Appendix A

Bump Functions and Partitions of Unity

We will discuss in this section a number of "global to local" techniques in multi-variable calculus: techniques which enable one to reduce global problems on manifolds and large open subsets of \mathbb{R}^n to local problems on small open subsets of these sets. Our starting point will be the function, ρ on \mathbb{R} defined by

(A1)
$$\rho(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

which is positive for x positive, negative for x negative and everywhere C^{∞} . (We will sketch a proof of this last assertion at the end of this appendix). From ρ one can construct a number of other interesting C^{∞} functions.

Example 1 For a > 0 the function $\rho(x) + \rho(a - x)$ is positive for all x so the quotient, $\rho_a(x)$, of $\rho(x)$ by this function is a well-defined C^{∞} function with the properties,

$$\rho_a(x) = 0 \qquad \text{for } x \le 0$$
 (A2)
$$0 \le \rho_a(x) \le 1$$

$$\rho_a(x) = 1 \qquad \text{for } x \ge a$$

Example 2 Let I be the open interval, a < x < b, and ρ_I the function, $\rho_I(x) = \rho(x - a)$ $\rho(b - x)$. Then $\rho_I(x)$ is positive for $x \in I$ and zero on the complement of I.

Example 3 More generally let I_1, \ldots, I_n be open intervals and let $Q = I_1 \times \ldots \times I_n$ be the open rectangle in \mathbb{R}^n having these intervals as sides. Then the function

(A3)
$$\rho_Q(x) = \rho_{I_1(x_1)} \dots \rho_{I_n(x_n)}$$

is a C^∞ function on \mathbb{R}^n that's positive on Q and zero on the complement of Q. Using these functions we will prove

Lemma A1 Let C be a compact subset of \mathbb{R}^n and U an open set containing C: Then there exists a C^{∞} function ϕ on \mathbb{R}^n such that

$$\phi(x) \ge 0 \text{ for all } x \in \mathbb{R}^n,$$
 (A4)
$$\phi(x) > 0 \text{ on } C$$

$$\phi \in C_0^{\infty}(U)$$

Proof For each $p \in C$ let Q_p be an open rectangle with $p \in Q_p$ and $\overline{Q}_p \subseteq U$. The Q_p 's cover C_i so, by Heine-Basel there exists a finite subcover, $Q_i = Q_{p_i}$, $u = 1, \ldots, N$. Now let $\phi = \sum p_{Q_i}$

This result can be slightly strengthened: namely we claim

Theorem A2 There exists a function, $\psi \in C_0^{\infty}(U)$ such that $0 \le \psi \le 1$ and $\psi \equiv 1$ on C.

Proof Let ϕ be as in lemma A.1 and let a > 0 be the greatest lower bound of the restriction of ϕ to C. Then if ρ_a is the function in example 1 the function, $\rho_a \cdot \phi$ has the properties indicated above.

Remark: The function, ψ , in this theorem is an example of a "bump function". If one wants to study the behavior of a vector field, v, or a k-form, w, on the set, C, then by multiplying v (or w) by ψ one can, without loss or generality assume that v (or w) is compactly supported on a small neighborhood of C.

Bump functions are one of the standard tools in calculus for converting global problems to local problems. Another such tool is *partitions of unity*:

Let U be an open subset of \mathbb{R}^n and $\mathbb{U} = \{U_\alpha, \alpha \in I\}$ a covering of U by open subsets (indexed by the elements of the "index set", I). Then the partition of unity theorem asserts:

Theorem A3 There exists a sequence of functions, $\rho_i \in C_0^{\infty}(U)$ such that

- (a) $\rho_i \geq 0$
- (b) For every i there is an $\alpha \in I$ with $\rho_i \in C_0^{\infty}(U_{\alpha})$
- (c) For every $p \in U$ there exists a neighborhood, U_p , of p in U and an $N_p > 0$ such that $\rho_i | U_p = 0$ for $u > N_p$.
- (d) $\sum \rho_i = 1$

Remark Because of item (c) the sum in item (d) is well defined. We will derive this result from a somewhat simpler set theoretical result:

Theorem A4 There exists a countable covering of U by open rectangles, Q_i , such that

- (a) $\overline{Q}_i \subseteq U$
- (b) For each i there is an $\alpha \in I$ with $\overline{Q}_i \subseteq U_\alpha$
- (c) For every $p \in U$ there exists a neighborhood, U_p of p in U and $N_p>0$ such that $Q_i\cap U_p$ is empty for $i>N_p$

We first note that this theorem implies the preceding theorem. (To see this note that the functions ρ_{Q_i} in example 3 above have all the properties indicated in theorem A3 except for property (d). Moreover since the Q_i 's are a covering of U the sum

$$\sum \rho_{Q_i}$$

is everywhere positive. Thus we get a sequence of ρ_i 's satisfying (a) – (d) by taking ρ_i to be the quotient of ρ_{Q_i} by this sum.)

