Appendix A

Bump Functions and Partitions of Unity

We will discuss in this section a number of “global to local” techniques in multi-variable cal-
culus: techniques which enable one to reduce global problems on manifolds and large open
subsets of =" to local problems on small open subsets of these sets. Qur starting point will be
the function, p on [t defined by

(Al) p(:n):{g__’ jzg

which is positive for w positive, negative for 2 negative and everywhere C'™. (We will sketch
a proof of this last assertion at the end of this appendix). From £ one can construct a number
of other interesting C'™ functions.

Example 1  For a > 0 the function p(z) + p(a — ) is positive for all x so the quotient,
pa (), of p(ix) by this function is a well-defined ¢*>° function with the properties,

palz) =10 fora <0
(A2)

0 < pal) €1

gali) =1 forx > a

Example 2 Let I be the open interval, a < @ < b, and p; the function, p;(x) = plz — a)
p(b— ). Then py(x) is positive for & € I and zero on the complement of 7,

Example 3 More generallylet [1,.... 1, be openintervals andlet Q = I; « ... « I, be the
open rectangle in ™" having these intervals as sides. Then the function

(A3) (@) =pry(a)) - PLo(an)
is a ¢ function on ™ thats positive on @ and zero on the complement of Q.
Using these functions we will prove
Lemma A1 Let C' be a compact subset of R™ and U an open set containing C: Then there
exists a C° function ¢ on B¥ such that
o(z) > 0forall z ¢ R7,
(Ad)
¢(r) >0 on C
b Cg (U)



Proof For each p ¢ C' let ), be an open rectangle with p ¢ @p and @p C U. The Qs
cover C'; so, by Heine-Basel there exists a finite subcover, Q; = Qp,u=1,...,N, Now let

O =3 Pqi

This result can be slightly strengthened: namely we claim

Theorem A2 There exists a function, v e Cp(U) such that 0 < " < land« =1 on (.

Proof Let ¢ be as in lemma A.1 and let a > 0 be the greatest lower bound of the restriction
of ¢ to C. Then if p, is the function in example 1 the function. p, - ¢ has the properties
indicated above.

Remark: The function, «*, in this theorem is an example of a “bump function”. If one wants
to study the behavior of a vector field, v, or a k-form, w, on the set, C, then by multiplying v
(or w) by " one can, without loss or generality assume that v (or w) is compactly supported on
a small neighborhood of (.

Bump functions are one of the standard tools in calculus for converting global problems to
local problems. Another such tool is partitions of unity ;

Let U be an open subset of R™ and 'J = {U,, a ¢ [} a covering of L’ by open subsets
(indexed by the elements of the “index set”, I). Then the partition of unity theorem asserts:

Theorem A3 There exists a sequence of functions, p; ¢ C3~(U/) such that
(@) pi >0
(b) Forevery i thereis an o ¢ I with p; ¢ C§~(Uy,)

{c) For every p e U/ there exists a neighborhood, U,,, of p in U/ and an Ny, > 0 such that
pillly =0 foru > Np,.

(d 2pi=1

Remark Because of item (c) the sum in item (d) is well defined.
We will derive this result from a somewhat simpler set theoretical result:

Theorem A4 There exists a countable covering of U by open rectangles, (., such that
@ Q; CU
(b) Foreach: thereisan v e I with Q. C U,

(c) Forevery p e U there exists a neighborhood, U, of pin U and NV, > 0 such that Q; Nniy,
is empty for i > N,



We first note that this theorem implies the preceding theorem. (To see this note that the
functions p¢_ in example 3 above have all the properties indicated in theorem A3 except for
property (d). Moreover since the ;s are a covering of I the sum

z £Q,

is everywhere positive. Thus we get a sequence of p;’s satisfying (a) — (d) by taking p; to be
the quotient of pg, by this sum.)

