, are homotopic C∞

mappings there exists a C∞ map

F : X × R → Y

such that the restriction of F to X × [0, 1] is a homotopy between f0

and f1.

Proof. Let ρ ∈ C∞
0 (R), ρ ≥ 0, be a bump function which is supported

on the interval, 1
4 ≤ t ≤ 3

4 and is positive at t = 1
2 . Then

χ(t) =

∫ t

−∞

ρ(s) ds

/∫
∞

−∞

ρ(s) ds

is a function which is zero on the interval t ≤ 1
4 , is one on the interval

t ≥ 3
4 , and, for all t, lies between 0 and 1. Now let

G : X × [0, 1] → Y

be a homotopy between f0 and f1 and let F : X × R → Y be the
map

(5.1.29) F (x, t) = G(x, χ(t)) .

This is a C∞ map and since

F (x, 1) = G(x, χ(1)) = G(x, 1) = f1(x)

and

F (x, 0) = G(x, χ(0)) = G(x, 0) = f0(x) ,

it gives one a homotopy between f0 and f1.
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We’re now in position to deduce Theorem 1.1.1 from the version
of this result that we proved above.

Let
γt : X × R → X × R , −∞ < t <∞

be the one-parameter group of diffeomorphisms

γt(x, a) = (x, a+ t)

and let v = ∂/∂t be the vector field generating this group. For k-
forms, µ ∈ Ωk(X × R), we have by (1.1.27) the identity

γ∗1µ− γ∗0µ = dΓµ+ Γ dµ(5.1.30)

where

Γµ =

∫ 1

0
γ∗t

(
ι

(
∂

∂t

)
µ

)
dt .(5.1.31)

Now let F , as in Proposition 1.1.2, be a C∞ map

F : X × R → Y

whose restriction to X×[0, 1] is a homotopy between f0 and f1. Then
for ω ∈ Ωk(Y )

(5.1.32) γ∗1F
∗ω − γ∗0F

∗ω = dΓF ∗µ+ ΓF ∗ dµ

by the identity (1.1.29). Now let ι : X → X × R be the inclusion,
p→ (p, 0), and note that

(F ◦ γ1 ◦ ι)(p) = F (p, 1) = f1(p)

and

(F ◦ γ0 ◦ ι)(p) = F (p, 0) = f0(p)

i.e.,

F ◦ γ1 ◦ ι = f1(5.1.33)

and

F ◦ γ0 ◦ ι = f0 .(5.1.34)
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Thus
ι∗(γ∗1F

∗ω − γ∗0F
∗ω) = f∗1ω − f∗0ω

and on the other hand by (1.1.31)

ι∗(γ∗1F
∗ω − γ∗0F

∗ω) = dι∗ΓF ∗ω + ι∗ΓF ∗ dω .

Letting

(5.1.35) Q : Ωk(Y ) → Ωk−1(X)

be the “chain homotopy” operator

(5.1.36) Qω = ι∗ΓF ∗ω

we can write the identity above more succinctly in the form

(5.1.37) f∗1ω − f∗c ω = dQω +Qdω

and from this deduce, exactly as we did earlier, the identity (1.1.24).
This proof can easily be adapted to the compactly supported set-

ting. Namely the operator (1.1.36) is defined by the integral

(5.1.38) Qω =

∫ 1

0
ι∗γ∗t

(
ι

(
∂

∂t

)
F ∗ω

)
dt .

Hence if ω is supported on a set, A, in Y , the integrand of (1.1.37)
at t is supported on the set

(5.1.39) {p ∈ X , F (p, t) ∈ A}

and hence Qω is supported on the set

(5.1.40) π(F−1(A) ∩X × [0, 1])

where π : X × [0, 1] → X is the projection map, π(p, t) = p. Suppose
now that f0 and f1 are proper mappings and

G : X × [0, 1] → Y

a proper homotopy between f0 and f1, i.e., a homotopy between f0

and f1 which is proper as a C∞ map. Then if F is the map (1.1.30) its
restriction to X× [0, 1] is also a proper map, so this restriction is also
a proper homotopy between f0 and f1. Hence if ω is in Ωk

c (Y ) and
A is its support, the set (1.1.39) is compact, so Qω is in Ωk−1

c (X).
Therefore all summands in the “chain homotopy” formula (1.1.37)
are compactly supported. Thus we’ve proved
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Theorem 5.1.3. If fi : X → Y , i = 0, 1 are proper C∞ maps
which are homotopic via a proper homotopy, the induced maps on
cohomology

f ♯
i : Hk

c (Y ) → Hk
c (X)

are the same.

We’ll conclude this section by noting that the cohomology groups,
Hk(X), are equipped with a natural product operation. Namely,
suppose ωi ∈ Ωki(X), i = 1, 2, is a closed form and that ci = [ωi]
is the cohomology class represented by ωi. We can then define a
product cohomology class c1 · c2 in Hk1+k2(X) by the recipe

(5.1.41) c1 · c2 = [ω1 ∧ ω2] .

To show that this is a legitimate definition we first note that since
ω2 is closed

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2 = 0 ,

so ω1 ∧ ω2 is closed and hence does represent a cohomology class.
Moreover if we replace ω1 by another representative, ω1 + dµ1 = ω′,
of the cohomology class, c1

ω′
1 ∧ ω2 = ω1 ∧ ω2 + dµ1 ∧ ω2 .

But since ω2 is closed,

dµ1 ∧ ω2 = d(µ1 ∧ ω2) + (−1)k1µ1 ∧ dω2

= d(µ1 ∧ ω2)

so

ω′
1 ∧ ω2 = ω1 ∧ ω2 + d(µ1 ∧ ω2)

and [ω′
1∧ω2] = [ω1∧ω2]. Similary (1.1.41) is unchanged if we replace

ω2 by ω2 + dµ2, so the definition of (1.1.41) depends neither on the
choice of ω1 nor ω2 and hence is an intrinsic definition as claimed.

There is a variant of this product operation for compactly sup-
ported cohomology classes, and we’ll leave for you to check that
it’s also well defined. Suppose c1 is in Hk1

c (X) and c2 is in Hk2(X)
(i.e., c1 is a compactly supported class and c2 is an ordinary coho-
mology class). Let ω1 be a representative of c1 in Ωk1

c (X) and ω2



5.1 The DeRham cohomology groups of a manifold 227

a representative of c2 in Ωk2(X). Then ω1 ∧ ω2 is a closed form in
Ωk1+k2

c (X) and hence defines a cohomology class

(5.1.42) c1 · c2 = [ω1 ∧ ω2]

in Hk1+k2
c (X). We’ll leave for you to check that this is intrinsically

defined. We’ll also leave for you to check that (1.1.43) is intrinsically
defined if the roles of c1 and c2 are reversed, i.e., if c1 is in Hk1(X)
and c2 in Hk2

c (X) and that the products (1.1.41) and (1.1.43) both
satisfy

(5.1.43) c1 · c2 = (−1)k1k2c2 · c1 .

Finally we note that if Y is another manifold and f : X → Y a C∞

map then for ω1 ∈ Ωk1(Y ) and ω2 ∈ Ωk2(Y )

f∗(ω1 ∧ ω2) = f∗ω1 ∧ f
∗ω2

by (2.5.7) and hence if ω1 and ω2 are closed and ci = [ωi]

(5.1.44) f ♯(c1 · c2) = f ♯c1 · f
♯c2 .

Exercises.

1. (Stereographic projection.) Let p ∈ Sn be the point, (0, 0, . . . , 0, 1).
Show that for every point x = (x1, . . . , xn+1) of Sn − {p} the ray

tx+ (1 − t)p , t > 0

intersects the plane, xn+1 = 0, in the point

γ(x) =
1

1 − xn+1
(x1, . . . , xn)

and that the map

γ : Sn − {p} → R
n , x→ γ(x)

is a diffeomorphism.

2. Show that the operator

Qt : Ωk(Y ) → Ωk−1(X)
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in the integrand of (1.1.38), i.e., the operator,

Qtω = ι∗γ∗t

(
ι

(
∂

∂t

)
F ∗ω

)

has the following description. Let p be a point of X and let q = ft(p).
The curve, s→ fs(p) passes through q at time s = t. Let v(q) ∈ TqY
be the tangent vector to this curve at t. Show that

(5.1.45) (Qtω)(p) = (df∗t )pι(vq)ωq .

3. Let U be a star-shaped open subset of R
n, i.e., a subset of R

n

with the property that for every p ∈ U the ray, tp, 0 ≤ t < 1, is in U .

(a) Let v be the vector field

v =
∑

xi
∂

∂xi

and γt : U → U , the map p → tp. Show that for every k-form,
ω ∈ Ωk(U)

ω = dQω +Qdω

where

Qω =

∫ 1

0
γ∗t ι(v)ω

dt

t
.

(b) Show that if

ω =
∑

aI(x) dxI

then

Qω =
∑

I,r

(∫
tk−1(−1)r−1xiraI(tx) dt

)
dxIr(5.1.46)

where

dxIr = dxi1 ∧ · · · d̂xir ∧ · · · dxik .
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4. Let X and Y be oriented connected n-dimensional manifolds,
and f : X → Y a proper map. Show that the linear map, L, in the
diagram below

Hn
c (Y )

f♯

−−−−→ Hn
c (X)

IY

y IX

y

R
L

−−−−→ R

is just the map, t ∈ R → deg(f)t.

5. Let X and Y be manifolds and let idX and idY be the identity
maps of X onto X and Y onto Y . A homotopy equivalence between
X and Y is a pair of maps

f : X → Y

and

g : Y → X

such that g ◦ f is homotopic to i dX and f ◦ g is homotopic to idY .
Show that if X and Y are homotopy equivalent their cohomology
groups are the same “up to isomorphism”, i.e., there exist bijections

Hk(X) → Hk(Y ) .

6. Show that R
n − {0} and Sn−1 are homotopy equivalent.

7. What are the cohomology groups of the n-sphere with two
points deleted? Hint: The n-sphere with one point deleted is R

n.

8. Let X and Y be manifolds and fi : X → Y , i = 0, 1, 2, C∞

maps. Show that if f0 and f1 are homotopic and f1 and f2 are ho-
motopic then f0 and f2 are homotopic.

Hint: The homotopy (1.1.20) has the property that

F (p, t) = ft(p) = f0(p)

for 0 ≤ t ≤ 1
4 and

F (p, t) = ft(p) = f1(p)

for 3
4 ≤ t < 1. Show that two homotopies with these properties: a

homotopy between f0 and f1 and a homotopy between f1 and f2,
are easy to “glue together” to get a homotopy between f0 and f2.
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9. (a) Let X be an n-dimensional manifold. Given points pi ∈ X,
i = 0, 1, 2 show that if p0 can be joined to p1 by a C∞ curve, γ0 :
[0, 1] → X, and p1 can be joined to p2 by a C∞ curve, γ1 : [0, 1] → X,
then p0 can be joined to p2 by a C∞ curve, γ : [0, 1] → X.

Hint: A C∞ curve, γ : [0, 1] → X, joining p0 to p2 can be thought
of as a homotopy between the maps

γp0 : pt→ X , pt→ p0

and

γp1 : pt→ X , pt→ p1

where “pt” is the zero-dimensional manifold consisting of a single
point.

(b) Show that if a manifold, X, is connected it is arc-wise con-
nected: any two points can by joined by a C∞ curve.

10. Let X be a connected n-dimensional manifold and ω ∈ Ω1(X)
a closed one-form.

(a) Show that if γ : [0, 1] → X is a C∞ curve there exists a partition:
0 = a0 < a1 < · · · < an = 1 of the interval [0, 1] and open sets Ui in
X such that γ ([ai−1, ai]) ⊆ Ui and such that ω|Ui is exact.

(b) In part (a) show that there exist functions, fi ∈ C∞(Ui) such
that ω|Ui = dfi and fi (γ(ai)) = fi+1 (γ(ai)).

(c) Show that if p0 and p1 are the end points of γ

fn(p1) − f1(p0) =

∫ 1

0
γ∗ω .

(d) Let

(5.1.47) γs : [0, 1] → X , 0 ≤ s ≤ 1

be a homotopic family of curves with γs(0) = p0 and γs(1) = p1.
Prove that the integral ∫ 1

0
γ∗sω

is independent of s0. Hint: Let s0 be a point on the interval, [0, 1].
For γ = γs0 choose ai’s and fi’s as in parts (a)–(b) and show that
for s close to s0, γs[ai−1, ai] ⊆ Ui.
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(e) A manifold, X, is simply connected if, for any two curves, γi :
[0, 1] → X, i = 0, 1, with the same end-points, p0 and p1, there exists
a homotopy (1.1.43) with γs(0) = p0 and γs(1) = p1, i.e., γ0 can be
smoothly deformed into γ1 by a family of curves all having the same
end-points. Prove

Theorem 5.1.4. If X is simply-connected H1(X) = {0}.

11. Show that the product operation (1.1.41) is associative and
satisfies left and right distributive laws.

12. Let X be a compact oriented 2n-dimensional manifold. Show
that the map

B : Hn(X) ×Hn(X) → R

defined by
B(c1, c2) = IX(c1 · c2)

is a bilinear form on Hn(X) and that it’s symmetric if n is even and
alternating if n is odd.

5.2 The Mayer–Victoris theorem

In this section we’ll develop some techniques for computing coho-
mology groups of manifolds. (These techniques are known collec-
tively as “diagram chasing” and the mastering of these techniques is
more akin to becoming proficient in checkers or chess or the Sunday
acrostics in the New York Times than in the areas of mathematics
to which they’re applied.) Let Ci, i = 0, 1, 2, . . ., be vector spaces
and d : Ci → Ci+1 a linear map. The sequence of vector spaces and
maps

(5.2.1) C0 d
→ C1 d

→ C2 d
→ · · ·

is called a complex if d2 = 0, i.e., if for a ∈ Ck, d(da) = 0. For
instance if X is a manifold the DeRham complex

(5.2.2) Ω0(X)
d
→ Ω1(X)

d
→ Ω2(X) → · · ·

is an example of a complex, and the complex of compactly supported
DeRham forms

(5.2.3) Ω0
c(X)

d
→ Ω1

c(X)
d
→ Ω2

c(X) → · · ·
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is another example. One defines the cohomology groups of the com-
plex (1.2.1) in exactly the same way that we defined the cohomology
groups of the complexes (1.2.2) and (1.2.3) in §1.1. Let

Zk = {a ∈ Ck ; da = 0}

and

Bk = {a ∈ Ck ; a ∈ dCk−1}

i.e., let a be in Bk if and only if a = db for some b ∈ Ck−1. Then
da = d2b = 0, so Bk is a vector subspace of Zk, and we define
Hk(C) — the kth cohomology group of the complex (1.2.1) — to be
the quotient space

(5.2.4) Hk(C) = Zk/Bk .