To prove theorem A4 let $d(x,U^c)$ be the distance of a point $x \in U$ to the complement, U^c , of U in \mathbb{R}^n and let A_r be the compact subset of U consisting of points, $x \in U$, satisfying $d(x,U^c) \geq 1/r$ and $|x| \leq r$. By Heine-Basel we can find, for each r, a collection of open rectangles, Q_i , r, $i=1,\ldots,N_r$, such that \overline{Q}_i , r is contained in Int $A_{r+1}-A_{r-2}$ and in some U_α and such that the Q_i , r's are a covering of $A_r-\operatorname{Int} A_{r-1}$. Thus the Q_i , r's have the properties listed in theorem A.4, and by relabelling: i.e. setting $Q_i=Q_{i,1}$ for $1\leq i\leq N_i$, $Q_i=Q_{i-N_1}$, for $N_1+1\leq i\leq N_1+N_2$ etc. we get a sequence, Q_1,Q_2,\ldots with the desired properties. We will next describe a couple of applications of theorem A4.

Application 1 Improper integrals

Let $f_iU \to \mathbb{R}$ be a continuous function. We will say that f is integrable over U if the infinite sum

(A5)
$$\sum \int_{U} \rho_i |f| dx$$

converges and if so we will define the improper integral of f over U to be the sum

(A6)
$$\sum \int_{H} \rho_{i} f dx$$

(Notice that each of the summands in this series is the integral of a compactly supported continuous function over \mathbb{R}^n so the individual summands are well-defined. Also it's clear that if f itself is a compactly supported function on \mathbb{R}^n , (A5) is bounded by $\int\limits_{\mathbb{R}^n} |f| \, dx$, so for every $f \in C_0(\mathbb{R}^n)$ the improper integral of f over U is well-defined.)

Application 2 An extension theorem for C^{∞} maps

Let X be a subset of \mathbb{R}^n and $f: X \to \mathbb{R}^m$ a continuous map. We will say that f is C^∞ if, for every $p \in X$, there exists an open neighborhood, U_p , of p in \mathbb{R}^n and a C^∞ map, $g_p: U_p \to \mathbb{R}^m$ such that $g_p = f$ on $U_p \cap X$.

The extension theorem

If $f:X\to\mathbb{R}^m$ is C^∞ there exists an open neighborhood, U, of X in \mathbb{R}^n and a C^∞ map, $f:U\to\mathbb{R}^m$, such that g=f on X.

Proof Let $U=\cup U_p$ and ρ_i , $i=1,\ldots,$ a partition of unity with respect to the covering, $\mathbb{U}=\{U_p,p\in X\}$, of U. Then, for each i, there exists a p such that the support of ρ_i is contained in U_p . Let

$$g_i = \begin{cases} \rho_i g_p & \text{on } U_p \\ 0 & \text{on } U_p^c \end{cases}$$

Then $g = \sum g_i$ is well defined by item (c) of theorem A3 and the restriction of g to X:

$$\sum \rho_u f$$

is equal to f.

Exercises

Exercise 1 Show that the function A1 is C^{∞} . Hints

(a) From the Taylor series expansion

$$e^x = \sum \frac{x^k}{k!}$$

conclude that for x > 0

$$e^x \ge \frac{x^{k+n}}{(k+n)!}$$

(b) Replacing x by 1/x conclude that for x > 0

$$e^{1/x} \ge \frac{1}{(n+k)!} \frac{1}{x^{n+k}}$$

(c) From this inequality conclude that for x > 0

$$e^{-\frac{1}{x}} < (n+k)! \ x^{n+k}$$

(d) Let $f_n(x)$ be the function

$$f_n(x) = \begin{cases} e^{-1/x} x^{-n}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Conclude from (c) that for x > 0

$$f_n(x) \le (n+k)! x^k$$
 for all k

- (e) Conclude that f_n is C^1 differentiable
- (f) Show that

(A7)
$$\frac{d}{dx}f_n = f_{n+2} - nf_{n+1}$$

(g) Deduce by induction that the f_n 's are C^1 differentiable for all r and n.