To prove theorem A4 let d(x, U€) be the distance of a point z € U to the complement,
U€, of U in R™ and let A, be the compact subset of [/ consisting of points, z ¢ U, satisfying
d(x,U¢) > 1/r and |x| < r. By Heine-Basel we can find, for each r. a collection of open
rectangles, ¢J;, 7. ¢ = 1,..., N,, such that (_Bi,r is contained in Int A,,.1 — A,_5 and in
some U, and such that the @;,r’s are a covering of A, — Int A, _1. Thus the @;, r's have the
properties listed in theorem A 4, and by relabelling: i.e. setting Q; = Q;1 for1 < i < N,
Qi = Qi=n,, for Ny +1 < i < Ny + Na ete. we get a sequence, 21, Qa, ... with the desired
properties. We will next describe a couple of applications of theorem Ad.

Application 1 Improper integrals

Let f;U — R be a continuous function. We will say that f is integrable over U if the
infinite sum

(A5) > /pi fldx
‘[>
converges and if so we will define the improper integral of f over U to be the sum

(A6) X, / p:fdx
124
(Notice that each of the summands in this series is the integral of a compactly supported
continuous function over K™ so the individual summands are well-defined. Also it’s clear that
if f itself is a compactly supported function on R" , (A5) is bounded by [ 'f|dx, soforevery

[ € Co (R™) the improper integral of f over U is well-defined.)

Application 2  An extension theorem for C® maps
Let X be a subset of R™ and f : X — R' a continuous map. We will say that f is C'° if, for

every p e X, there exists an open neighborhood. [7,,, of p in %% and a O™ map, gp : Up = R™
such that g, = fon U, N X.

The extension theorem

If 7+ X — R™is C™ there exists an open neighborhood, U7, of X in B* and a ('=° map.
f:U = FP™ suchthatg = fon X,



Proof LetU = UUpand p;. i = 1,..., a partition of unity with respect to the covering,

U = {Up.pe X}, of U. Then, for each i, there exists a p such that the support of p; is
contained in UJ,. Let
pigp on U,
i Ue
on Ug

Then g = 3 y; is well defined by item (c) of theorem A3 and the restriction of gto X ;

Z puf

isequalto f. O

Exercises

Exercise 1  Show that the function Al is C>°. Hints
(a) From the Taylor series expansion
¢ = E ‘:_|
conclude that for 2 >

k+n

TS
~ (k+n)!

(b) Replacing » by 1/ conclude that for 2 > 0

1 1

I o
e (n+k)! gnk

(¢) From this inequality conclude that for z > 0

7 < (n+ k) prth
(d) Let fn(x) be the function

e~ Vg 25

g ={ T 2

Conclude from (¢) that for » > ()
fal@) < (n+k)! 2% forall k
(¢) Conclude that £, is C'! differentiable
(f) Show that

d
(A7) _,fn = fn—f—? — n‘f}i+1
dxr



(g) Deduce by induction that the £,,’s are C'! differentiable for all r and n.

Exercise 2 Show that the improper integral (A6) is well-defined independent of the choice

of partition of unity. Hint Let p;. J=1,2,..., be another partition of unity. Show that (A6) is
equal to

(A8) % / pip; f da
4
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APPENDIX B

THE IMPLICIT FUNCTION THEOREM

Let U be an open neighborhood of the origin in R™ and f;, i =
1,...,k, C* functions on U with the property, f1(0) = .-+ = f(0) =
0. Our goal in this appendix is to prove the following “implicit func-
tion theorem?”,

Theorem B.1. Suppose the matriz
ohi
Oz;

is non-singular. Then there exzists a neighborhood, Uy, of 0 in R™

and a diffeomorphism, g : (Up,0) — (U,0), of Uy onto an open
neighborhood of 0 in U such that

(B1) <0)J  1<ijgk

(B2) ghi=x, i=1....k
and

(B3) gE=%,; j=EB+1,,...0.
Remarks.