Given c ∈ Zk we will, as in §1.1, denote its image in Hk(C) by [c]
and we’ll call c a representative of the cohomology class [c].

We will next assemble a small dictionary of “diagram chasing”
terms.

Definition 5.2.1. Let Vi, i = 0, 1, 2, . . ., be vector spaces and αi :
Vi → Vi+1 linear maps. The sequence

(5.2.5) V0
α0→ V1

α1→ V2
α2→ · · ·

is an exact sequence if, for each i, the kernel of αi+1 is equal to the
image of αi.

For example the sequence (1.2.1) is exact if Zi = Bi for all i, or,
in other words, if H i(C) = 0 for all i. A simple example of an exact
sequence that we’ll encounter a lot below is a sequence of the form

(5.2.6) {0} → V1
α1→ V2

α2→ V3 → {0} ,

a five term exact sequence whose first and last terms are the vector
space, V0 = V4 = {0}, and hence α0 = α3 = 0. This sequence is
exact if and only if

1. α1 is injective,

2. the kernel of α2 equals the image of α1, and
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3. α2 is surjective.

We will call an exact sequence of this form a short exact sequence.
(We’ll also encounter a lot below an even shorter example of an exact
sequence, namely a sequence of the form

(5.2.7) {0} → V1
α1→ V2 → {0} .

This is an exact sequence if and only if α1 is bijective.)
Another basic notion in the theory of diagram chasing is the notion

of a commutative diagram. The square diagram of vector spaces and
linear maps

A
f

−−−−→ B

i

x
xj

C
g

−−−−→ D

is commutative if f ◦ i = j ◦ g, and a more complicated diagram
of vector spaces and linear maps like the diagram below

A1 −−−−→ A2 −−−−→ A3x
x

x

B1 −−−−→ B2 −−−−→ B3x
x

x

C1 −−−−→ C2 −−−−→ C3

is commutative if every subsquare in the diagram, for instance the
square,

B2 −−−−→ B3x
x

C2 −−−−→ C3

is commutative.
We now have enough “diagram chasing” vocabulary to formulate

the Mayer–Victoris theorem. For r = 1, 2, 3 let

(5.2.8) {0} → C0
r

d
→ C1

r
d
→ C2

r
d
→ · · ·

be a complex and, for fixed k, let

(5.2.9) {0} → Ck
1

i
→ Ck

2
j
→ Ck

3 → {0}
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be a short exact sequence. Assume that the diagram below com-
mutes:

(5.2.10)

| | |

0 −→ Ck+1
1

i
−→ Ck+1

2
j

−→ Ck+1
3 −→ 0xd

xd

xd

0 −→ Ck
1 −→ Ck

2 −→ Ck
3 −→ 0x

x
x

0 −→ Ck−1
1

i
−→ Ck−1

2
j

−→ Ck−1
3 −→ 0x

x
x

i.e., assume that in the left hand squares, di = id, and in the right
hand squares, dj = jd.

The Mayer–Victoris theorem addresses the following question: If
one has information about the cohomology groups of two of the three
complexes, (1.2.8), what information about the cohomology groups
of the third can be extracted from this diagram? Let’s first observe
that the maps, i and j, give rise to mappings between these cohomol-
ogy groups. Namely, for r = 1, 2, 3 let Zk

r be the kernel of the map,
d : Ck

r → Ck+1
r , and Bk

r the image of the map, d : Ck−1
r → Ck

r . Since
id = di, i maps Bk

1 into Bk
2 and Zk

1 into Zk
2 , therefore by (1.2.4) it

gives rise to a linear mapping

i♯ : Hk(C1) → Hk(C2) .

Similarly since jd = dj, j maps Bk
2 into Bk

3 and Zk
2 into Zk

3 , and so
by (1.2.4) gives rise to a linear mapping

j♯ : Hk(C2) → Hk(C3) .

Moreover, since j ◦ i = 0 the image of i♯ is contained in the kernel of
j♯. We’ll leave as an exercise the following sharpened version of this
observation:

Proposition 5.2.2. The kernel of j♯ equals the image of i♯, i.e., the
three term sequence

(5.2.11) Hk(C1)
i♯
→ Hk(C2)

j♯
→ Hk(C3)

is exact.
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Since (1.2.9) is a short exact sequence one is tempted to conjecture
that (1.2.11) is also a short exact sequence (which, if it were true,
would tell us that the cohomology groups of any two of the complexes
(1.2.8) completely determine the cohomology groups of the third).
Unfortunately, this is not the case. To see how this conjecture can be
violated let’s try to show that the mapping j♯ is surjective. Let ck3 be
an element of Zk

3 representing the cohomology class, [ck3 ], in H3(C3).
Since (1.2.9) is exact there exists a ck2 in Ck

2 which gets mapped by j
onto ck3 , and if ck3 were in Zk

2 this would imply

j♯[c
k
2 ] = [jck2 ] = [ck3 ] ,

i.e., the cohomology class, [ck3 ], would be in the image of j♯. However,
since there’s no reason for ck2 to be in Zk

2 , there’s also no reason for
[ck3 ] to be in the image of j♯. What we can say, however, is that
j dck2 = djck2 = dck3 = 0 since ck3 is in Zk

3 . Therefore by the exactness
of (1.2.9) in degree k+1 there exists a unique element, ck+1

1 in Ck+1
1

with property

(5.2.12) dck2 = ick+1
1 .

Moreover, since 0 = d(dck2) = di(ck+1
1 ) = i dck+1

1 and i is injective,
dck+1

1 = 0, i.e.,

(5.2.13) ck+1
1 ∈ Zk+1

1 .

Thus via (1.2.12) and (1.2.13) we’ve converted an element, ck3 , of Zk
3

into an element, ck+1
1 , of Zk+1

1 and hence set up a correspondence

(5.2.14) ck3 ∈ Zk
3 → ck+1

1 ∈ Zk+1
1 .

Unfortunately this correspondence isn’t, strictly speaking, a map
of Zk

3 into Zk+1
1 ; the ck1 in (1.2.14) isn’t determined by ck3 alone

but also by the choice we made of ck2 . Suppose, however, that we
make another choice of a ck2 with the property j(ck2) = ck3 . Then the
difference between our two choices is in the kernel of j and hence,
by the exactness of (2.5.8) at level k, is in the image of i. In other
words, our two choices are related by

(ck2)new = (ck2)old + i(ck1)

for some ck1 in Ck
1 , and hence by (1.2.12)

(ck+1
1 )new = (ck+1

1 )old + dck1 .
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Therefore, even though the correspondence (1.2.14) isn’t strictly
speaking a map it does give rise to a well-defined map

(5.2.15) Zk
3 → Hk+1(C1) , ck3 → [ck+1

3 ] .

Moreover, if ck3 is in Bk
3 , i.e., ck3 = dck−1

3 for some ck−1
3 ∈ Ck−1

3 , then
by the exactness of (1.2.8) at level k − 1, ck−1

3 = j(ck−1
2 ) for some

ck−1
2 ∈ Ck−1

2 and hence ck3 = j(dck−2
2 ). In other words we can take

the ck2 above to be dck−1
2 in which case the ck+1

1 in equation (1.2.12)
is just zero. Thus the map (1.2.14) maps Bk

3 to zero and hence by
Proposition 1.2.2 gives rise to a well-defined map

(5.2.16) δ : Hk(C3) → Hk+1(C1)

mapping [ck3 ] → [ck+1
1 ]. We will leave it as an exercise to show that

this mapping measures the failure of the arrow j♯ in the exact se-
quence (1.2.11) to be surjective (and hence the failure of this se-
quence to be a short exact sequence at its right end).

Proposition 5.2.3. The image of the map j♯ : Hk(C2) → Hk(C3)
is equal to the kernel of the map, δ : Hk(C3) → Hk+1(C1).

Hint: Suppose that in the correspondence (1.2.14) ck+1
1 is in Bk+1

1 .
Then ck+1

1 = dck1 for some ck1 in Ck
1 . Show that

j(ck2 − i(ck1)) = ck3

and

d(ck2 − i(ck1)) = 0

i.e., ck2 − i(ck1) is in Zk
2 and hence j♯[c

k
2 − i(ck1)] = [ck3 ].

Let’s next explore the failure of the map, i♯ : Hk+1(C1) → Hk+1(C2),
to be injective. Let ck+1

1 be in Zk+1
1 and suppose that its cohomol-

ogy class, [ck+1
1 ], gets mapped by i♯ into zero. This translates into

the statement

(5.2.17) i(ck+1
1 ) = dck2

for some ck2 ∈ Ck
2 . Moreover since dck2 = i(ck+1

1 ), j(dck2) = 0. But if

(5.2.18) ck3
def
= j(ck2)
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then dck3 = dj(ck2) = j(dck2) = j(i(ck+1
1 )) = 0, so ck3 is in Zk

3 , and by
(1.2.17), (1.2.18) and the definition of δ

(5.2.19) [ck+1
1 ] = δ[ck3 ] .

In other words the kernel of the map, i♯ : Hk+1(C1) → Hk+1(C2) is
contained in the image of the map δ : Hk(C3) → Hk+1(C1). We will
leave it as an exercise to show that this argument can be reversed to
prove the converse assertion and hence to prove

Proposition 5.2.4. The image of the map δ : Hk(C1) → Hk+1(C1)
is equal to the kernel of the map i♯ : Hk+1(C1) → Hk+1(C2).

Putting together the Propositions 1.2.2–1.2.4 we obtain the main
result of this section: the Mayer–Victoris theorem. The sequence of
cohomology groups and linear maps

(5.2.20) · · ·
δ
→ Hk(C1)

i♯
→ Hk(C2)

j♯
→ Hk(C3)

δ
→ Hk+1(C−1)

i♯
→ · · ·

is exact.

Remark 5.2.5. In view of the “· · · ”’s this sequence can be a very
long sequence and is commonly referred to as the “long exact se-
quence in cohomology” associated to the short exact sequence of com-
plexes (2.5.9).

Before we discuss the applications of this result, we will introduce
some vector space notation. Given vector spaces, V1 and V2 we’ll
denote by V1 ⊕ V2 the vector space sum of V1 and V2, i.e., the set of
all pairs

(u1, u2) , ui ∈ Vi

with the addition operation

(u1, u2) + (v1 + v2) = (u1 + v1 , u2 + v2)

and the scalar multiplication operation

λ(u1, u2) = (λu1 , λu2) .

Now let X be a manifold and let U1 and U2 be open subsets of X.
Then one has a linear map

(5.2.21) Ωk(U1 ∪ U2)
i
→ Ωk(U1) ⊕ Ωk(U2)
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defined by

(5.2.22) ω → (ω|U1 , ω|U2)

where ω|Ui is the restriction of ω to Ui. Similarly one has a linear
map

(5.2.23) Ωk(U1) ⊕ Ωk(U2)
j
→ Ωk(U1 ∩ U2)

defined by

(5.2.24) (ω1, ω2) → ω1|U1 ∩ U2 − ω2|U1 ∩ U2 .

We claim

Theorem 5.2.6. The sequence
(5.2.25)

{0} → Ωk(U1 ∪ U2)
i
→ Ωk(U1) ⊕ Ωk(U2)

j
→ Ωk(U1 ∩ U2) → {0}

is a short exact sequence.

Proof. If the right hand side of (1.2.22) is zero, ω itself has to be
zero so the map (1.2.22) is injective. Moreover, if the right hand side
of (1.2.24) is zero, ω1 and ω2 are equal on the overlap, U1 ∩ U2, so
we can glue them together to get a C∞ k-form on U1 ∪U2 by setting
ω = ω1 on U1 and ω = ω2 on U2. Thus by (1.2.22) i(ω) = (ω1, ω2),
and this shows that the kernel of j is equal to the image of i. Hence
to complete the proof we only have to show that j is surjective,
i.e., that every form ω on Ωk(U1∩U2) can be written as a difference,
ω1|U1 ∩U2 −ω2|U1 ∩U2, where ω1 is in Ωk(U1) and ω2 in in Ωk(U2).
To prove this we’ll need the following variant of the partition of unity
theorem.

Theorem 5.2.7. There exist functions, ϕα ∈ C∞(U1∪U2), α = 1, 2,
such that support ϕα is contained in Uα and ϕ1 + ϕ2 = 1.

Before proving this let’s use it to complete our proof of Theo-
rem 1.2.6. Given ω ∈ Ωk(U1 ∩ U2) let

ω1 =




ϕ2ω on U1 ∩ U2

0 on U1 − U1 ∩ U2
(5.2.26)

and let
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ω2 =

{
−ϕ1ω on U1 ∩ U2

0 on U2 − U1 ∩ U2 .
(5.2.27)

Since ϕ2 is supported on U2 the form defined by (1.2.26) is C∞ on U1

and since ϕ1 is supported on U1 the form defined by (1.2.27) is C∞

on U2 and since ϕ1 +ϕ2 = 1, ω1 − ω2 = (ϕ1 +ϕ2)ω = ω on U1 ∩U2.