Exercise 2 Show that the improper integral (A6) is well-defined independent of the choice of partition of unity. Hint Let ρ'_j , $j=1,2,\ldots$, be another partition of unity. Show that (A6) is equal to

(A8)
$$\sum \int_{U} \rho_i \, \rho'_j \, f \, dx$$

APPENDIX B

THE IMPLICIT FUNCTION THEOREM

Let U be an open neighborhood of the origin in \mathbb{R}^n and f_i , $i = 1, \ldots, k$, \mathcal{C}^{∞} functions on U with the property, $f_1(0) = \cdots = f_k(0) = 0$. Our goal in this appendix is to prove the following "implicit function theorem".

Theorem B.1. Suppose the matrix

(B1)
$$\left[\frac{\partial f_i}{\partial x_j}(0)\right], \quad 1 \le i, j \le k$$

is non-singular. Then there exists a neighborhood, U_0 , of 0 in \mathbb{R}^n and a diffeomorphism, $g:(U_0,0)\hookrightarrow (U,0)$, of U_0 onto an open neighborhood of 0 in U such that

(B2)
$$g^* f_i = x_i, \quad i = 1, \dots, k$$

and

(B3)
$$g^*x_j = x_j, \quad j = k+1, \dots, n.$$

Remarks.

1. Let $g(x) = (g_1(x), \dots, g_n(x))$. Then the second set of equations just say that

(B4)
$$g_j(x_1,\ldots,x_n)=x_j$$

for j = k + 1, ..., n, so the first set of equations can be written more concretely in the form

(B5)
$$f_i(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n), x_{k+1}, \dots, x_n) = x_i$$

for $i = 1, \dots, k$.

2. Letting $y_i = g_i(x_1, ..., x_n)$ the equations (B5) become

(B5')
$$f_i(y_1, \ldots, y_k, x_{k+1}, \ldots, x_n) = x_i.$$

Hence what the implicit function theorem is saying is that, modulo the assumption (B1) the system of equations (B5') can be solved for the y_i 's in terms of the x_i 's.

3. By a linear change of coordinates:

$$x_i \to \sum_{r=1}^k a_{i,r} x_r$$
, $i = 1, \dots, k$

we can arrange without loss of generality for the matrix (B1) to be the identity matrix, i.e.,

(B6)
$$\frac{\partial f_i}{\partial x_j}(0) = \delta_{ij}, \quad 1 \le i, j \le k.$$

Our proof of this theorem will be by induction on k.

First, let's suppose that k=1 and, for the moment, also suppose that n=1. Then the theorem above is just the inverse function theorem of freshman calculus. Namely if f(0)=0 and df/dx(0)=1, there exists an interval, $a \le x \le b$, about the origin on which df/dx is greater than 1/2, so f is strictly increasing on this interval and its graph looks like the curve in the figure below

with $c = f(a) \le -\frac{1}{2}a$ and $d = f(b) \ge \frac{1}{2}b$.

The graph of the inverse function, $g:[c,d] \to [a,b]$ is obtained from this graph by just rotating it through ninety degrees, i.e., making the y-axis the horizontal axis and the x-axis the vertical axis. (From the picture it's clear that $y = f(x) \Leftrightarrow x = g(y) \Leftrightarrow f(g(y)) = y$.)

Most elementary text books regard this intuitive argument as being an adequate proof of the inverse function theorem; however, a slightly beefed-up version of this proof (which is completely rigorous) can be found in Spivak, *Calculus*, Chapter 12. Moreover, as Spivak points out, if the slope of the curve in the figure above at the point (x,y) is equal to λ the slope of the rotated curve at (y,x) is $1/\lambda$, so from this proof one concludes that if y = f(x)

(B7)
$$\frac{dg}{dy}(y) = \left(\frac{df}{dx}(x)\right)^{-1} = \left(\frac{df}{dx}(g(y))\right)^{-1}.$$

Since f is a continuous function, its graph is a continuous curve and, therefore, since the graph of g is the same curve rotated by ninety degrees, g is also a continuous functions. Hence by (B7), g is also a C^1 function and hence by (B7), g is a C^2 function and hence In other words g is in $C^{\infty}([c,d])$.