1. Let g(z) = (g1(x),...,gn(z)). Then the second set of equations
just say that

(B4) Gi(T1y..0,20n) = x;

for j =k+1,...,n, so the first set of equations can be written more
concretely in the form

(B5) Tl a1 voyBadis ooslQl05 s v Tty v 20) 55
for i =1y sk

2. Letting y; = g;(21,...,2n) the equations (B5) become
(BS') Fts oo UK 5 Thibilsms oxh) =24

Hence what the implicit function theorem is saying is that, modulo
the assumption (B1) the system of equations (B5') can be solved for
the y;’s in terms of the x;’s.
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3. By a linear change of coordinates:
k
T; — E BjpLr, t=1,...,k
r=1

we can arrange without loss of generality for the matrix (B1) to be
the identity matrix, i.e.,

afi

(0l =8y; l2ig&k.

Qur proof of this theorem will be by induction on k.

First, let’s suppose that £ = 1 and, for the moment, also suppose
that n = 1. Then the theorem above is just the inverse function
theorem of freshman calculus. Namely if f(0) = 0 and df /dz(0) = 1,
there exists an interval, a < z < b, about the origin on which df /dz
is greater than 1/2, so f is strictly increasing on this interval and its
graph looks like the curve in the figure below

with ¢ = f(a) < —fa and d = f(b) > 1b.

The graph of the inverse function, g : [¢,d] — [a, b] is obtained from
this graph by just rotating it through ninety degrees, i.e., making the
y-axis the horizontal axis and the z-axis the vertical axis. (From the
picture it’s clear that y = f(z) @ z =g(y) © f(g(y)) = v.)

Most elementary text books regard this intuitive argument as be-
ing an adequate proof of the inverse function theorem; however, a
slightly beefed-up version of this proof (which is completely rigorous)
can be found in Spivak, Calculus, Chapter 12. Moreover, as Spivak
points out, if the slope of the curve in the figure above at the point
(z,y) is equal to A the slope of the rotated curve at (y,z) is 1/, so
from this proof one concludes that if y = f(z)

e L= (Le) = (Low)



e |

¥

Pl
v

7

e

€

o

Appendix B. The implicit function theorem 291

Since f is a continuous function, its graph is a continuous curve and,
therefore, since the graph of g is the same curve rotated by ninety
degrees, g is also a continuous functions. Hence by (B7), g is also a
C* function and hence by (B7), g is a C? function and hence . ... In
other words g is in C*°([e, d]).

Let’s now prove that the implicit function theorem with £ = 1
and n arbitrary. This amounts to showing that if the function, f,
in the discussion above depends on the parameters, z3,...z, in a

£ fashion, then so does its inverse, g. More explicitly let’s suppose

fl (z1,...,2y) is a C* function on a subset of R of the form
[a,b] x V where V is a compact, convex neighborhood of the origin
in R™ and satisfies 8f/dx; > % on this set. Then by the argument
above there exists a function, g = g(y, za, ..., z,) defined on the set,
[a/2,b/2] x V, and having the property

(B8) Flaet, @55 ven ) = 0P o(0 850w Bn) =05 «
Moreover by (B7) g is a C* function of y and
dg of =i

B B ceyy) = 2L e Tn
( 9) By (yvav ,xn) 6331 ($l)$23 y & )
at z; = g(y). In particular, since % > 1

d
(B10) el &g

Ay
and hence
(B11) 9@ 22, 20) — 9@ 22, .-, 20)| < 20y — o

for points, y and ¥/, or the interval, [a/2,b/2].

The k = 1 case of Theorem Bl is almost implied by (B8) and (B9)
except that we must still show that g is a C* function, not just of
y, but of all the variables, y, z3,...,z,, and this we’ll do by quoting
another theorem from freshman calculus (this time a theorem from
the second semester of freshman calculus).