To prove Theorem 1.2.7, let ρi ∈ C∞
0 (U1 ∪ U2), i = 1, 2, 3, . . .

be a partition of unity subordinate to the cover, {Uα , α = 1, 2} of
U1 ∪ U2 and let ϕ1 be the sum of the ρi’s with support on U1 and
ϕ2 the sum of the remaining ρi’s. It’s easy to check (using part (b)
of Theorem 4.6.1) that ϕα is supported in Uα and (using part (c) of
Theorem 4.6.1) that ϕ1 + ϕ2 = 1. �

Now let

(5.2.28) {0} → C0
1

d
→ C1

1
d
→ C2

1 → · · ·

be the DeRham complex of U1 ∪ U2, let

(5.2.29) {0} → C0
3

d
→ C1

3
d
→ C2

3 → · · ·

be the DeRham complex of U1 ∩ U2 and let

(5.2.30) {0} → C0
2

d
→ C1

2
d
→ C2

2
d
→ · · ·

be the vector space direct sum of the DeRham complexes of U1 and
U2, i.e., the complex whose kth term is

Ck
2 = Ωk(U1) ⊕ Ωk(U2)

with d : Ck
2 → Ck+1

2 defined to be the map d(µ1, µ2) = (dµ1, dµ2).
Since Ck

1 = Ωk(U1 ∪ U2) and Ck
3 = Ωk(U1 ∩ U2) we have, by Theo-

rem 1.2.6, a short exact sequence

(5.2.31) {0} → Ck
1

i
→ Ck

2
j
→ Ck

3 → {0} ,

and it’s easy to see that i and j commute with the d’s:

(5.2.32) di = id and dj = jd .
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Hence we’re exactly in the situation to which Mayer–Victoris applies.
Since the cohomology groups of the complexes (1.2.28) and (1.2.29)
are the DeRham cohomology group. Hk(U1 ∪U2) and Hk(U1 ∩U2),
and the cohomology groups of the complex (1.2.30) are the vector
space direct sums, Hk(U1) ⊕ Hk(U2), we obtain from the abstract
Mayer–Victoris theorem, the following DeRham theoretic version of
Mayer–Victoris.

Theorem 5.2.8. Letting U = U1 ∪ U2 and V = U1 ∩ U2 one has a
long exact sequence in DeRham cohomology:
(5.2.33)

· · ·
δ
→ Hk(U)

i♯
→ Hk(U1) ⊕Hk(U2)

j♯
→ Hk(V )

δ
→ Hk+1(U)

i♯
→ · · · .

This result also has an analogue for compactly supported DeRham
cohomology. Let

(5.2.34) i : Ωk
c (U1 ∩ U2) → Hk

c (U1) ⊕ Ωk
c (U2)

be the map

(5.2.35) i(ω) = (ω1, ω2)

where

(5.2.36) ωi =

{
ω on U1 ∩ U2

0 on Ui − U1 ∩ U2 .

(Since ω is compactly supported on U1 ∩ U2 the form defined by
(1.2.34) is a C∞ form and is compactly supported on Ui.) Similarly,
let

(5.2.37) j : Ωk
c (U1) ⊕ Ωk

c (U2) → Ωk
c (U1 ∪ U2)

be the map

(5.2.38) j(ω1, ω2) = ω̃1 − ω̃2

where:

(5.2.39) ω̃i =

{
ωi on Ui

0 on (U1 ∪ U2) − Ui .

As above it’s easy to see that i is injective and that the kernel of j
is equal to the image of i. Thus if we can prove that j is surjective
we’ll have proved
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Theorem 5.2.9. The sequence
(5.2.40)

{0} → Ωk
c (U1 ∩ U2)

i
→ Ωk

c (U1) ⊕ Ωk
c (U2)

j
→ Ωk

c (U1 ∩ U2) → {0}

is a short exact sequence.

Proof. To prove the surjectivity of j we mimic the proof above. Given
ω in Ωk

c (U1 ∪ U2) let

ω = ϕ1ω|U1(5.2.41)

and

ω2 = −ϕ2ω|U2 .(5.2.42)

Then by (1.2.36) ω = j(ω1, ω2).

Thus, applying Mayer–Victoris to the compactly supported ver-
sions of the complexes (1.2.8), we obtain:

Theorem 5.2.10. Letting U = U1∪U2 and V = U1∩U2 there exists
a long exact sequence in compactly supported DeRham cohomology
(5.2.43)

· · ·
δ
→ Hk

c (V )
i♯
→ Hk

c (U1) ⊕Hk
c (U2)

j♯
→ Hk

c (U)
δ
→ Hk+1

c (V )
i♯
→ · · · .

Exercises

1. Prove Proposition 1.2.2.

2. Prove Proposition 1.2.3.

3. Prove Proposition 1.2.4.

4. Show that if U1, U2 and U1 ∩ U2 are non-empty and connected
the first segment of the Mayer–Victoris sequence is a short exact
sequence

{0} → H0(U1 ∪ U2) → H0(U1) ⊕H0(U2) → H0(U1 ∩ U2) → {0} .

5. Let X = Sn and let U1 and U2 be the open subsets of Sn

obtained by removing from Sn the points, p1 = (0, . . . , 0, 1) and
p2 = (0, . . . , 0,−1).
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(a) Using stereographic projection show that U1 and U2 are diffeo-
morphic to R

n.

(b) Show that U1 ∪ U2 = Sn and U1 ∩ U2 is homotopy equivalent
to Sn−1. (See problem 5 in §1.1.) Hint: U1 ∩ U2 is diffeomorphic to
R

n − {0}.

(c) Deduce from the Mayer–Victoris sequence that H i+1(Sn) =
H i(Sn−1) for i ≥ 1.

(d) Using part (c) give an inductive proof of a result that we proved
by other means in §1.1: Hk(Sn) = {0} for 1 ≤ k < n.

6. Using the Mayer–Victoris sequence of exercise 5 with cohomol-
ogy replaced by compactly supported cohomology show that

Hk
c (Rn − {0}) ∼= R

for k = 1 and n and

Hk
c (Rn − {0}) = {0}

for all other values of k.

5.3 Good covers

In this section we will show that for compact manifolds (and for lots
of other manifolds besides) the DeRham cohomology groups which
we defined in §1.1 are finite dimensional vector spaces and thus, in
principle, “computable” objects. A key ingredient in our proof of this
fact is the notion of a good cover of a manifold.

Definition 5.3.1. Let X be an n-dimensional manifold, and let

U = {Uα, α ∈ I}

be a covering of X by open sets. This cover is a good cover if for
every finite set of indices, αi ∈ I, i = 1, . . . , k, the intersection
Uα1 ∩ · · · ∩ Uαk is either empty or is diffeomorphic to R

n.

One of our first goals in this section will be to show that good
covers exist. We will sketch below a proof of the following.

Theorem 5.3.2. Every manifold admits a good cover.
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The proof involves an elementary result about open convex subsets
of R

n.

Proposition 5.3.3. If U is a bounded open convex subset of R
n, it

is diffeomorphic to R
n.

A proof of this will be sketched in exercises 1–4 at the end of this
section.

One immediate consequence of this result is an important special
case of Theorem 1.3.2.

Theorem 5.3.4. Every open subset, U , of R
n admits a good cover.

Proof. For each p ∈ U let Up be an open convex neighborhood of p
in U (for instance an ǫ-ball centered at p) . Since the intersection of
any two convex sets is again convex the cover, {Up, p ∈ U} is a good
cover by Proposition 1.3.3.

For manifolds the proof of Theorem 1.3.2 is somewhat trickier.
The proof requires a manifold analogue of the notion of convexity
and there are several serviceable candidates. The one we will use is
the following. Let X ⊆ R

N be an n-dimensional manifold and for
p ∈ X let TpX be the tangent space to X at p. Recalling that TpX
sits inside TpR

N and that

TpR
N = {(p, v) , v ∈ R

N}

we get a map

TpX →֒ TpR
N → R

N , (p, x) → p+ x ,

and this map maps TpX bijectively onto an n-dimensional “affine”
subspace, Lp, of R

N which is tangent to X at p. Let πp : X → Lp

be, as in the figure below, the orthogonal projection of X onto Lp.
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p (x)

Lp

p

x

Definition 5.3.5. An open subset, V , of X is convex if for every
p ∈ V the map πp : X → Lp maps V diffeomorphically onto a convex
open subset of Lp.

It’s clear from this definition of convexity that the intersection of
two open convex subsets of X is an open convex subset of X and
that every open convex subset of X is diffeomorphic to R

n. Hence
to prove Theorem 1.3.2 it suffices to prove that every point, p, in X
is contained in an open convex subset, Up, of X. Here is a sketch of
how to prove this. In the figure above let Bǫ(p) be the ball of radius ǫ
about p in Lp centered at p. Since Lp and Tp are tangent at p the
derivative of πp at p is just the identity map, so for ǫ small πp maps a
neighborhood, U ǫ

p of p in X diffeomorphically onto Bǫ(p). We claim

Proposition 5.3.6. For ǫ small, U ǫ
p is a convex subset of X.

Intuitively this assertion is pretty obvious: if q is in U ǫ
p and ǫ is

small the map

Bǫ
p

π−1
p
→ U ǫ

p

πq
→ Lq

is to order ǫ2 equal to the identity map, so it’s intuitively clear that
its image is a slightly warped, but still convex, copy of Bǫ(p). We
won’t, however, bother to write out the details that are required to
make this proof rigorous.

A good cover is a particularly good “good cover” if it is a finite
cover. We’ll codify this property in the definition below.
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Definition 5.3.7. An n-dimensional manifold is said to have finite
topology if it admits a finite covering by open sets, U1, . . . , UN with
the property that for every multi-index, I = (i1, . . . , ik), 1 ≤ i1 ≤
i2 · · · < iK ≤ N , the set

(5.3.1) UI = Ui1 ∩ · · · ∩ Uik

is either empty or is diffeomorphic to R
n.

If X is a compact manifold and U = {Uα , α ∈ I} is a good cover
of X then by the Heine–Borel theorem we can extract from U a finite
subcover

Ui = Uαi
, αi ∈ I , i = 1, . . . , N ,

hence we conclude

Theorem 5.3.8. Every compact manifold has finite topology.

More generally, for any manifold, X, let C be a compact subset of
X. Then by Heine–Borel we can extract from the cover, U, a finite
subcollection

Ui = Uαi
, αi ∈ I , i = 1, . . . , N

that covers C, hence letting U =
⋃
Ui, we’ve proved

Theorem 5.3.9. If X is an n-dimensional manifold and C a com-
pact subset of X, then there exists an open neighborhood, U , of C in
X having finite topology.

We can in fact even strengthen this further. Let U0 be any open
neighborhood of C in X. Then in the theorem above we can replace
X by U0 to conclude

Theorem 5.3.10. Let X be a manifold, C a compact subset of X
and U0 an open neighborhood of C in X. Then there exists an open
neighborhood, U , of C in X, U contained in U0, having finite topol-
ogy.

We will justify the term “finite topology” by devoting the rest of
this section to proving

Theorem 5.3.11. Let X be an n-dimensional manifold. If X has
finite topology the DeRham cohomology groups, Hk(X), k = 0, . . . , n
and the compactly supported DeRham cohomology groups, Hk

c (X),
k = 0, . . . , n are finite dimensional vector spaces.
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The basic ingredients in the proof of this will be the Mayer–
Victoris techniques that we developed in §5.2 and the following ele-
mentary result about vector spaces.

Lemma 5.3.12. Let Vi, i = 1, 2, 3, be vector spaces and

(5.3.2) V1
α
→ V2

β
→ V3

an exact sequence of linear maps. Then if V1 and V3 are finite di-
mensional, so is V2.

Proof. Since V3 is finite dimensional, the image of β is of dimension,
k < ∞, so there exist vectors, vi, i = 1, . . . , k in V2 having the
property that

(5.3.3) Image β = span {β(vi) , i = 1, . . . , k}.

Now let v be any vector in V2. Then β(v) is a linear combination

β(v) =

k∑

i=1

ciβ(vi) ci ∈ R

of the vectors β(vi) by (1.3.3), so

(5.3.4) v′ = v −
k∑

i=1

civi

is in the kernel of β and hence, by the exactness of (1.3.2), in the im-
age of α. But V1 is finite dimensional, so α(V1) is finite dimensional.
Letting vk+1, . . . , vm be a basis of α(V1) we can by (1.3.4) write v as
a sum, v =

∑m
i=1 civi. In other words v1, . . . , vm is a basis of V2.

We’ll now prove Theorem 1.3.4. Our proof will be by induction on
the number of open sets in a good cover of X. More specifically let

U = {Ui , i = 1, . . . , N}

be a good cover ofX. IfN = 1,X = U1 and henceX is diffeomorphic
to R

n, so

Hk(X) = {0} for k > 0
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and Hk(X) = R for k = 0, so the theorem is certainly true in
this case. Let’s now prove it’s true for arbitrary N by induction.
Let U be the open subset of X obtained by forming the union of
U2, . . . , UN . We can think of U as a manifold in its own right, and
since {Ui , i = 2, . . . , N} is a good cover of U involving only N − 1
sets, its cohomology groups are finite dimensional by the induction
assumption. The same is also true of the intersection of U with U1.
It has the N − 1 sets, U ∩ Ui, i = 2, . . . , N as a good cover, so its
cohomology groups are finite dimensional as well. To prove that the
theorem is true for X we note that X = U1 ∪U and that one has an
exact sequence

Hk−1(U1 ∩ U)
δ
→ Hk(X)

i♯
→ Hk(U1) ⊕Hk(U)

by Mayer–Victoris. Since the right hand and left hand terms are finite
dimensional it follows from Lemma 1.3.12 that the middle term is
also finite dimensional. �

The proof works practically verbatim for compactly supported co-
homology. For N = 1

Hk
c (X) = Hk

c (U1) = Hk
c (Rn)

so all the cohomology groups of Hk(X) are finite in this case, and
the induction “N − 1” ⇒ “N” follows from the exact sequence

Hk
c (U1) ⊕Hk

c (U)
j♯
→ Hk

c (X)
δ
→ Hk+1

c (U1 ∩ U) .

Remark 5.3.13. A careful analysis of the proof above shows that
the dimensions of the Hk(X)’s are determined by the intersection
properties of the Ui’s, i.e., by the list of multi-indices, I, for which
th intersections (1.3.1) are non-empty.