Let's now prove that the implicit function theorem with k=1 and n arbitrary. This amounts to showing that if the function, f, in the discussion above depends on the parameters, $x_2, \ldots x_n$ in a \mathcal{C}^{∞} fashion, then so does its inverse, g. More explicitly let's suppose $f = (x_1, \ldots, x_n)$ is a \mathcal{C}^{∞} function on a subset of \mathbb{R}^n of the form $[a,b] \times V$ where V is a compact, convex neighborhood of the origin in \mathbb{R}^n and satisfies $\partial f/\partial x_1 \geq \frac{1}{2}$ on this set. Then by the argument above there exists a function, $g = g(y, x_2, \ldots, x_n)$ defined on the set, $[a/2, b/2] \times V$, and having the property

(B8)
$$f(x_1, x_2, ..., x_n) = y \Leftrightarrow g(y, x_2, ..., x_n) = x_1.$$

Moreover by (B7) g is a C^{∞} function of y and

(B9)
$$\frac{\partial g}{\partial y}(y, x_2, \dots, x_n) = \frac{\partial f}{\partial x_1}(x_1, x_2, \dots, x_n)^{-1}$$

at $x_1 \stackrel{\checkmark}{=} g(y)$. In particular, since $\frac{\partial f}{\partial x_1} \ge \frac{1}{2}$

(B10)
$$0 < \frac{\partial g}{\partial y} < 2$$

and hence

(B11)
$$|g(y', x_2, \dots, x_n) - g(y, x_2, \dots, x_n)| < 2|y' - y|$$

for points, y and y', or the interval, [a/2, b/2].

The k=1 case of Theorem B1 is almost implied by (B8) and (B9) except that we must still show that g is a C^{∞} function, not just of y, but of all the variables, y, x_2, \ldots, x_n , and this we'll do by quoting another theorem from freshman calculus (this time a theorem from the second semester of freshman calculus).

The mean value theorem in n-variables. Let U be a convex open set in \mathbb{R}^n and $f:U\to\mathbb{R}$ a \mathcal{C}^∞ function. Then for $a,b\in U$ there exists a point, c, on the line interval joining a to b such that

$$f(b) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(c)(b_i - a_i).$$

delefe

Proof. Apply the 1-D mean value theorem to the function, h(t) = f((1-t)a + tb).

Let's now show that the function, g, in (B8) is a \mathbb{C}^{∞} function of the variables, y and x_2 . To simplify our notation we'll suppress the dependence of f on x_3, \ldots, x_n and write f as $f(x_1, x_2)$ and g as $g(y, x_2)$. For $h \in (-\epsilon, \epsilon)$, ϵ small, we have

$$y = f(g(y, x_2 + h), x_2 + h) = f(g(y, x_2), x_2),$$

and, hence, setting $x'_1 = g(y, x_2 + h)$, $x_1 = g(y, x_2)$ and $x'_2 = x_2 + h$, we get from the mean value theorem

$$0 = f(x'_1, x'_2) - f(x_1, x_2)$$

= $\frac{\partial f}{\partial x_1}(c)(x'_1 - x) + \frac{\partial f}{\partial x_2}(c)(x'_2 - x_2)$

and therefore

(B12)
$$g(y, x_2 + h) - g(y, x_2) = \left(-\frac{\partial f}{\partial x_1}(c)\right)^{-1} \frac{\partial f}{\partial x_2}(c) h$$

for some c on the line segment joining (x_1, x_2) to (x'_1, x'_2) . Letting h tend to zero we can draw from this identity a number of conclusions:

I. Since f is a \mathcal{C}^{∞} function on the compact set, $[a,b] \times V$, its derivatives are bounded on this set, so the right hand side of B12 tends to zero as h tends to zero, i.e., for fixed y, g is continuous as a function of x_2 .

II. Now divide the right hand side of (B12) by h and let h tend to zero. Since g is continuous in x_2 , the quotient of (B12) by h tends to its value at (x_1, x_2) . Hence for fixed y f is differentiable as a function of x_2 and

(B13)
$$\frac{\partial g}{\partial x_2}(y, x_2) = -\left(\frac{\partial f}{\partial x_1}\right)^{-1} (x_1, x_2) \frac{\partial f}{\partial x_2}(x_1, x_2)$$

where $x_1 = g(y, x_2)$.