The mean value theorem in n-variables. Let U be a convex open
set in R® and f : U — R a C* function. Then for a,b € U there
exists a point, ¢, on the line interval joining a to b such that

1)~ fla) = 30 5-(0)(b = ).

i=1
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Proof. Apply the 1 — D mean value theorem to the function, h(t) =
F((1—t)a+1b).
a

Let’s now show that the function, g, in (B8) is a C* function of
the variables, y and zo. To simplify our notation we’ll suppress the
dependence of f on z3,...,z, and write f as f(z1,z3) and ¢ as
gy, z2). For h € (—¢,¢), € small, we have

y = flg(y,ze + h),z2 + h) = f(g(y, x2),x2),

and, hence, setting 2y = g(y, 2 + h), z1 = g(y,z2) and x4 = x5 + h,
we get from the mean value theorem

0= f(z1,23) — f (1, 22)
of af

= e)(zh —z) + é};(c)(mé — &3)

and therefore

il
(B12)  glyszz+h) — gly,z2) = (—%() g’—jz(c) h

for some c on the line segment joining (1, z2) to (z},x}). Letting h
tend to zero we can draw from this identity a number of conclusions:

I. Since f is a C*° function on the compact set, [a,b] x V,
its derivatives are bounded on this set, so the right hand side
of B12 tends to zero as h tends to zero, i.e., for fixed y, g is
continuous as a funetion of zs.

II. Now divide the right hand side of (B12) by h and let h tend
to zero. Since g is continuous in z3, the quotient of (B12) by A
tends to its value at (z1, z2). Hence for fixed y f is differentiable
as a function of zo and

1
(B13) j—i(y,mz)-—(%) (@1,33) 21,22

where 2; = g(y, z2).
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III. Moreover, by the inequality (B11) and the triangle in-
equality

l9(v', z3) — g(y, x2)| < |9(¥/, 25) — gy, 25)| + |g(y, 75) — g(y, z2)|
<2ly’ —yl + |g(y, z3) — gy, z2)],

hence g is continuous as a function of y and x».

IV. Hence by (B9) and (B13), g is a C! function of y and zs,
and hence ....

In other words g is a C* function of y and x3. This argument
works, more or less verbatim, for more than two z;’s and proves that
g is a C*™ function of y,x2,...,2z,. Thus with f = f; and g = ¢;
Theorem B.1 is proved in the special case k = 1.

We’ll now prove Theorem B.1 for arbitrary k by induction on k.
By induction we can assume that there exists a neighborhood Ué, of
the origin in R™ and a C* diffeomorphism ¢ : (U§,0) — (U,0) such
that

(B14) o fi =

for 2 <¢ <k and

(B15) O 5 =&y

for j =1and k + 1 < j < n. Moreover, by (B6)

k
9 I < PN
(3v'11) 0= GOm0 =32 =1

since 1 = ¢*x) = 1. Therefore we can apply Theorem B.1, with
k = 1, to the function, ¢* f1, to conclude that there exists a neigh-
borhood, Uy, of the origin in R™ and a diffeomorphism, v : (Ug, 0) —
(U},0) such that ¢v*¢*f; = z; and Y*¢*z; = x; for 1 < i < n.
Thus by (Bl4) ¢*¢*f; = ¢*z; = x; for 2 < § < k, and by (B15)
Yro*r; =¢*z; =x; for k+1 < j < n. Hence if we let g = po 1y we
see that:
gfi=(pod) fi=v ' fi=a

fori<i<kand

gz = (poy)'z; =P p*a; = x;
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fork+1<j<n. O

We'll derive a number of subsidiary results from Theorem B.1.
The first of these is the n-dimensional version of the inverse function
theorem:

Theorem B.2. Let U and V be open subsets of R™ and ¢ : (U,p) —
(V,q) a C*® map. Suppose that the derivative of ¢ at p

Dy(p) : R" — R™

is bijective. Then w maps a neighborhood of p in U diffeomorphically
onto a neighborheod of ¢ in V.