This collection of multi-indices is called the nerve of the cover,
U = {Ui , i = 1, . . . , N}, and this remark suggests that there should
be a cohomology theory which has as input the nerve of U and as
output cohomology groups which are isomorphic to the DeRham
cohomology groups. Such a theory does exist and a nice account of it
can be found in Frank Warner’s book, “Foundations of Differentiable
Manifolds and Lie Groups”. (See the section on Čech cohomology in
Chapter 5.)
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Exercises.

1. Let U be a bounded open subset of R
n. A continuous function

ψ : U → [0,∞)

is called an exhaustion function if it is proper as a map of U into
[0,∞); i.e., if, for every a > 0, ψ−1([0, a]) is compact. For x ∈ U let

d(x) = inf {|x− y| , y ∈ R
n − U} ,

i.e., let d(x) be the “distance” from x to the boundary of U . Show
that d(x) > 0 and that d(x) is continuous as a function of x. Conclude
that ψ0 = 1/d is an exhaustion function.

2. Show that there exists a C∞ exhaustion function, ϕ0 : U →
[0,∞), with the property ϕ0 ≥ ψ2

0 where ψ0 is the exhaustion func-
tion in exercise 1.

Hints: For i = 2, 3, . . . let

Ci =

{
x ∈ U ,

1

i
≤ d(x) ≤

1

i− 1

}

and

Ui =

{
x ∈ U ,

1

i+ 1
< d(x) <

1

i− 2

}
.

Let ρi ∈ C∞
0 (Ui), ρi ≥ 0, be a “bump” function which is identically

one on Ci and let ϕ0 =
∑
i2ρi + 1.

3. Let U be a bounded open convex subset of R
n containing the

origin. Show that there exists an exhaustion function

ψ : U → R , ψ(0) = 1 ,

having the property that ψ is a monotonically increasing function of
t along the ray, tx, 0 ≤ t ≤ 1, for all points, x, in U . Hints:

(a) Let ρ(x), 0 ≤ ρ(x) ≤ 1, be a C∞ function which is one outside
a small neighborhood of the origin in U and is zero in a still smaller
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neighborhood of the origin. Modify the function, ϕ0, in the previous
exercise by setting ϕ(x) = ρ(x)ϕ0(x) and let

ψ(x) =

∫ 1

0
ϕ(sx)

ds

s
+ 1 .

Show that for 0 ≤ t ≤ 1

(5.3.5)
dψ

dt
(tx) = ϕ(tx)/t

and conclude from (1.3.4) that ψ is monotonically increasing along
the ray, tx, 0 ≤ t ≤ 1.

(b) Show that for 0 < ǫ < 1,

ψ(x) ≥ ǫϕ(y)

where y is a point on the ray, tx, 0 ≤ t ≤ 1 a distance less than ǫ|x|
from X.

(c) Show that there exist constants, C0 and C1, C1 > 0 such that

ψ(x) =
C1

d(x)
+ C0 .

Sub-hint: In part (b) take ǫ to be equal to 1
2 d(x)/|x|.

4. Show that every bounded, open convex subset, U , of R
n is dif-

feomorphic to R
n. Hints:

(a) Let ψ(x) be the exhaustion function constructed in exercise 3
and let

f : U → R
n

be the map: f(x) = ψ(x)x. Show that this map is a bijective map of
U onto R

n.

(b) Show that for x ∈ U and v ∈ R
n

(df)xv = ψ(x)v + dψx(v)x

and conclude that dfx is bijective at x, i.e., that f is locally a diffeo-
morphism of a neighborhood of x in U onto a neighborhood of f(x)
in R

n.
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(c) Putting (a) and (b) together show that f is a diffeomorphism
of U onto R

n.

5. Let U ⊆ R be the union of the open intervals, k < x < k + 1,
k an integer. Show that U doesn’t have finite topology.

6. Let V ⊆ R
2 be the open set obtained by deleting from R

2

the points, pn = (0, n), n an integer. Show that V doesn’t have finite
topology. Hint: Let γn be a circle of radius 1

2 centered about the point
pn. Using exercises 16–17 of §2.1 show that there exists a closed C∞-
one-form, ωn on V with the property that

∫
γn
ωn = 1 and

∫
γm
ωn = 0

for m 6= n.

7. Let X be an n-dimensional manifold and U = {Ui , i = 1, 2} a
good cover of X. What are the cohomology groups of X if the nerve
of this cover is

(a) {1}, {2}

(b) {1}, {2}, {1, 2}?

8. Let X be an n-dimensional manifold and U = {Ui , i = 1, 2, 3, }
a good cover of X. What are the cohomology groups of X if the
nerve of this cover is

(a) {1}, {2}, {3}

(b) {1}, {2}, {3}, {1, 2}

(c) {1}, {2}, {3}, {1, 2}, {1, 3}

(d) {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

(e) {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}?

9. Let S1 be the unit circle in R
3 parametrized by arc length:

(x, y) = (cos θ, sin θ). Let U1 be the set: 0 < θ < 2π
3 , U2 the set:

π
2 < θ < 3π

2 , and U3 the set: −2π
3 < θ < π

3 .

(a) Show that the Ui’s are a good cover of S1.

(b) Using the previous exercise compute the cohomology groups of
S1.
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10. Let S2 be the unit 2-sphere in R
3. Show that the sets

Ui = {(x1, x2, x3) ∈ S2 , xi > 0}

i = 1, 2, 3 and

Ui = {(x1, x2, x3) ∈ S2 , xi−3 < 0} ,

i = 4, 5, 6, are a good cover of S2. What is the nerve of this cover?

11. Let X and Y be manifolds. Show that if they both have finite
topology, their product, X × Y , does as well.

12. (a) Let X be a manifold and let Ui, i = 1, . . . , N , be a good
cover of X. Show that Ui ×R, i = 1, . . . , N , is a good cover of X×R

and that the nerves of these two covers are the same.

(b) By Remark 1.3.13,

Hk(X × R) = Hk(X) .

Verify this directly using homotopy techniques.

(c) More generally, show that for all ℓ > 0

(5.3.6) Hk(X × R
ℓ) = Hk(X)

(i) by concluding that this has to be the case in view of the
Remark 1.3.13 and

(ii) by proving this directly using homotopy techniques.

5.4 Poincaré duality

In this chapter we’ve been studying two kinds of cohomology groups:
the ordinary DeRham cohomology groups, Hk, and the compactly
supported DeRham cohomology groups, Hk

c . It turns out that these
groups are closely related. In fact if X is a connected, oriented n-
dimensional manifold and has finite topology, Hn−k

c (X) is the vector
space dual of Hk(X). We’ll give a proof of this later in this section,
however, before we do we’ll need to review some basic linear alge-
bra. Given two finite dimensional vector space, V and W , a bilinear
pairing between V and W is a map

(5.4.1) B : V ×W → R
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which is linear in each of its factors. In other words, for fixed w ∈W ,
the map

(5.4.2) ℓw : V → R , v → B(v, w)

is linear, and for v ∈ V , the map

(5.4.3) ℓv : W → R , w → B(v, w)

is linear. Therefore, from the pairing (1.4.1) one gets a map

(5.4.4) LB : W → V ∗ , w → ℓw

and since ℓw1 + ℓw2(v) = B(v, w1 + w2) = ℓw1+w2(v), this map is
linear. We’ll say that (1.4.1) is a non-singular pairing if (1.4.4) is
bijective. Notice, by the way, that the roles of V and W can be
reversed in this definition. Letting B♯(w, v) = B(v, w) we get an
analogous linear map

(5.4.5) LB♯ : V →W ∗

and in fact

(5.4.6) (LB♯(v))(w) = (LB(w))(v) = B(v, w) .

Thus if

(5.4.7) µ : V → (V ∗)∗

is the canonical identification of V with (V ∗)∗ given by the recipe

µ(v)(ℓ) = ℓ(v)

for v ∈ V and ℓ ∈ V ∗, we can rewrite (1.4.6) more suggestively in
the form

(5.4.8) LB♯ = (LB)∗µ

i.e., LB and LB♯ are just the transposes of each other. In particular
LB is bijective if and only if LB♯ is bijective.

Let’s now apply these remarks to DeRham theory. Let X be a
connected, oriented n-dimensional manifold. If X has finite topology
the vector spaces, Hn−k

c (X) and Hk(X) are both finite dimensional.
We will show that there is a natural bilinear pairing between these
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spaces, and hence by the discussion above, a natural linear mapping
of Hk(X) into the vector space dual of Hn−1

c (X). To see this let
c1 be a cohomology class in Hn−k

c (X) and c2 a cohomology class
in Hk(X). Then by (1.1.43) their product, c1 · c2, is an element of
Hn

c (X), and so by (1.1.8) we can define a pairing between c1 and c2
by setting

(5.4.9) B(c1, c2) = IX(c1 · c2) .

Notice that if ω1 ∈ Ωn−k
c (X) and ω2 ∈ Ωk(X) are closed forms

representing the cohomology classes, c1 and c2, then by (1.1.43) this
pairing is given by the integral

(5.4.10) B(c1, c2) =

∫

X

ω1 ∧ ω2 .

We’ll next show that this bilinear pairing is non-singular in one
important special case:

Proposition 5.4.1. If X is diffeomorphic to R
n the pairing defined

by (1.4.9) is non-singular.

Proof. To verify this there is very little to check. The vector spaces,
Hk(Rn) and Hn−k

c (Rn) are zero except for k = 0, so all we have to
check is that the pairing

Hn
c (X) ×H0(X) → R

is non-singular. To see this recall that every compactly supported
n-form is closed and that the only closed zero-forms are the constant
functions, so at the level of forms, the pairing (1.4.9) is just the
pairing

(ω, c) ∈ Ωn(X) × R → c

∫

X

ω ,

and this is zero if and only if c is zero or ω is in dΩn−1
c (X). Thus at

the level of cohomology this pairing is non-singular.

We will now show how to prove this result in general.

Theorem 5.4.2 (Poincaré duality.). Let X be an oriented, con-
nected n-dimensional manifold having finite topology. Then the pair-
ing (1.4.9) is non-singular.



254 Chapter 5. Cohomology via forms

The proof of this will be very similar in spirit to the proof that
we gave in the last section to show that if X has finite topology its
DeRham cohomology groups are finite dimensional. Like that proof,
it involves Mayer–Victoris plus some elementary diagram-chasing.
The “diagram-chasing” part of the proof consists of the following
two lemmas.

Lemma 5.4.3. Let V1, V2 and V3 be finite dimensional vector spaces,

and let V1
α
→ V2

β
→ V3 be an exact sequence of linear mappings. Then

the sequence of transpose maps

V ∗
3

β∗

→ V ∗
2

α∗

→ V1

is exact.

Proof. Given a vector subspace, W2, of V2, let

W⊥
2 = {ℓ ∈ V ∗

2 ; ℓ(w) = 0 for w ∈W} .

We’ll leave for you to check that if W2 is the kernel of β, then W⊥
2 is

the image of β∗ and that if W2 is the image of α, W⊥
2 is the kernel

of α∗. Hence if Kerβ = Imageα, Image β∗ = kernelα∗.

Lemma 5.4.4 (the five lemma). Let the diagram below be a com-
mutative diagram with the properties:

(i) All the vector spaces are finite dimensional.

(ii) The two rows are exact.

(iii) The linear maps, γi, i = 1, 2, 4, 5 are bijections.

Then the map, γ3, is a bijection.

A1
α1−−−−→ A2

α2−−−−→ A3
α3−−−−→ A4

α4−−−−→ A5xγ1

xγ2

xγ3

xγ4

xγ5

B1
β1

−−−−→ B2
β2

−−−−→ B3
β3

−−−−→ B4
β4

−−−−→ B5 .

Proof. We’ll show that γ3 is surjective. Given a3 ∈ A3 there exists
a b4 ∈ B4 such that γ4(b4) = α3(a3) since γ4 is bijective. More-
over, γ5(β4(b4)) = α4(α3(a3)) = 0, by the exactness of the top row.
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Therefore, since γ5 is bijective, β4(b4) = 0, so by the exactness of the
bottom row b4 = β3(b3) for some b3 ∈ B3, and hence

α3(γ3(b3)) = γ4(β3(b3)) = γ4(b4) = α3(a3) .

Thus α3(a3 − γ3(b3)) = 0, so by the exactness of the top row

a3 − γ3(b3) = α2(a2)

for some a2 ∈ A2. Hence by the bijectivity of γ2 there exists a b2 ∈ B2

with a2 = γ2(b2), and hence

a3 − γ3(b3) = α2(a2) = α2(γ2(b2)) = γ3(β2(b2)) .

Thus finally
a3 = γ3(b3 + β2(b2)) .

Since a3 was any element of A3 this proves the surjectivity of γ3.
One can prove the injectivity of γ3 by a similar diagram-chasing

argument, but one can also prove this with less duplication of effort
by taking the transposes of all the arrows in Figure 5.4.1 and noting
that the same argument as above proves the surjectivity of γ∗3 : A∗

3 →
B∗

3 .

To prove Theorem 1.4.2 we apply these lemmas to the diagram
below. In this diagram U1 and U2 are open subsets of X, M is U1∪U2

and the vertical arrows are the mappings defined by the pairing
(1.4.9). We will leave for you to check that this is a commutative
diagram “up to sign”. (To make it commutative one has to replace
some of the vertical arrows, γ, by their negatives: −γ.) This is easy
to check except for the commutative square on the extreme left. To
check that this square commutes, some serious diagram-chasing is
required.

// Hn−(k−1)(M) // Hn−k(U1 ∩ U2)∗ // Hn−k(U1)∗ ⊕ Hn−k(U2)∗ // Hn−k(M)∗ //

// Hk−1
c (M)

OO

// Hk
c (U1 ∩ U2)

OO

// Hk
c (U1) ⊕ Hk

c (U2)

OO

// Hk
c (M)

OO

//

Figure 5.4.2
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By Mayer–Victoris the bottom row of this figure is exact and by
Mayer–Victoris and Lemma 1.4.3 the top row of this figure is exact.
hence we can apply the “five lemma” to Figure 5.4.2 and conclude:

Lemma 5.4.5. If the maps

(5.4.11) Hk(U) → Hn−k
c (U)∗

defined by the pairing (1.4.9) are bijective for U1, U2 and U1 ∩ U2,
they are also bijective for M = U1 ∪ U2.

