§5.8 Cech cohomology

We pointed out at the end of §5.3 that if a manifold, X, admits a finite good
cover:

U= {Ui=1,,d}

then in principle, its cohomology can be read off from the intersection prop-
erties of the U;’s. In this section we’ll explain in more detail how to do this.
More explicitly we will show how to construct from the intersection prop-
erties of the U;’s a sequence of cohomology groups H*(U,R), and we will
prove that these “Cech cohomology groups” are isomorphic to the DeRham
cohomology groups of X. (However we will leave for the reader a key ingredi-
ent in this proof: a diagram chasing argument that’s similar to the diagram
chasing arguments that were used to prove the Mayer-Vietoris theorem in
§5.2 and the five lemma in §5.4.)

The details We will denote by N* the set of all multi-indices
(5.8.1) T (g o)1 865 d

with the property that the intersection

(5.8.2) Ur=U,Nn...Nn Uy,

is non empty. (For example for 1 < ¢ < d the multi-index, I = (ip, ..., i),
ir =1, is in N* since for this I, U; is just U;). The disjoint union, N, of the
N¥s is called the nerve of the cover, U, and N* the k-skeleton of this nerve.
Note that if we delete from the multi-index, (5.8.1) the index, i, i.e. replace
I by

(5.8.3) T == Wby wssnite aniin g5 )

then I, is in N¥-1,

We will now associate with IV a cochain complex by defining C* (U,R) to
be the finite dimensional vector space consisting of all maps, ¢ : N* — R
and defining

§: C*Y(U,R) - C*(U,R)
to be the coboundary operator

k

(5.8.4) Se(I) = > (—1)e(y)

r=0
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We claim that this operator is a coboundary operator, i.e. 6(6C) = 0. To
see this we note that for ¢ € C*¥"1(U,R) and I € N*§(dc)(I) is equal by

k+1
(5.8.4) to the sum, . (—1)"éc(I;), and hence equal to the sum
rzl)

k+1
Z(_l)r (Z(*l)SC(IT,S) + Z (_1)3_1C(—fr,s))
r=0

s<r s8>r

Thus the term ¢(I,.s) occurs twice in this sum but occurs with opposite
signs, and hence §(éc) = 0.
The complex

(5.8.5) 0= C°U,R) S ... - CH(U,R) —

is the Clech cochain complex of the cover U and the Cech cohomology groups
that we mentioned above are the cohomology groups

Ker § : CF — C*+1
Im§ : Ck-1 — Ck

(5.8.6) H*(U,R) =

of this complex.
The rest of this section will be devoted to proving

Theorem 5.8.1. For U a finite good cover of X
(5.8.7) H*U,R) = H*(X)

Remark

1. The definition of H*(U,R) only involves the nerve N of this cover
so this result is in effect a proof of the claim we made above: that
the cohomology of X is in principle determined by the intersection
properties of the U;’s

2. This result gives us another proof of an assertion we proved earlier: if X
admits a finite good cover its cohomology groups are finite dimensional.

The proof of theorem 5.8.1 will involve an interesting DeRham theoretic
generalization of the Cech cochain complex (5.8.5). Namely for k and [ non-
negative integers we will define a Cech cochain of degree k with values in Q
to be a map, ¢, which assigns to each I € N* an l-form, ¢(I), in Q(Uy).
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The set of these cochains forms an infinite dimensional vector space:
CH(U, ), and we will show how to define for these cochains a cobound-
ary operator

(5.8.8) §: 0 HU,0h < oMU, 9h)

similar to (5.8.4). To define this operator let I be an element of N* and for
0<r <klet v : Q) — QM) be the restriction map.

w € QUL = w|Ur

(Note that the right hand side is well-defined since U; is an open subset of
Ur,.) Thus given a Cech cochain ¢ € C*~1(U, Q') we can, mimicking (5.8.4),
define a Cech cochain, dc € C*(U, ) by setting

(5.8.9) de(I) =3 (=1 e(I;)

In other words except for the +,’s the definition of this cochain is formally
identical with the definition (5.8.4). We will leave as an exercise the proof
that

&+ C* YU, 08 ~ C*(U, )

is, like the & defined by (5.8.4), a coboundary operator, i.e. §(dc) = 0.
Hint  Except for keeping track of the 7,’s the proof of this is identical

with the proof of this assertion for the coboundary operator (5.8.4). Thus
to summarize we get for every ! a Cech cochain complex

(5.8.10) 0-CoW,ah) S .. 5 R U, 0 -

and our next task in this section will be to compute the cohomology of this
complex. We’ll begin with the cohomology in the first slot, the kernel of the
operator
§:Co(U, 0 - ctu,0h
An element, ¢, of C%(U, Q) is by definition a map which assigns to each
i€ {l,...,d} an element c(u) = w; of AT;).
Now let I = (ip,41) be an element of N'. Then, by definition, U;, N U, is
non-empty and
‘5‘3(-[) = YioWiy — Vi Wig
Thus éc = 0 iff
wiD[UiG n in_ = Wy, 'Ufo n Uil
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for all I € N, and this is true if and only if the I-form, w;, is the restriction
to U; of a globally defined I-form, w in Q(X). Thus the kernel of the operator

§: Co(U, QY - cH(U,0h
is Q4(X). Inserting this into the sequence above we get a new sequence:
(5.8.11) 0= QX)) = CUU, Q) = - = CHU, QY —»
and we will prove

Theorem 5.8.2. The sequence (5.8.11) is ezact.