III. Moreover, by the inequality (B11) and the triangle inequality

$$|g(y', x_2') - g(y, x_2)| \le |g(y', x_2') - g(y, x_2')| + |g(y, x_2') - g(y, x_2)|$$

$$\le 2|y' - y| + |g(y, x_2') - g(y, x_2)|,$$

hence g is continuous as a function of y and x_2 .

IV. Hence by (B9) and (B13), g is a C^1 function of y and x_2 , and hence

In other words g is a \mathcal{C}^{∞} function of y and x_2 . This argument works, more or less verbatim, for more than two x_i 's and proves that g is a \mathcal{C}^{∞} function of y, x_2, \ldots, x_n . Thus with $f = f_1$ and $g = g_1$ Theorem B.1 is proved in the special case k = 1.

We'll now prove Theorem B.1 for arbitrary k by induction on k. By induction we can assume that there exists a neighborhood U_0' , of the origin in \mathbb{R}^n and a \mathcal{C}^{∞} diffeomorphism $\varphi: (U_0', 0) \hookrightarrow (U, 0)$ such that

$$\varphi^* f_i = x_i$$

for $2 \le i \le k$ and

$$\varphi^* x_j = x_j$$

for j = 1 and $k + 1 \le j \le n$. Moreover, by (B6)

$$\left(\frac{\partial}{\partial x_1}\varphi^* f_1\right)(0) = \sum_{i=1}^k \frac{\partial f_i}{\partial x_1}(0) \frac{\partial}{\partial x_i} \varphi_i(0) = \frac{\partial \varphi_1}{\partial x_1} = 1$$

since $\varphi_1 = \varphi^* x_1 = x_1$. Therefore we can apply Theorem B.1, with k=1, to the function, $\varphi^* f_1$, to conclude that there exists a neighborhood, U_0 , of the origin in \mathbb{R}^n and a diffeomorphism, $\psi: (U_0,0) \to (U_0',0)$ such that $\psi^* \varphi^* f_1 = x_1$ and $\psi^* \varphi^* x_i = x_i$ for $1 \leq i \leq n$. Thus by (B14) $\psi^* \varphi^* f_i = \psi^* x_i = x_i$ for $2 \leq i \leq k$, and by (B15) $\psi^* \varphi^* x_j = \psi^* x_j = x_j$ for $k+1 \leq j \leq n$. Hence if we let $g = \varphi \circ \psi$ we see that:

$$g^*f_i = (\varphi \circ \psi)^*f_i = \psi^*\varphi^*f_i = x_i$$

for $i \leq i \leq k$ and

$$g^*x_j = (\varphi \circ \psi)^*x_j = \psi^*\varphi^*x_j = x_j$$

for $k+1 \leq j \leq n$.

We'll derive a number of subsidiary results from Theorem B.1. The first of these is the n-dimensional version of the inverse function theorem:

Theorem B.2. Let U and V be open subsets of \mathbb{R}^n and $\varphi:(U,p)\to (V,q)$ a \mathcal{C}^{∞} map. Suppose that the derivative of φ at p

$$D\varphi(p): \mathbb{R}^n \to \mathbb{R}^n$$

is bijective. Then φ maps a neighborhood of p in U diffeomorphically onto a neighborhood of q in V.

Proof. Composing fore and aft by translations we can assume that p=q=0. Let $\varphi=(f_1,\ldots,f_n)$. Then the condition that $D\varphi(0)$ be bijective is the condition that the matrix (B.1) be non-singular. Hence, by Theorem B.1, there exists a neighborhood, V_0 of 0 in V, a neighborhood, U_0 , of 0 in U_0 and a diffeomorphism, $g:V_0\to U_0$, such that

$$g^*f_i = x_i$$

for i = 1, ..., n. However, these equations simply say that g is the inverse of φ , and hence that φ is a diffeomorphism.

A second result which we'll extract from Theorem B.1 is the *canonical submersion theorem*.