Thus to prove Theorem 1.4.2 we can argue by induction as in § 1.3.
Let U1, U2, . . . , UN be a good cover of X. If N = 1, then X = U1

and, hence, since U1 is diffeomorphic to R
n, the map (1.4.12) is

bijective by Proposition 1.4.1. Now let’s assume the theorem is true
for manifolds involving good covers by k open sets where k is less
than N . Let U ′ = U1 ∪ · · · ∪ UN−1 and U ′′ = UN . Since

U ′ ∩ U ′′ = U1 ∩ UN ∪ · · · ∪ UN−1 ∩ UN

it can be covered by a good cover by k open sets, k < N , and hence
the hypotheses of the lemma are true for U ′, U ′′ and U ′ ∩ U ′′. Thus
the lemma says that (1.4.12) is bijective for the union, X, of U ′ and
U ′′. �

Exercises.

1. (The “push-forward” operation in DeRham cohomology.) Let
X be an m-dimensional manifold, Y an n-dimensional manifold and
f : X → Y a C∞ map. Suppose that both of these manifolds are
oriented and connected and have finite topology. Show that there
exists a unique linear map

(5.4.12) f♯ : Hm−k
c (X) → Hn−k

c (Y )

with the property

(5.4.13) BY (f♯c1, c2) = BX(c1, f
♯c2)

for all c1 ∈ Hm−k
c (X) and c2 ∈ Hk(Y ). (In this formula BX is the

bilinear pairing (1.4.9) on X and BY is the bilinear pairing (1.4.9)
on Y .)
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2. Suppose that the map, f , in exercise 1 is proper. Show that
there exists a unique linear map

(5.4.14) f♯ : Hm−k(X) → Hn−k(Y )

with the property

(5.4.15) BY (c1, f♯c2) = (−1)k(m−n)BX(f ♯c1, c2)

for all c1 ∈ Hk
c (Y ) and c2 ∈ Hm−k(X), and show that, if X and

Y are compact, this mapping is the same as the mapping, f♯, in
exercise 1.

3. Let U be an open subset of R
n and let f : U × R → U be the

projection, f(x, t) = x. Show that there is a unique linear mapping

(5.4.16) f∗ : Ωk+1
c (U × R) → Ωk

c (U)

with the property

(5.4.17)

∫

U

f∗µ ∧ ν =

∫

U×R

µ ∧ f∗ν

for all µ ∈ Ωk+1
c (U × R) and ν ∈ Ωn−k(U).

Hint: Let x1, . . . , xn and t be the standard coordinate functions
on R

n ×R. By §2.2, exercise 5 every (k + 1)-form, ω ∈ Ωk+1
c (U × R)

can be written uniquely in “reduced form” as a sum

ω =
∑

fI dt ∧ dxI +
∑

gJ dxJ

over multi-indices, I and J , which are strictly increasing. Let

(5.4.18) f∗ω =
∑

I

(∫

R

fI(x, t) dt

)
dxI .

4. Show that the mapping, f∗, in exercise 3 satisfies f∗ dω = df∗ω.

5. Show that if ω is a closed compactly supported k + 1-form on
U × R then

(5.4.19) [f∗ω] = f♯[ω]

where f♯ is the mapping (1.4.13) and f∗ the mapping (1.4.17).
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6. (a) Let U be an open subset of R
n and let f : U × R

ℓ → U
be the projection, f(x, t) = x. Show that there is a unique linear
mapping

(5.4.20) f∗ : Ωk+ℓ
c (U × R

ℓ) → Ωk
c (U)

with the property

(5.4.21)

∫

U

f∗µ ∧ ν =

∫

U×Rℓ

µ ∧ f∗ν

for all µ ∈ Ωk+ℓ
c (U × R

ℓ) and ν ∈ Ωn−k(U).

Hint: Exercise 3 plus induction on ℓ.

(b) Show that for ω ∈ Ωk+ℓ
c (U × R

ℓ)

df∗ω = f∗ dω .

(c) Show that if ω is a closed, compactly supported k + ℓ-form on
X × R

ℓ

(5.4.22) f♯[ω] = [f∗ω]

where f♯ : Hk+ℓ
c (U × R

ℓ) → Hk
c (U) is the map (1.4.13).

7. Let X be an n-dimensional manifold and Y an m-dimensional
manifold. Assume X and Y are compact, oriented and connected,
and orient X × Y by giving it its natural product orientation. Let

f : X × Y → Y

be the projection map, f(x, y) = y. Given

ω ∈ Ωm(X × Y )

and p ∈ Y , let

(5.4.23) f∗ω(p) =

∫

X

ι∗pω

where ιp : X → X × Y is the inclusion map, ιp(x) = (x, p).

(a) Show that the function f∗ω defined by (1.5.24) is C∞, i.e., is in
Ω0(Y ).
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(b) Show that if ω is closed this function is constant.

(c) Show that if ω is closed

[f∗ω] = f♯[ω]

where f♯ : Hn(X × Y ) → H0(Y ) is the map (1.4.13).

8. (a) Let X be an n-dimensional manifold which is compact,
connected and oriented. Combining Poincaré duality with exercise 12
in § 1.3 show that

Hk+ℓ
c (X × R

ℓ) = Hk
c (X) .

(b) Show, moreover, that if f : X × R
ℓ → X is the projection,

f(x, a) = x, then

f♯ : Hk+ℓ
c (X × R

ℓ) → Hk
c (X)

is a bijection.

9. Let X and Y be as in exercise 1. Show that the push-forward
operation (1.4.13) satisfies

f♯; (c1 · f
♯c2) = f♯c1 · c2

for c1 ∈ Hk
c (X) and c2 ∈ Hℓ(Y ).

5.5 Thom classes and intersection theory

Let X be a connected, oriented n-dimensional manifold. If X has
finite topology its cohomology groups are finite dimensional, and
since the bilinear pairing, B, defined by (1.4.9) is non-singular we
get from this pairing bijective linear maps

LB : Hn−k
c (X) → Hk(X)∗(5.5.1)

and

L∗
B : Hn−k(X) → Hk

c (X)∗ .(5.5.2)

In particular, if ℓ : Hk(X) → R is a linear function (i.e., an element
of Hk(X)∗), then by (1.5.1) we can convert ℓ into a cohomology class

(5.5.3) L−1
B (ℓ) ∈ Hn−k

c (X) ,
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and similarly if ℓc : Hk
c (X) → R is a linear function, we can convert

it by (1.5.2) into a cohomology class

(5.5.4) (L∗
B)−1(ℓ) ∈ Hn−k(X) .

One way that linear functions like this arise in practice is by in-
tegrating forms over submanifolds of X. Namely let Y be a closed,
oriented k dimensional submanifold of X. Since Y is oriented, we
have by (1.1.8) an integration operation in cohomology

IY : Hk
c (Y ) → R ,

and since Y is closed the inclusion map, ιY , of Y into X is proper,
so we get from it a pull-back operation on cohomology

(ιY )♯ : Hk
c (X) → Hk

c (Y )

and by composing these two maps, we get a linear map, ℓY = IY ◦
(ιY )♯, of Hk

c (X) into R. The cohomology class

(5.5.5) TY = L−1
B (ℓY ) ∈ Hk

c (X)

associated with ℓY is called the Thom class of the manifold, Y and
has the defining property

(5.5.6) B(TY , c) = IY (ι♯Y c)

for c ∈ Hk
c (X). Let’s see what this defining property looks like at the

level of forms. Let τY ∈ Ωn−k(X) be a closed k-form representing
TY . Then by (1.4.9), the formula (1.5.6), for c = [ω], becomes the
integral formula

(5.5.7)

∫

X

τY ∧ ω =

∫

Y

ι∗Y ω .

In other words, for every closed form, ω ∈ Ωn−k
c (X) the integral of

ω over Y is equal to the integral over X of τY ∧ ω . A closed form,
τY , with this “reproducing” property is called a Thom form for Y .
Note that if we add to τY an exact (n− k)-form, µ ∈ dΩn−k−1(X),
we get another representative, τY + µ, of the cohomology class, TY ,
and hence another form with this reproducing property. Also, since
the formula (1.5.7) is a direct translation into form language of the
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formula (1.5.6) any closed (n − k)-form, τY , with the reproducing
property (1.5.7) is a representative of the cohomology class, TY .

These remarks make sense as well for compactly supported coho-
mology. Suppose Y is compact. Then from the inclusion map we get
a pull-back map

(ιY )♯ : Hk(X) → Hk(Y )

and since Y is compact, the integration operation, IY , is a map of
Hk(Y ) into R, so the composition of these two operations is a map,

ℓY : Hk(X) → R

which by (1.5.3) gets converted into a cohomology class

TY = L−1
B (ℓY ) ∈ Hn−k

c (X) .

Moreover, if τY ∈ Ωn−k
c (X) is a closed form, it represents this coho-

mology class if and only if it has the reproducing property

(5.5.8)

∫

X

τY ∧ ω =

∫

Y

ι∗Y ω

for closed forms, ω, in Ωn−k(X). (There’s a subtle difference, how-
ever, between formula (1.5.7) and formula (1.5.8). In (1.5.7) ω has
to be closed and compactly supported and in (1.5.8) it just has to
be closed.)

As above we have a lot of latitude in our choice of τY : we can
add to it any element of dΩn−k−1

c (X). One consequence of this is the
following.

Theorem 5.5.1. Given a neighborhood, U , of Y in X there exists
a closed form, τY ∈ Ωn−k

c (U) , with the reproducing property

(5.5.9)

∫

U

τY ∧ ω =

∫

Y

ι∗Y ω

for closed forms, ω ∈ Ωk(U).

Hence in particular, τY has the reproducing property (1.5.8) for
closed forms, ω ∈ Ωn−k(X). This result shows that the Thom form,
τY , can be chosen to have support in an arbitrarily small neighbor-
hood of Y . To prove Theorem 1.5.1 we note that by Theorem 1.3.8
we can assume that U has finite topology and hence, in our defini-
tion of τY , we can replace the manifold, X, by the open submanifold,
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U . This gives us a Thom form, τY , with support in U and with the
reproducing property (1.5.9) for closed forms ω ∈ Ωn−k(U).

�

Let’s see what Thom forms actually look like in concrete examples.
Suppose Y is defined globally by a system of ℓ independent equations,
i.e., suppose there exists an open neighborhood, O, of Y in X, a C∞

map, f : O → R
ℓ, and a bounded open convex neighborhood, V , of

the origin in R
n such that

(i) The origin is a regular value of f .

(ii) f−1(V̄ ) is closed in X .(5.5.10)

(iii) Y = f−1(0) .

Then by (i) and (iii) Y is a closed submanifold of O and by (ii) it’s
a closed submanifold of X. Moreover, it has a natural orientation:
For every p ∈ Y the map

dfp : TpX → T0R
ℓ

is surjective, and its kernel is TpY , so from the standard orientation
of T0R

ℓ one gets an orientation of the quotient space,

TpX/TpY ,

and hence since TpX is oriented, one gets, by Theorem 1.9.4, an
orientation on TpY . (See §4.4, example 2.) Now let µ be an element
of Ωℓ

c(X). Then f∗µ is supported in f−1(V̄ ) and hence by property
(ii) of (1.5.10) we can extend it to X by setting it equal to zero
outside O. We will prove

Theorem 5.5.2. If

(5.5.11)

∫

V

µ = 1 ,

f∗µ is a Thom form for Y .

To prove this we’ll first prove that if f∗µ has property (1.5.7) for
some choice of µ it has this property for every choice of µ.

Lemma 5.5.3. Let µ1 and µ2 be forms in Ωℓ
c(V ) with the property

(1.5.11). Then for every closed k-form, ν ∈ Ωk
c (X)

∫

X

f∗µ1 ∧ ν =

∫

X

f∗µ2 ∧ ν .
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Proof. By Theorem 3.2.1, µ1 − µ2 = dβ for some β ∈ Ωℓ−1
c (V ),

hence, since dν = 0

(f∗µ1 − f∗µ2) ∧ ν = df∗β ∧ ν = d(f∗β ∧ ν) .

Therefore, by Stokes theorem, the integral over X of the expression
on the left is zero.

Now suppose µ = ρ(x1, . . . , xℓ) dx1∧· · ·∧ dxℓ, for ρ in C∞
0 (V ). For

t ≤ 1 let

(5.5.12) µt = tℓρ
(x1

t
, · · · ,

xℓ

t

)
dx1 ∧ · · · dxℓ .

This form is supported in the convex set, tV , so by Lemma 1.5.3

(5.5.13)

∫

X

f∗µt ∧ ν =

∫

X

f∗µ ∧ ν

for all closed forms ν ∈ Ωk
c (X). Hence to prove that f∗µ has the

property (1.5.7) it suffices to prove

(5.5.14) Limt→0

∫
f∗µt ∧ ν =

∫

Y

ι∗Y ν .

We’ll prove this by proving a stronger result.

Lemma 5.5.4. The assertion (1.5.14) is true for every k-form ν ∈
Ωk

c (X).

Proof. The canonical form theorem for submersions (see Theorem 4.3.6)
says that for every p ∈ Y there exists a neighborhood Up of p in Y ,
a neighborhood, W of 0 in R

n, and an orientation preserving diffeo-
morphism ψ : (W, 0) → (Up, p) such that

(5.5.15) f ◦ ψ = π

where π : R
n → R

ℓ is the canonical submersion, π(x1, . . . , xn) =
(x1, . . . , xℓ). Let U be the cover of O by the open sets, O − Y and
the Up’s. Choosing a partition of unity subordinate to this cover it
suffices to verify (1.5.14) for ν in Ωk

c (O − Y ) and ν in Ωk
c (Up). Let’s

first suppose ν is in Ωk
c (O−Y ). Then f(suppν) is a compact subset

of R
ℓ − {0} and hence for t small f(suppν) is disjoint from tV , and
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both sides of (1.5.14) are zero. Next suppose that ν is in Ωk
c (Up).

