Homework Assignment 4
 Due April 14
 18.952

Problem 1, Section 4.1, exercises $7-12$
Problem 2, Exercises:

1. In section 4.1, exercise 8 , let $A_{t} \in S_{n}$ be a family of linear mappings depending smoothly on t and satisfying $A_{t}^{2}=A_{t}$. Show that if $A_{0}=A$ and $B=\frac{d}{d t} A_{t}(t=0)$ then $B A+A B=B$.
2. Conclude from this that if V is the kernel of A and W the kernel of $I-A$, then B maps V into W and W into V.
3. Let $\langle v, w\rangle$ be the Euclidean inner product on \mathbb{R}^{n}. Show that since B is in $S_{n},\langle B v, w\rangle=\langle v, B w\rangle$ for all $v \in V$ and $w \in W$, and conclude that B is determined by its restitution to V.
4. Show that if A is in $G(k, n)$, the tangent space to $G(k, n)$ at A is $\operatorname{Hom}(V, W)$.