Theorem B.3. Let U be an open subset of \mathbb{R}^n and $\varphi:(U,p)\to (\mathbb{R}^k,0)$ a \mathcal{C}^∞ map. Suppose φ is a submersion at p, i.e., suppose its derivative

$$D\varphi(p): \mathbb{R}^n \to \mathbb{R}^k$$

is onto. Then there exists a neighborhood, \mathcal{O} , of p in U, a neighborhood, U_0 , of the origin in \mathbb{R}^n and a diffeomorphism, $g:(U_0,0)\to (\mathcal{O},p)$ such that the map $\varphi\circ g:(U_0,0)\to (\mathbb{R}^n,0)$ is the restriction to U_0 of the canonical submersion:

(B16)
$$\pi : \mathbb{R}^n \to \mathbb{R}^k, \ \pi(x_1, \dots, x_n) = (x_1, \dots, x_k).$$

Proof. Let $\varphi = (f_1, \ldots, f_k)$. Composing φ with a translation we can assume p = 0 and by a permutation of the variables x_1, \ldots, x_n we can assume that the matrix (B1) is non-singular. By Theorem B.1

we conclude that there exists a diffeomorphism. $g:(U_0,0)\hookrightarrow (U,p)$ with the properties $g^*f_i=x_i, i=1,\ldots,k$, and hence,

$$\varphi \circ g(x_1,\ldots,x_n) = (x_1,\ldots,x_k).$$

As a third application of Theorem B.1 we'll prove a theorem which is similar in spirit to Theorem B.3, the *canonical immersion theorem*.

Theorem B.4. Let U be an open neighborhood of the origin in \mathbb{R}^k and $\varphi:(U,0)\to(\mathbb{R}^n,p)$ a \mathcal{C}^∞ map. Suppose that the derivative of φ at 0

$$D\varphi(0): \mathbb{R}^k \to \mathbb{R}^n$$

is injective. Then there exists a neighborhood, U_0 , of 0 in U, a neighborhood, V, of p in \mathbb{R}^n and a diffeomorphism.

$$\psi: V \to U_0 \times \mathbb{R}^{n-k}$$

such that the map, $\psi \circ \varphi : U_0 \to U_0 \times \mathbb{R}^{n-k}$ is the restriction to U_0 of the canonical immersion

(B17)
$$\iota : \mathbb{R}^k \to \mathbb{R}^k \times \mathbb{R}^{n-k}, \quad \iota(x_1, \dots, x_k) = (x_1, \dots, x_k, 0, \dots, 0).$$

Proof. Let $\varphi = (f_1, \ldots, f_n)$. By a permutation of the f_i 's we can arrange that the matrix

$$\left[\frac{\partial f_i}{\partial x_j}(0)\right] , \quad 1 \le i, j \le k$$

is non-singular and by composing φ with a translation we can arrange that p = 0. Hence by Theorem B.2 the map

$$\chi: (U,0) \to (\mathbb{R}^k,0) \quad x \to (f_1(x),\ldots,f_k(x))$$

maps a neighborhood, U_0 , of 0 diffeomorphically onto a neighborhood, V_0 , of 0 in \mathbb{R}^k . Let $\psi:(V_0,0)\to(U_0,0)$ be its inverse and let

$$\gamma: V_0 \times \mathbb{R}^{n-k} \to U_0 \times \mathbb{R}^{n-k}$$

be the map

$$\gamma(x_1,\ldots,x_n)=(\psi(x_1,\ldots,x_k),x_{k+1},\ldots,x_n).$$

296 Appendix B. The implicit function theorem

Then

(B18)
$$\gamma \circ \varphi(x_1, \dots, x_k) = \gamma(\chi(x_1, \dots, x_k), f_{k+1}(x), \dots, f_n(x))$$

= $(x_1, \dots, x_k, f_{k+1}(x), \dots, f_n(x))$.

Now note that the map

$$h: U_0 \times \mathbb{R}^{n-k} \to U_0 \times \mathbb{R}^{n-k}$$

defined by

$$h(x_1,\ldots,x_n)=(x_1,\ldots,x_k,\,x_{k+1}-f_{k+1}(x),\ldots,x_n-f_n(x))$$

is a diffeomorphism (Why? What is its inverse?) and, by (B18),

$$h \circ \gamma \circ \varphi(x_1,\ldots,x_k) = (x_1,\ldots,x_k,0,\ldots,0),$$

i.e., $(h \circ \gamma) \circ \varphi = i$. Thus we can take the V in Theorem B.4 to be $V_0 \times \mathbb{R}^{n-k}$ and the ψ to be $h \circ \gamma$.

Remarks.

The canonical submersion and immersion theorems can be succinctly summarized as saying that every submersion "looks locally like the canonical submersion" and every immersion "looks locally like the canonical immersion".