Then ψ∗ν is a compactly supported k-form on W so we can write it
as a sum

ψ∗ν =
∑

hI(x) dxI , hI ∈ C∞
0 (W )

the I’s being strictly increasing multi-indices of length k. Let I0 =
(ℓ+ 1, ℓ2 + 2, . . . , n). Then

(5.5.16) π∗µt ∧ψ
∗ν = tℓρ(

x1

t
, · · · ,

xℓ

t
)hI0(x1, . . . , xn) dxr ∧ · · · dxn

and by (1.5.15)
ψ∗(f∗µt ∧ ν) = π∗µt ∧ ψ

∗ν

and hence since ψ is orientation preserving

∫

Up

f∗µt ∧ ν = tℓ
∫

Rn

ρ
(x1

t
, · · · ,

xℓ

t

)
hI0(x1, . . . , xn) dx

=

∫

Rn

ρ(x1, . . . , xℓ)hI0(tx1, . . . , txℓ , xℓ+1, . . . , xn) dx

and the limit of this expression as t tends to zero is

∫
ρ(x1, . . . , xℓ)hI0(0, . . . , 0 , xℓ+1, . . . , xn) dx1 . . . dxn

or

∫
hI(0, . . . , 0 , xℓ+1, . . . , xn) dxℓ+1 · · · dxn .(5.5.17)

This, however, is just the integral of ψ∗ν over the set π−1(0) ∩W .
By (1.5.14) ψ maps this set diffeomorphically onto Y ∩ Up and by
our recipe for orienting Y this diffeomorphism is an orientation-
preserving diffeomorphism, so the integral (1.5.17) is equal to the
integral of ν over Y .

We’ll now describe some applications of Thom forms to topological
intersection theory. Let Y and Z be closed, oriented submanifolds of
X of dimensions k and ℓ where k + ℓ = n, and let’s assume one
of them (say Z) is compact. We will show below how to define an
“intersection number”, I(Y,Z), which on the one hand will be a
topological invariant of Y and Z and on the other hand will actually



5.5 Thom classes and intersection theory 265

count, with appropriate ±-signs, the number of points of intersection
of Y and Z when they intersect non-tangentially. (Thus this notion
is similar to the notion of “degree f” for a C∞ mapping f . On the
one hand “degree f” is a topological invariant of f . It’s unchanged
if we deform f by a homotopy. On the other hand if q is a regular
value of f , “degree f” counts with appropriate ±-signs the number
of points in the set, f−1(q).)

We’ll first give the topological definition of this intersection num-
ber. This is by the formula

(5.5.18) I(Y,Z) = B(TY , TZ)

where TY ∈ Hℓ(X) and TZ ∈ Hk
c (X) and B is the bilinear pairing

(1.4.9). If τY ∈ Ωℓ(X) and τZ ∈ Ωk
c (X) are Thom forms representing

TY and TZ , (1.5.18) can also be defined as the integral

(5.5.19) I(Y,Z) =

∫

X

τY ∧ τZ

or by (1.5.9), as the integral over Y ,

(5.5.20) I(Y,Z) =

∫

Y

ι∗Y τZ

or, since τY ∧ τZ = (−1)kℓτZ ∧ τY , as the integral over Z

(5.5.21) I(X,Y ) = (−1)kℓ

∫

Z

ι∗ZτY .

In particular

(5.5.22) I(Y,Z) = (−1)kℓI(Z, Y ).

As a test case for our declaring I(Y,Z) to be the intersection number
of Y and Z we will first prove:

Proposition 5.5.5. If Y and Z don’t intersect, then I(Y,Z) = 0.

Proof. If Y and Z don’t intersect then, since Y is closed, U = X−Y
is an open neighborhood of Z inX, therefore since Z is compact there
exists by Theorem 1.5.1 a Thom form, τZ in Ωℓ

c(U). Thus ι∗Y τZ = 0,
and so by (1.5.20) I(Y,Z) = 0.
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We’ll next indicate how one computes I(Y,Z) when Y and Z in-
tersect “non-tangentially”, or, to use terminology more in current
usage, when their intersection is transversal. Recall that at a point
of intersection, p ∈ Y ∩Z, TpY and TpZ are vector subspaces of TpX.

Definition 5.5.6. Y and Z intersect transversally if for every p ∈
Y ∩ Z, TpY ∩ TpZ = {0}.

Since n = k + ℓ = dimTpY + dimTpZ = dimTpX, this condition
is equivalent to

(5.5.23) TpX = TpY ⊕ TpZ ,

i.e., every vector, u ∈ TpX, can be written uniquely as a sum,
u = v + w, with v ∈ TpY and w ∈ TpZ. Since X, Y and Z are
oriented, their tangent spaces at p are oriented, and we’ll say that
these spaces are compatibly oriented if the orientations of the two
sides of (1.5.23) agree. (In other words if v1, . . . , vk is an oriented
basis of TpY and w1, . . . , wℓ is an oriented basis of TpZ, the n vec-
tors, v1, . . . , vk, w1, . . . , wℓ, are an oriented basis of TpX.) We will
define the local intersection number, Ip(Y,Z), of Y and Z at p to be
equal to +1 if X, Y and Z are compatibly oriented at p and to be
equal to −1 if they’re not. With this notation we’ll prove

Theorem 5.5.7. If Y and Z intersect transversally then Y ∩Z is a
finite set and

(5.5.24) I(Y,Z) =
∑

p∈Y ∩Z

Ip(Y,Z).

To prove this we first need to show that transverse intersections
look nice locally.

Theorem 5.5.8. If Y and Z intersect transversally, then for every
p ∈ Y ∩Z, there exists an open neighborhood, Vp, of p in X, an open
neighborhood, Up, of the origin in R

n and an orientation preserving
diffeomorphism

ψp : Vp → Up

which maps Vp ∩ Y diffeomorphically onto the subset of Up defined
by the equations: x1 = · · · = xℓ = 0, and maps V ∩Z onto the subset
of Up defined by the equations: xℓ+1 = · · · = xn = 0.



5.5 Thom classes and intersection theory 267

Proof. Since this result is a local result, we can assume that X is R
n

and hence by Theorem 4.2.7 that there exists a neighborhood, Vp, of p
in R

n and submersions f : (Vp, p) → (Rℓ, 0) and g : (Vp, p) → (Rk, 0)
with the properties

Vp ∩ Y = f−1(0)(5.5.25)

and

vp ∩ Z = g−1(0) .(5.5.26)

Moreover, by (4.3.4)

TpY = (dfp)
−1(0)

and

TpZ = (dgp)
−1(0) .

Hence by (1.5.23), the equations

(5.5.27) dfp(v) = dgp(v) = 0

for v ∈ TpX imply that v = 0. Now let ψp : Vp → R
n be the map

(f, g) : Vp → R
ℓ × R

k = R
n .

Then by (1.5.27), dψp is bijective, therefore, shrinking Vp if necessary,
we can assume that ψp maps Vp diffeomorphically onto a neighbor-
hood, Up, of the origin in R

n, and hence by (1.5.25) and (1.5.26),
ψp maps Vp ∩ Y onto the set: x1 = · · · = xℓ = 0 and maps Vp ∩ Z
onto the set: xℓ+1 = · · · = xn = 0. Finally, if ψ isn’t orientation
preserving, we can make it so by composing it with the involution,
(x1, . . . , xn) → (x1, x2, . . . , xn−1,−xn).

From this result we deduce:

Theorem 5.5.9. If Y and Z intersect transversally, their intersec-
tion is a finite set.

Proof. By Theorem 1.5.8 the only point of intersection in Vp is p
itself. Moreover, since Y is closed and Z is compact, Y ∩Z is compact.
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Therefore, since the Vp’s cover Y ∩Z we can extract a finite subcover
by the Heine–Borel theorem. However, since no two Vp’s cover the
same point of Y ∩ Z, this cover must already be a finite subcover.

We will now prove Theorem 1.5.7. Since Y is closed, the map, ιY :
Y → X is proper, so by Theorem 3.4.2 there exists a neighborhood,
U , of Z in X such that U ∩ Y is contained in the union of the open
sets, Vp, above. Moreover by Theorem 1.5.1 we can choose τZ to
be supported in U and by Theorem 1.3.2 we can assume that U
has finite topology, so we’re reduced to proving the theorem with X
replaced by U and Y replaced by Y ∩ U . Let

O =
(⋃

Vp

)
∩ U ,

let

f : O → R
ℓ

be the map whose restriction to Vp ∩ U is π ◦ ψp where π is, as in
(1.5.15), the canonical submersion of R

n onto R
ℓ, and finally let V

be a bounded convex neighborhood of R
ℓ, whose closure is contained

in the intersection of the open sets, π ◦ψp(Vp∩U). Then f−1(V̄ ) is a
closed subset of U , so if we replace X by U and Y by Y ∩U , the data
(f,O, V ) satisfy the conditions (1.5.10). Thus to prove Theorem 1.5.7
it suffices by Theorem 1.5.2 to prove this theorem with

τY = σp(Y )f∗µ

on Vp∩O where σp(Y ) = +1 or −1 depending on whether the orien-
tation of Y ∩Vp in Theorem 1.5.2 coincides with the given orientation
of Y or not. Thus

I(Y,Z) = (−1)kℓI(Z, Y )

= (−1)kℓ
∑

p

σp(Y )

∫

Z

ι∗Zf
∗µ

= (−1)kℓ
∑

p

σp(Y )

∫

Z

ι∗Zψ
∗
pπ

∗µ

=
∑

p

(−1)kℓσp(Y )

∫

Z∩Vp

(π ◦ ψp ◦ ιZ)∗µ .
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But π ◦ψp ◦ ιZ maps an open neighborhood of p in Up ∩Z diffeomor-
phically onto V , and µ is compactly supported in V so by (1.5.11)

∫

Z∩Up

(π ◦ ψp ◦ ιZ)∗µ = σp(Z)

∫

V

µ = σp(Z)

where σp(Z) = +1 or −1 depending on whether π ◦ ψp ◦ ιZ is orien-
tation preserving or not. Thus finally

I(Y,Z) =
∑

(−1)kℓσp(Y )σp(Z) .

We will leave as an exercise the task of unraveling these orientations
and showing that

(−1)kℓσp(Y )σp(Z) = Ip(Y,Z)

and hence that I(Y,Z) =
∑

p Ip(Y,Z).

Exercises.

1. Let X be a connected, oriented n-dimensional manifold, W a
connected, oriented ℓ-dimensional manifold, f : X → W a C∞ map,
and Y a closed submanifold of X of dimension k = n− ℓ. Suppose Y
is a “level set” of the map, f , i.e., suppose that q is a regular value
of f and that Y = f−1(q). Show that if µ is in Ωℓ

c(Z) and its integral
over Z is 1, then one can orient Y so that τY = f∗µ is a Thom form
for Y .

Hint: Theorem 1.5.2.

2. In exercise 1 show that if Z ⊆ X is a compact oriented ℓ-
dimensional submanifold of X then

I(Y,Z) = (−1)kℓ deg(f ◦ ιZ) .

3. Let q1 be another regular value of the map, f : X → W , and
let Y1 = f−1(q). Show that

I(Y,Z) = I(Y1, Z) .

4. (a) Show that if q is a regular value of the map, f◦ιZ : Z →W
then Z and Y intersect transversally.
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(b) Show that this is an “if and only if” proposition: If Y and Z
intersect transversally then q is a regular value of the map, f ◦ ιZ .

5. Suppose q is a regular value of the map, f ◦ ιZ . Show that p is
in Y ∩ Z if and only if p is in the pre-image (f ◦ ιZ)−1(q) of q and
that

Ip(X,Y ) = (−1)kℓσp

where σp is the orientation number of the map, f◦ιZ , at p, i.e., σp = 1
if f ◦ ιZ is orientation-preserving at p and σp = −1 if f ◦ ιZ is
orientation-reversving at p.

6. Suppose the map f : X →W is proper. Show that there exists
a neighborhood, V , of q in W having the property that all points of
V are regular values of f .

Hint: Since q is a regular value of f there exists, for every p ∈
f−1(q) a neighborhood, Up of p, on which f is a submersion. Con-
clude, by Theorem 3.4.2, that there exists a neighborhood, V , of q
with f−1(V ) ⊆

⋃
Up.

7. Show that in every neighborhood, V1, of q in V there exists a
point, q1, whose pre-image

Y1 = f−1(q1)

intersects Z transversally. (Hint: Exercise 4 plus Sard’s theorem.)
Conclude that one can “deform Y an arbitrarily small amount so
that it intersects Z transversally”.

8. (Intersection theory for mappings.) Let X be an oriented, con-
nected n-dimensional manifold, Z a compact, oriented ℓ-dimensional
submanifold, Y an oriented manifold of dimension k = n − ℓ and
f : Y → X a proper C∞ map. Define the intersection number of f
with Z to be the integral

I(f, Z) =

∫

Y

f∗τZ .

(a) Show that I(f, Z) is a homotopy invariant of f , i.e., show that
if fi : Y → X, i = 0, 1 are proper C∞ maps and are properly homo-
topic, then

I(f0, Z) = I(f1, Z) .
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(b) Show that if Y is a closed submanifold of X of dimension k =
n− ℓ and ιY : Y → X is the inclusion map

I(ιY , Z) = I(Y,Z) .

9. (a) Let X be an oriented, connected n-dimensional manifold
and let Z be a compact zero-dimensional submanifold consisting of
a single point, z0 ∈ X. Show that if µ is in Ωn

c (X) then µ is a Thom
form for Z if and only if its integral is 1.

(b) Let Y be an oriented n-dimensional manifold and f : Y → X
a C∞ map. Show that for Z = {z0} as in part a

I(f, Z) = deg(f) .

5.6 The Lefshetz theorem

In this section we’ll apply the intersection techniques that we devel-
oped in §1.5 to a concrete problem in dynamical systems: counting
the number of fixed points of a differentiable mapping. The Brouwer
fixed point theorem, which we discussed in §3.6, told us that a C∞

map of the unit ball into itself has to have at least one fixed point.
The Lefshetz theorem is a similar result for manifolds. It will tell us
that a C∞ map of a compact manifold into itself has to have a fixed
point if a certain topological invariant of the map, its global Lefshetz
number, is non-zero.