Proof. We've just proved that it is exact in its first slot. To prove that it’s
exact in its k-th slot we will construct a chain chomotopy operator:

Q: CHU, QY — CHY(U, o)
with the property that
(5.8.12) dQc+ Qbc=c¢

for all ¢ € C*(U, Q). To define this operator we’ll need a slight generalization
of theorem 5.2.7.

Theorem 5.8.3. There exist functions, ¢, € C°(X),a = 1,--- ,N such
that the support of dg is contained in Uy and ) ¢po = 1.

Proof. Let p; € C§°(X), i = 1,2,3,..., be a partition of unity subordi-
nate to the cover U and let ¢; be the sum of the p;’s with support in Uj.

Deleting these p;’s from the sequence p1, p2, p3,-.., We get a new sequence,
4, Pb, 0%, - .- Let ¢ be the sum of the pi’s in this sequence with support in
Us. Now delete these from the sequence pj, p3, p3, . .. and continue. O

To define the operator (5.8.12) let ¢ be an element of C¥(U, Q') and I be
an element of N*. Then we define Qc € C*~1(U, Q!) by defining its value at
I € N¥-1 to be:

QC(I) = Z (fbic(i) 10y ey ik’—l)
u=1
where I = (ig,...,%—1) and the ith summand on the left is defined to be
equal to zero when U; N U is empty and defined to be the product of the
function ¢; and the [-form, c(4,%p,...,%—1), when U; N Ur is not empty.
(Note that in this case the multi-index, (,4g,...,%-1), is in N k and so by
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definition, c(3,4p,...,4—1) is an element of QU; N Us). However, since ¢;
is supported on U; we can extend the I-form, ¢;c(i, 4, ...,4k—1), to Ur by
setting it equal to zero outside U;.)

To prove (5.8.12) we note that for ¢ € C*(U, Q)

Qbc(io, .. ik) = > ¢ube(iyin, ... k),

so by (5.8.9) the right hand side is equal to

(5.813) Y dwmiclio,. i) + D (—1)F picliy. ..o dy, . 0k)

i,8

where (4,...,1s,...,4x) is the multi index (i, i, ... i) with i, deleted. Sim-
ilarly .
6Qc(lny- -+ vtk) =X (~1)P%,Qclio,- .o iss ce s 5)

= 2 (_1)5’}%3@5’56(1‘.)?:0: v 7i31 v ,Z'k)
1,8

However, this is the negative of the second summand in (5.8.13); so, by
adding these two summands we get

(Qc +8Qc)(boy - k) = D _ dimicio, - ., ix)
and since Y ¢i = 1, this identity reduces to
(Qc +6Qe)(T) = e(1)
or, since [ is an arbitrary element of N*, Qéc + 6Qc = ¢ O

Finally note that theorem 5.8.2 is an immediate consequence of the exis-
tence of this chain homotopy operator. Namely if ¢ € C*(U, ) is in the
kernel of & then

c= Qdc+ 6Qc=dQc

so ¢ is in the image of the previous 4.
To prove theorem 5.8.1, we let CF = C*(U, 9%, and note that in addition
to the exact sequence

(5.8.14) 0 00 4 oS,
given by (5.8.11) one has another exact sequence

(5.8.15) 0 - CHU,R) — C*0 4 okl 4 .
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where the d’s are defined as follows: Given ¢ € C® and I € N¥, ¢(I)
is an element of Q!(U;) and de(I) an element of QF1(Ur), and we define
de € C*¥*1 to be the map

Ie Nk de(I) € QY UY)
It is clear from this definition that d(dec) = 0 so the sequence
(5.8.16) ckO G okl G okl 4

is a complex and the exactness of this sequence follows from the fact that,
since U is a good cover, the sequence

Q) S QL) = - - QUL = -

is exact. Moreover if ¢ is in C*® and de = 0, then for every I € NF,
de(I) = 0 i.e. the zero form, ¢(I), in Q0(U;) is a constant. Hence the map,
I € N¥ = ¢(I), is just a Cech cochain of the type we defined earlier, i.e. a
map from N* to R. Therefore the kernel of the map, d : ck0 . gkl ig
CO%(U,R); and , adjoining this term to the sequence (5.8.16) we get the exact
sequence (5.8.15).

Lastly we note that the two operations we’ve defined above, the d opera-
tion, d : C® — C*H1 and the § : operation, § : CF! — Ck+14 commute
ie. for c € Ck

(5.8.17) dde = déc
Proof. : For I € N*+1

Se(I) =Y (—1) we(l)
so if ¢(I) = wy, € QHUy,)

be(I) = 3 (~1)wr, [Ur
- as(I) = (-1)"dwr,|Us

= dde(I)
O

Putting these results together we get the commutative diagram in figure
one (the C*’s in the bottom row being the spaces of Cech cochains, C*(U, R).
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I

00— Q2 (X)—)- 00’2 —_— 01'2 > 02’2 > 03’2 >

0 QI(X) CO,l Gl,l 02,1 CS,I

I | T

0 QD(X) CU,O Ol,D . 02,0 4 CS,O

§ e D il e [ i
0 0 0 0
Figure 5.1:

In this diagram all columns are exact except for the extreme left hand
column, which is the usual DeRham complex, and all rows are exact except
for the bottom row which is the usual Cech cochain complex.

Ezercise :  Deduce from this diagram that H*(U,R) = H*(X).
Hint :  Let ¢ be an element of QF+1(X) satisfying dc = 0. Show that one
can, by a sequence of chess moves {of which the first few stages are illustrated
in figure 2) convert c¢ into an element & of C**! satisfying 6¢ = 0.
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Figure 5.2:
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