Proof. Composing fore and aft by translations we can assume that
p=¢g=0. Let ¢ = (f1,..., fn). Then the condition that D¢(0)
be bijective is the condition that the matrix (B.1) be non-singular.
Hence, by Theorem B.1, there exists a neighborhood, V5 of 0 in V,
a neighborhood, Uy, of 0 in Uy and a diffeomorphism, ¢ : Vy — U,
such that
g fi =

for i = 1,...,n. However, these equations simply say that ¢ is the
inverse of ¢, and hence that ¢ is a diffeomorphism.

O

A second result which we’ll extract from Theorem B.1 is the canon-
ical submersion theorem.

Theorem B.3. Let U be an open subset of R™ and ¢ : (U,p) —
(Rk,{)) a C*° map. Suppose ¢ is a submersion at p, i.e., suppose its

derivative
Dy(p) : R* — R*

is onto. Then there exists a neighborhood, O, of p in U, a neighbor-
hood, Uy, of the origin in R™ and a diffeomorphism, g : (Ug,0) —
(O,p) such that the map o g : (Uy,0) — (R™,0) is the restriction
to Uy of the canonical submersion:

(B16) m R* - RF 7wz, 2,) = (21,...,21).

Proof. Let ¢ = (f1,..., fx). Composing ¢ with a translation we can
assume p = 0 and by a permutation of the variables z1,...,x, we
can assume that the matrix (B1) is non-singular. By Theorem B.1
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we conclude that there exists a diffeomorphism. g : (Up,0) — (U, )
with the properties g*f; = #;, 1 = 1,...,k, and hence,
(,DOQ‘(.'L'I,... )xﬂ.) == (II:“' 73’-[3) ¥

O

As a third application of Theorem B.1 we’ll prove a theorem which
is similar in spirit to Theorem B.3, the canonical immersion theorem.

Theorem B.4. Let U be an open neighborhood of the origin in R*
and ¢ : (U,0) — (R",p) a C*° map. Suppose that the derivative of ¢
at ()

Dyp(0) : R — R”

is injective. Then there exists a neighborhood, Uy, of 0 in U, a neigh-
borhood , V', of p in R™ and a diffeomorphism.

Y:V — Uy x RVFk

such that the map, ¥ o @ : Uy — Uy x R * is the restriction to Uy
of the canonical immersion

(B17) +: RF - R¥ x R* %, B0 oy Bl ) = LY pieiniy By Dl vyl s

Proof. Let ¢ = (f1,...,fs). By a permutation of the f;’s we can
arrange that the matrix

Ofi .
o], 1sigsk

is non-singular and by composing ¢ with a translation we can arrange
that p = 0. Hence by Theorem B.2 the map

X (U,O) % (Rkao) T = (fl(m)axfk(l'))

maps a neighborhood, Uy, of 0 diffeomorphically onto a neighbor-
hood, Vg, of 0 in R*. Let 1 : (Vo,0) — (Up,0) be its inverse and
let

'y:VbXRnfkangRn_k

be the map

V@1, ., @n) = (@1 k) Thtrs- - T)
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Then

(B18)  yoo(zy,....zk) = v(x(21,- .., %k)s fot1(2)s - ., fu(@))
=@ 505 psBhs Thpa b2 a5 Fa())

Now note that the map
h:Usx R"™F — Uy x R**
defined by
Pz, zn) = (@1, Ty Tt — Frr1(2), -5 20 — fula))
is a diffeomorphism (Why? What is its inverse?) and, by (B18),

hovoso(xl,...,mk):(:cl,...,wk,(),...,()),

i.e.,, (hovy) oy =14 Thus we can take the V in Theorem B.4 to be

Vo x R™* and the % to be ho 7.

Remarks.

The canonical submersion and immersion theorems can be suc-
cinctly summarized as saying that every submersion “looks locally
like the canonical submersion” and every immersion “looks locally

like the canonical immersion”.