Before stating this result, we will first show how to translate the
problem of counting fixed points of a mapping into an intersection
number problem. LetX be an oriented, compact n-dimensional man-
ifold and f : X → X a C∞ map. Define the graph of f in X ×X to
be the set

(5.6.1) Γf = {(x, f(x)) ; x ∈ X} .

It’s easy to see that this is an n-dimensional submanifold of X×X
and that this manifold is diffeomorphic to X itself. In fact, in one
direction, there is a C∞ map

(5.6.2) γf : X → Γf , γf (x) = (x, f(x)) ,

and, in the other direction, a C∞ map

(5.6.3) π : Γf → X , (x, f(x)) → x ,
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and it’s obvious that these maps are inverses of each other and hence
diffeomorphisms. We will orient Γf by requiring that γf and π be
orientation-preserving diffeomorphisms.

An example of a graph is the graph of the identity map of X onto
itself. This is the diagonal in X ×X

(5.6.4) ∆ = {(x, x) , x ∈ X}

and its intersection with Γf is the set

(5.6.5) {(x, x) , f(x) = x} ,

which is just the set of fixed points of f . Hence a natural way to
count the fixed points of f is as the intersection number of Γf and
∆ in X ×X. To do so we need these three manifolds to be oriented,
but, as we noted above, Γf and ∆ acquire orientations from the
identifications (1.6.2) and, as for X × X, we’ll give it its natural
orientation as a product of oriented manifolds. (See §4.5.)

Definition 5.6.1. The global Lefshetz number of X is the intersec-
tion number

(5.6.6) L(f) = I(Γf ,∆) .

In this section we’ll give two recipes for computing this number:
one by topological methods and the other by making transversality
assumptions and computing this number as a sum of local intersec-
tion numbers a la (1.5.24). We’ll first show what one gets from the
transversality approach.

Definition 5.6.2. The map, f , is a Lefshetz map if Γf and ∆ in-
tersect transversally.

Let’s see what being Lefshetz entails. Suppose p is a fixed point of
f . Then at q = (p, p) ∈ Γf

(5.6.7) Tq(Γf ) = (dγf )pTpX = {(v, dfp(v)) , v ∈ TpX}

and, in particular, for the identity map,

(5.6.8) Tq(∆) = {(v, v) , v ∈ TpX} .

Therefore, if ∆ and Γf are to intersect transversally, the intersection
of (1.6.7) and (1.6.8) inside Tq(X ×X) has to be the zero space. In
other words if

(5.6.9) (v, dfp(v)) = (v, v)
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then v = 0. But the identity (1.6.9) says that v is a fixed point of
dfp, so transversality at p amounts to the assertion

(5.6.10) dfp(v) = v ⇔ v = 0 ,

or in other words the assertion that the map

(5.6.11) (I − dfp) : TpX → TpX

is bijective. We’ll now prove

Proposition 5.6.3. The local intersection number Ip(Γf ,∆) is 1 if
(1.6.11) is orientation-preserving and −1 if not.

In other words Ip(Γf ,∆) is the sign of det(I − dfp). To prove this
let e1, . . . , en be an oriented basis of TpX and let

(5.6.12) dfp(ei) =
∑

aj,iej .

Now set

vi = (ei, 0) ∈ Tq(X ×X)

and

wi = (0, ei) ∈ Tq(X ×X) .

Then by the deifnition of the product orientation on X ×X

(5.6.13) v1, . . . , vn , w1, . . . , wn

is an oriented basis of Tq(X ×X) and by (1.6.7)

(5.6.14) v1 +
∑

aj,iwj . . . , vn +
∑

aj,nwj

is an oriented basis of TqΓf and

(5.6.15) v1 + w1, . . . , vn + wn

is an oriented basis of Tq∆. Thus Ip(Γf ,∆) = +1 or −1 depending
on whether or not the basis

v1 +
∑

aj,iwj , . . . , vn +
∑

aj,nwj , v1 + w1, . . . , vn + wn
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of Tq(X × X) is compatibly oriented with the basis (1.6.12). Thus
Ip(Γf ,∆) = +1 or −1 depending on whether the determinant of the
2n× 2n matrix relating these two bases:

(5.6.16)

[
I A
I , I

]
, A = [ai.j ]

is positive or negative. However, it’s easy to see that this determinant
is equal to det(I−A) and hence by (1.6.12) to det(I−dfp). Hint: By
elementary row operations (1.6.16) can be converted into the matrix

[
I , A
0 , I −A

]
.

�

Let’s summarize what we’ve shown so far.

Theorem 5.6.4. The map, f : X → X, is a Lefshetz map if and
only if, for every fixed point, p, the map

I − dfp : TpX → TpX(∗)

is bijective. Moreover for Lefshetz maps

(5.6.17) L(f) =
∑

p−f(p)

Lp(f)

where Lp(f) = +1 if (∗) is orientation-preserving and −1 if it’s
orientation-reversing.

We’ll next describe how to compute L(f) as a topological invariant
of f . Let ιΓ be the inclusion map of Γf into X × X and let T∆ ∈
Hn(X ×X) be the Thom class of ∆. Then by (1.5.20)

L(f) = IΓf
(ι∗T∆)

and hence since the mapping, γf : X → X ×X defined by (1.6.2) is
an orientation-preserving diffeomorphism of X onto Γf

(5.6.18) L(f) = IX(γ∗fT∆) .

To evaluate the expression on the right we’ll need to know some
facts about the cohomology groups of product manifolds. The main
result on this topic is the “Künneth” theorem, and we’ll take up the
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formulation and proof of this theorem in §1.7. First, however, we’ll
describe a result which follows from the Künneth theorem and which
will enable us to complete our computation of L(f).

Let π1 and π2 be the projection of X×X onto its first and second
factors, i.e., let

πi : X ×X → X i = 1, 2

be the map, πi(x1, x2) = xi. Then by (1.6.2)

π1 · γf = i dX(5.6.19)

and

π2 · γf = f .(5.6.20)

Lemma 5.6.5. If ω1 and ω2 are in Ωn(X) then

(5.6.21)

∫

X×X

π∗1ω1 ∧ π
∗
2ω2 =

(∫

X

ω1

)(∫

X

ω2

)
.

Proof. By a partition of unity argument we can assume that ωi has
compact support in a parametrizable open set, Vi. Let Ui be an open
subset of R

n and ϕi : Ui → Vi an orientation-preserving diffeomor-
phism. Then

ϕ∗
iω = ρi dx1 ∧ · · · ∧ dxn

with ρi ∈ C∞
0 (Ui), so the right hand side of (1.6.21) is the product

of integrals over R
n:

(5.6.22)

∫
ρ1(x) dx

∫
ρ2(x) dx .

Moreover, since X × X is oriented by its product orientation, the
map

ψ : U1 × U2 → V1 × V2

mapping (x, y) to (ϕ1(x) , ϕ2(y)) is an orientation-preserving diffeo-
morphism and since πi ◦ ψ = ϕi

ψ∗(π∗1ω1 ∧ π
∗
2ω2) = ϕ∗

1ω1 ∧ ϕ
∗
2ω2

= ρ1(x)ρ2(y) dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn

and hence the left hand side of (1.6.21) is the integral over R
2n of

the function, ρ1(x)ρ2(y), and therefore, by integration by parts, is
equal to the product (1.6.22).
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As a corollary of this lemma we get a product formula for coho-
mology classes:

Lemma 5.6.6. If c1 and c2 are in Hn(X) then

(5.6.23) IX×X(π∗1c1 · π
∗
2c2) = IX(c1)IX(c2) .

Now let dk = dimHk(X) and note that since X is compact,
Poincaré duality tells us that dk = dℓ when ℓ = n − k. In fact it
tells us even more. Let

µk
i , i = 1, . . . , dk

be a basis of Hk(X). Then, since the pairing (1.4.9) is non-singular,
there exists for ℓ = n− k a “dual” basis

νℓ
j , j = 1, . . . , dℓ

of Hℓ(X) satisfying

(5.6.24) IX(µk
i · νℓ

j) = δij .

Lemma 5.6.7. The cohomology classes

(5.6.25) π♯
1ν

ℓ
r · π

♯
2µ

k
s , k + ℓ = n

for k = 0, . . . , n and 1 ≤ r, s ≤ dk, are a basis for Hn(X ×X).

This is the corollary of the Künneth theorem that we alluded to
above (and whose proof we’ll give in §1.7). Using these results we’ll
prove

Theorem 5.6.8. The Thom class, T∆, in Hn(X ×X) is given ex-
plicitly by the formula

(5.6.26) T∆ =
∑

k+ℓ=n

(−1)ℓ
dk∑

i=1

π♯
1µ

k
i · π♯

2ν
ρ
i .

Proof. We have to check that for every cohomology class, c ∈ Hn(X×
X), the class, T∆, defined by (1.6.26) has the reproducing property

(5.6.27) IX×X(T∆ · c) = I∆(ι♯∆c)

where ι∆ is the inclusion map of ∆ into X ×X. However the map

γ∆ : X → X ×X , x→ (x, x)
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is an orientation-preserving diffeomorphism of X onto ∆, so it suf-
fices to show that

(5.6.28) IX×X(T∆ · c) = IX(γ♯
∆c)

and by Lemma 1.6.7 it suffices to verify (1.6.28) for c’s of the form

c = π♯
1ν

ℓ
r · π

♯
2µ

k
s .

The product of this class with a typical summand of (1.6.26), for
instance, the summand

(5.6.29) (−1)ℓ
′

π♯
1µ

k′

i · π♯
2ν

ℓ′

i , k′ + ℓ′ = n ,

is equal, up to sign to,

π♯
1µ

k′

i · νℓ
r · π

♯
2µ

k
s · ν

ℓ′

i .

Notice, however, that if k 6= k′ this product is zero: For k < k′, k′ + ℓ
is greater than k + ℓ and hence greater than n. Therefore

µk′

i · νℓ
r ∈ Hk′+ℓ(X)

is zero since X is of dimension n, and for k > k′, ℓ′ is greater than ℓ
and µk

s · νℓ′

i is zero for the same reason. Thus in taking the product
of T∆ with c we can ignore all terms in the sum except for the terms,
k′ = k and ℓ′ = ℓ. For these terms, the product of (1.6.29) with c is

(−1)kℓπ♯
1µ

k
i · νℓ

r · π
♯
2µ

k
3 · ν

ℓ
i .

(Exercise: Check this. Hint: (−1)ℓ(−1)ℓ
2

= 1.) Thus

T∆ · c = (−1)kℓ
∑

i

π♯
1µ

k
i · νℓ

r · π
♯
2µ

k
s · νℓ

i

and hence by Lemma 1.6.5 and (1.6.24)

IX×X(T∆ · c) = (−1)kℓ
∑

i

IX(µk
i · νℓ

r)IX(µk
s · νℓ

i )

= (−1)kℓ
∑

i

δirδis

= (−1)kℓδrs .
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On the other hand for c = π♯
1ν

ℓ
r · π

♯
2µ

k
s

γ♯
∆c = γ♯

∆π
♯
1ν

ℓ
r · γ

♯
∆π

♯
2µ

k
s

= (π1 · γ∆)♯νℓ
r(π2 · γ∆)♯µk

s

= νℓ
r · µ

k
s

since
π1 · ν∆ = π2 · γ∆ = idX .

So
IX(γ♯

∆c) = IX(νℓ
r · µ

k
s) = (−1)kℓδrs

by (1.6.24). Thus the two sides of (1.6.27) are equal.

We’re now in position to compute L(f) , i.e., to compute the
expression IX(γ∗fT∆) on the right hand side of (1.6.18). Since νℓ

i ,

i = 1, . . . , dℓ is a basis of Hℓ(X) the linear mapping

(5.6.30) f ♯ : Hℓ(X) → Hℓ(X)

can be described in terms of this basis by a matrix, [f ℓ
ij] with the

defining property

f ♯νℓ
i =

∑
f ℓ

jiν
ℓ
j .

Thus by (1.6.26), (1.6.19) and (1.6.20)

γ♯
fT∆ = γ♯

f (−1)ℓ
∑

k+ℓ=n

∑

i

π♯
1u

k
i · π♯

2ν
ℓ
i

=
∑

(−1)ℓ
∑

i

(π1 · γf )♯µk
i · (π2 · νf )♯νℓ

i

=
∑

(−1)ℓ
∑

µk
i · f ♯νℓ

i

=
∑

(−1)ℓ
∑

f ℓ
jiµ

k
i · νℓ

j .

Thus by (1.6.24)

IX(γ♯
fT∆) =

∑
(−1)ℓ

∑
f ℓ

jiIX(µk
i · νℓ

j)

=
∑

(−1)ℓ
∑

f ℓ
jiδij

=

n∑

ℓ=0

(−1)ℓ

(
∑

i

f ℓ
ii

)
.
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But
∑

i f
ℓ
i,i is just the trace of the linear mapping (1.6.30) (see ex-

ercise 12 below), so we end up with the following purely topological
prescription of L(f).

Theorem 5.6.9. The Lefshetz number, L(f) is the alternating sum

(5.6.31)
∑

(−1)ℓ Trace (f ♯)ℓ

where Trace (f ♯)ℓ is the trace of the mapping

f ♯ : Hℓ(X) → Hℓ(X) .

Exercises.

1. Show that if f0 : X → X and f1 : X → X are homotopic C∞

mappings L(f0) = L(f1).

2. (a) The Euler characteristic, χ(X), of X is defined to be the
intersection number of the diagonal with itself in X × X, i.e., the
“self-intersection” number

I(∆,∆) = IX×X(T∆, T∆) .

Show that if a C∞ map, f : X → X is homotopic to the identity,
Lf = χ(X).

(b) Show that

(5.6.32) χ(X) =

n∑

ℓ=0

(−1)ℓ dimHℓ(X) .

(c) Show that χ(X) = 0 if n is odd.

3. (a) Let Sn be the unit n-sphere in R
n+1. Show that if g :

Sn → Sn is a C∞ map

L(g) = 1 + (−1)n(deg) (g) .

(b) Conclude that if deg(g) 6= (−1)n+1, then g has to have a fixed
point.
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4. Let f be a C∞ mapping of the closed unit ball, Bn+1, into itself
and let g : Sn → Sn be the restriction of f to the boundary of Bn+1.
Show that if deg(g) 6= (−1)n+1 then the fixed point of f predicted
by Brouwer’s theorem can be taken to be a point on the boundary
of Bn+1.

5. (a) Show that if g : Sn → Sn is the antipodal map, g(x) = −x,
then deg(g) = (−1)n+1.

(b) Conclude that the result in #4 is sharp. Show that the map

f : Bn+1 → Bn+1 , f(x) = −x ,

has only one fixed point, namely the origin, and in particular has no
fixed points on the boundary.

6. Let v be a vector field on X. Since X is compact, v generates
a one-parameter group of diffeomorphisms

(5.6.33) ft : X → X , −∞ < t <∞ .

(a) Let
∑

t be the set of fixed points of ft. Show that this set
contains the set of zeroes of v, i.e., the points, p ∈ X where v(p) = 0.

(b) Suppose that for some t0, ft0 is Lefshetz. Show that for all t, ft

maps
∑

t0
into itself.

(c) Show that for |t| < ǫ, ǫ small, the points of
∑

t0
are fixed points

of ft.

(d) Conclude that
∑

t0
is equal to the set of zeroes of v.

(e) In particular, conclude that for all t the points of
∑

t0
are fixed

points of ft.

7. (a) Let V be a finite dimensional vector space and

F (t) : V → V , −∞ < t <∞

a one-parameter group of linear maps of V onto itself. Let A = dF
dt

(0).
Show that F (t) = exp tA. (See §2.1, exercise 7.)

(b) Show that if I − F (t0) : V → V is bijective for some t0, then
A : V → V is bijective. Hint: Show that if Av = 0 for some v ∈
V − {0}, F (t)v = v.
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8. Let v be a vector field on X and let (1.6.33) be the one-
parameter group of diffeomorphisms generated by v. If v(p) = 0
then by part (a) of exercise 6, p is a fixed point of ft for all t.

(a) Show that

(dft) : TpX → TpX

is a one-parameter group of linear mappings of TpX onto itself.

(b) Conclude from #7 that there exists a linear map

(5.6.34) Lv(p) : TpX → TpX

with the property

(5.6.35) exp tLv(p) = (dft)p .

9. Suppose ft0 is a Lefshetz map for some t0. Let a = t0/N where
N is a positive integer. Show that fa is a Lefshetz map. Hints:

(a) Show that

ft0 = fa ◦ · · · ◦ fa = fN
a

(i.e., fa composed with itself N times).

(b) Show that if p is a fixed point of fa, it is a fixed point of ft0 .

(c) Conclude from exercise 6 that the fixed points of fa are the
zeroes of v.

(d) Show that if p is a fixed point of fa,

(dft0)p = (dfa)
N
p .

(e) Conclude that if (dfa)pv = v for some v ∈ TpX − {0}, then
(dft0)pv = v.

10. Show that for all t, L(ft) = χ(X). Hint: Exercise 2.

11. (The Hopf theorem.) A vector field v on X is a Lefshetz vector
field if for some t0, ft0 is a Lefshetz map.

(a) Show that if v is a Lefshetz vector field then it has a finite
number of zeroes and for each zero, p, the linear map (1.6.34) is
bijective.
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(b) For a zero, p, of v let σp(v) = +1 if the map (1.6.34) is orientation-
preserving and −1 if it’s orientation-reversing. Show that

χ(X) =
∑

v(p)=0

σp(v) .

Hint: Apply the Lefshetz theorem to fa, a = t0/N , N large.

12. (The trace of a linear mapping: a quick review.)

For A = [ai,j] an n× n matrix define

traceA =
∑

ai,i .

(a) Show that if A and B are n× n matrices

traceAB = traceBA .

(b) Show that if B is an invertible n× n matrix

traceBAB−1 = traceA .

(c) Let V be and n-dimensional vector space and L : V → V a
liner map. Fix a basis v1, . . . , vn of V and define the trace of L to be
the trace of A where A is the defining matrix for L in this basis, i.e.,

Lvi =
∑

aj,ivj .

Show that this is an intrinsic definition not depending on the basis
v1, . . . , vn.

5.7 The Künneth theorem

Let X be an n-dimensional manifold and Y an r-dimensional mani-
fold, both of these manifolds having finite topology. Let

π : X × Y → X

be the projection map, π(x, y) = x and

ρ : X × Y → Y
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the projection map (x, y) → y. Since X and Y have finite topology
their cohomology groups are finite dimensional vector spaces. For
0 ≤ k ≤ n let

µk
i , 1 ≤ i ≤ dimHk(X) ,

be a basis of Hk(X) and for 0 ≤ ℓ ≤ r let

νℓ
j , 1 ≤ j ≤ dimHℓ(Y )

be a basis of Hℓ(Y ). Then for k + ℓ = m the product, π♯µk
i · ρ

♯νℓ
j , is

in Hm(X × Y ). The Künneth theorem asserts

Theorem 5.7.1. The product manifold, X × Y , has finite topology
and hence the cohomology groups, Hm(X×Y ) are finite dimensional.
Moreover, the products over k + ℓ = m

π♯µk
i · ρ

♯νℓ
j , 0 ≤ i ≤ dimHk(X) , 0 ≤ j ≤ dimHℓ(Y ) ,(5.7.1)

are a basis for the vector space Hm(X × Y ).

The fact that X × Y has finite topology is easy to verify. If Ui,
i = 1, . . . ,M , is a good cover of X and Vj , j = 1, . . . , N , is a good
cover of Y the products of these open sets, Ui ×Uj , 1 ≤ i ≤M , 1 ≤
j ≤ N is a good cover of X×Y : For every multi-index, I, UI is either
empty or diffeomorphic to R

n, and for every multi-index, J , VJ is
either empty or diffeomorphic to R

r, hence for any product multi-
index (I, J) , UI × VJ is either empty or diffeomorphic to R

n × R
r.

The tricky part of the proof is verifying that the products, (1.7.1)
are a basis of Hm(X × Y ), and to do this it will be helpful to state
the theorem above in a form that avoids our choosing specified bases
for Hk(X) and Hℓ(Y ). To do so we’ll need to generalize slightly the
notion of a bilinear pairing between two vector space.

Definition 5.7.2. Let V1, V2 and W be finite dimensional vector
spaces. A map B : V1 × V2 → W is a bilinear map if it is linear in
each of its factors, i.e., for v2 ∈ V2 the map

v ∈ V1 → B(v1, v2)

is a linear map of V1 into W and for v1 ∈ V1 so is the map

v ∈ V2 → B(v1, v) .
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It’s clear that if B1 and B2 are bilinear maps of V1 × V2 into W
and λ1 and λ2 are real numbers the function

λ1B1 + λ2B2 : V1 × V2 →W

is also a bilinear map of V1 × V2 into W , so the set of all bilinear
maps of V1×V2 into W forms a vector space. In particular the set of
all bilinear maps of V1 × V2 into R is a vector space, and since this
vector space will play an essential role in our intrinsic formulation of
the Künneth theorem, we’ll give it a name. We’ll call it the tensor
product of V ∗

1 and V ∗
2 and denote it by V ∗

1 ⊗ V ∗
2 . To explain where

this terminology comes from we note that if ℓ1 and ℓ2 are vectors in
V ∗

1 and V ∗
2 then one can define a bilinear map

(5.7.2) ℓ1 ⊗ ℓ2 : V1 × V2 → R

by setting (ℓ1 ⊗ ℓ2)(v1, v2) = ℓ1(v1)ℓ2(v2). In other words one has a
tensor product map:

(5.7.3) V ∗
1 × V ∗

2 → V ∗
1 ⊗ V ∗

2

mapping (ℓ1, ℓ2) to ℓ1 ⊗ ℓ2. We leave for you to check that this is a
bilinear map of V ∗

1 × V ∗
2 into V ∗

1 ⊗ V ∗
2 and to check as well

Proposition 5.7.3. If ℓ1i , i = 1, . . . ,m is a basis of V ∗
1 and ℓ2j ,

j = 1, . . . , n is a basis of V ∗
2 then ℓ1i ⊗ ℓ2j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, is

a basis of V ∗
1 ⊗ V ∗

2 .

Hint: If V1 and V2 are the same vector space you can find a proof
of this in §1.3 and the proof is basically the same if they’re different
vector spaces.

Corollary 5.7.4. The dimension of V ∗
1 ⊗ V ∗

2 is equal to the dimen-
sion of V ∗

1 times the dimension of V ∗
2 .

We’ll now perform some slightly devious maneuvers with “duality”
operations. First note that for any finite dimensional vector space,
V , the pairing

(5.7.4) V × V ∗ → R , (v, ℓ) → ℓ(v)

is a non-singular bilinear pairing, so, as we explained in §1.4 it gives
rise to a bijective linear mapping

(5.7.5) V → (V ∗)∗ .



5.7 The Künneth theorem 285

Next note that if

(5.7.6) L : V1 × V2 →W

is a bilinear mapping and ℓ : W → R a linear mapping (i.e., an
element ofW ∗), then the composition of ℓ and L is a bilinear mapping

ℓ ◦ L : V1 × V2 → R

and hence by definition an element of V ∗
1 ⊗V

∗
2 . Thus from the bilinear

mapping (1.7.6) we get a linear mapping

(5.7.7) L♯ : W ∗ → V ∗
1 ⊗ V ∗

2 .

We’ll now define a notion of tensor product for the vector spaces
V1 and V2 themselves.

Definition 5.7.5. The vector space, V1⊗V2 is the vector space dual
of V ∗

1 ⊗ V ∗
2 , i.e., is the space

(5.7.8) V1 ⊗ V2 = (V ∗
1 ⊗ V ∗

2 )∗ .

One implication of (1.7.8) is that there is a natural bilinear map

(5.7.9) V1 × V2 → V1 ⊗ V2 .

(In (1.7.3) replace Vi by V ∗
i and note that by (1.7.5) (V ∗

i )∗ = Vi.)
Another is the following:

Proposition 5.7.6. Let L be a bilinear map of V1 × V2 into W .
Then there exists a unique linear map

(5.7.10) L# : V1 ⊗ V2 →W

with the property

(5.7.11) L#(v1 ⊗ v2) = L(v1, v2)

where v1 ⊗ v2 is the image of (v1, v2) with respect to (1.7.9).

Proof. Let L# be the transpose of the map L♯ in (1.7.7) and note
that by (1.7.5) (W ∗)∗ = W .
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Notice that by Proposition 1.7.6 the property (1.7.11) is the defin-
ing property of L#, it uniquely determines this map. (This is in fact
the whole point of the tensor product construction. Its purpose is to
convert bilinear objects into linear objects.)

After this brief digression (into an area of mathematics which some
mathematicians unkindly refer to as “abstract nonsense”) let’s come
back to our motive for this digression: an intrinsic formulation of the
Künneth theorem. As above let X and Y be manifolds of dimension
n and r, respectively, both having finite topology. For k+ ℓ = m one
has a bilinear map

Hk(X) ×Hℓ(Y ) → Hm(X × Y )

mapping (c1, c2) to π∗c1 ·ρ
∗c2, and hence by Proposition 1.7.6 a linear

map

(5.7.12) Hk(X) ⊗Hℓ(Y ) → Hm(X × Y ) .

Let
Hm

1 (X × Y ) =
∑

k+ℓ=m

Hk(X) ⊗Hℓ(Y ) .

The maps (1.7.12) can be combined into a single linear map

(5.7.13) Hm
1 (X × Y ) → Hm(X × Y )

and our intrinsic version of the Künneth theorem asserts

Theorem 5.7.7. The map (1.7.13) is bijective.

Here is a sketch of how to prove this. (Filling in the details will
be left as a series of exercises.) Let U be an open subset of X which
has finite topology and let

Hm
1 (U) =

∑

k+ℓ=m

Hk(U) ⊗Hℓ(Y )

and

Hm
2 (U) = Hm(U × Y ) .

As we’ve just seen there’s a Künneth map

κ : Hm
1 (U) → Hm

2 (U) .
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Exercises.

1. Let U1 and U2 be open subsets ofX, both having finite topology,
and let U = U1 ∪ U2. Show that there is a long exact sequence:

δ
−→ Hm

1 (U) −→ Hm
1 (U1)⊕Hm

1 (U2) −→ Hm
1 (U1∩U2)

δ
−→ Hm+1

1 (U) −→

Hint: Take the usual Mayer–Victoris sequence:

δ
−→ Hk(U) −→ Hk(U1)⊕H

k(U2) −→ Hk(U1∩U2)
δ

−→ Hk+1(U) −→

tensor each term in this sequence with Hℓ(Y ) and sum over k+ ℓ =
m.

2. Show that for H2 there is a similar sequence. Hint: Apply
Mayer–Victoris to the open subsets U1 × Y and U2 × Y of M .

3. Show that the diagram below commutes. (This looks hard but
is actually very easy: just write down the definition of each arrow in
the language of forms.)

δ
−→Hm

2 (U)−→Hm
2 (U1) ⊕Hm

2 (U2)−→Hm
2 (U1 ∩ U2)

δ
−→Hm+1

2 (U)−→

k

x k

x k

x k

x
δ

−→Hm
1 (U)−→Hm

1 (U1) ⊕Hm
1 (U2)−→Hm

1 (U1 ∩ U2)
δ

−→Hm+1
1 (U)−→

4. Conclude from Exercise 3 that if the Künneth map is bijective
for U1, U2 and U1 ∩ U2 it is bijective for U .

5. Prove the Künneth theorem by induction on the number of
open sets in a good cover of X. To get the induction started, note
that

Hk(X × Y ) ∼= Hk(Y )

if X = R
n. (See §1.3, exercise 11.)


