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These notes recall some standard topological terms we will use (and where there is not a stan-
dard definition, to indicate which definition we are using), along with some well known (or
easy to prove) facts. They are not meant to be mathematically precise, but we will begin by
recalling some precise definitions; see [1] or your favorite topology textbook for details.

Definition 1. A topological space is a set X (whose elements are called points) together with a
topology U : a family of open subsets of X including X and the empty set, closed under unions
and finite intersections. A continuous map of topological spaces is a map of sets f : X → Y
for which preimages of open sets are open. Taking continuous maps as morphisms yields the
category Top of topological spaces, a concrete category that is complete and cocomplete, with
a unique initial object (the empty set), and final objects that are singletons (these are precisely
the sets that admit only one topology, all others admit more than one). Isomorphisms in this
category are called homeomorphisms.

Definition 2. Let x be a point in a topological space. A neighborhood U of x is a set whose inte-
rior (union of open V ⊆ U) contains x . The point x is a limit of S ⊆ X if every neighborhood of
x intersects S in some y 6= x . A sequence {xn} converges (to the limit x) if every neighborhood
of x contains all but finitely many elements of {xn}, in which case we write {xn} → x .

Definition 3. A metric on a set X is a function d : X × X → R≥0 with d(x , y) = 0⇔ x = y ,
d(x , y) = d(y, x), and d(x , y) + d(y, z) ≥ d(x , z). Every metric d induces a topology on X
defined by the basis of open balls Br(x) := {y : d(x , y)< r}, making X ametric space. ACauchy
sequence {xn} in a metric space has the property that for every ε > 0 we have d(xn, xn+1)< ε for
all but finitely many n. A metrix space in which every Cauchy sequence converges is complete.

Definition 4. A covering map f : X → Y is a continuous surjection for which each y ∈ Y has
an open neighborhood V whose preimage f −1(V ) is a union of disjoint open Uα ⊆ X on which
f restricts to a homeomorphism Uα ∼−→ V . When such an f exists, X is a covering space of Y .
Two covering maps are equivalent if the differ by a homeomorphism X → X .

Definition 5. A homotopy between continuous maps f , g : X → Y is a continuous map h: X ×
[0, 1]→ Y such that h(x , 0) = f (x) and h(x , 1) = g(x) for all x ∈ X . When such an h exists, f
and g are homotopic.

Definition 6. A path is a continuous map f : [0,1]→ X (the image of f is a path in X ). Two
paths f1, f2 : [0, 1]→ X are path homotopic if there is a homotopy h: [0, 1]× [0,1]→ Y with
f1(0) = h(0, t) = f2(0) and f1(1) = h(1, t) = f2(1) for 0 ≤ t ≤ 1. Path homotopy defines an
equivalence relation on paths.

Definition 7. Given two paths f , g : [0, 1] → X with f (1) = g(0), their product is the path
h defined by h(t) = f (2t) for t ∈ [0, 1/2] and h(t) = g(2t − 1) for t ∈ [1/2, 1]; this product
operation is compatible with path homotopy equivalence.

Definition 8. A path f : [0,1] → X with f (0) = f (1) = x0 is a loop with base point x0. The
fundamental groupπ1(X , x0) of a topological space X is the group of path homotopy equivalence
classes of loops with base point x0 (whose identity is the homotopy class of the constant loop
t 7→ x0). If X is path connected and π(X , x0) is trivial for some (equivalently, any) x0 ∈ X ,
then X is simply connected. If every x0 ∈ X has an open neighborhood U for which the group
homomorphism π1(U , x0)→ π1(X , x0) is trival, then X is semilocally simply connected.

Definition 9. A simply connected covering space of X is called a universal covering space. If X
is path connected and locally path connected, all universal covering spaces of X are equivalent,
and if X is also semilocally simply connected, then it has a universal covering space.
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terms applied to sets or families of sets
closed complement is open
closure intersection of all closed supersets
interior union of all open subsets
dense closure is a superset
neighborhood set whose interior contains a specified point or set
cover family of sets whose union contains every point
open cover cover consisting of open sets
basis open cover containing a subset of every neighborhood
path image of a continuous map [0,1]→ X
diagonal the subset ∆= {(x , x)} of X × X

terms applied to topological spaces (including subsets viewed as subspaces)
discrete every set is open
indiscrete only the empty set and whole space are open
T1 singletons are closed
Hausdorff pairs of distinct points have disjoint neighborhoods
regular pairs (x , C) with x 6∈ C closed have disjoint neighborhoods
compact every open cover has a finite subcover
limit point compact every infinite set has a limit point
sequentially compact every sequence has a convergent subsequence
locally compact every point has a compact neighborhood
separable contains a countable dense subset
connected not the disjoint union of two closed sets
path connected every pair of points can be joined by a path
locally path connected basis of path connected neighborhoods
simply connected a path connected space with trivial fundamental group
totally disconnected only the empty set and one-point sets are connected
first countable every point has countable set of neighborhoods

that includes a subset of every neighborhood
second countable has a countable basis
metrizable admits a metric that induces its topology
completely metrizable metrizable as a complete metric space

terms applied to morphisms (continuous maps)
open sends open sets to open sets
closed sends closed sets to closed sets
homeomorphism has a continuous inverse (also bicontinuous, or isomorphism)
local homeomorphism restricts to a homeomorphism on a neighborhood of every point
diagonal the map ∆: X → X × X sending x to (x , x)
quasiproper preimage of a compact set is compact
proper closed and quasiproper
separated fibers are Hausdorff

terms applied to topologies
finer contains (also stronger)
coarser contained in (also weaker)
subspace coarsest topology on subsets making inclusion continuous
product coarsest topology on products making projections continuous
coproduct finest topology on coproducts making injections continuous
quotient finest topology on quotients making quotient maps continuous
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Warning 1. In algebraic geometry (and in Bourbaki) compact spaces are required to be Haus-
dorff; the term quasicompact is used for the notion of compactness defined here, and some
authors call quasiproper maps proper (adding the closed condition when needed).

The last four terms in the table refer to ways of creating new topologies from old ones:

1. If X is a topological space, any subset Y ⊆ X can be given the subspace topology in which
the inclusion map ι : Y ,→ X is continuous. The open sets in Y are precisely the inverse
images of the open sets in X .

2. If (X i) is a family of topological spaces, the product set X :=
∏

i X i can be given the
product topology in which the projections πi : X � X i are all continuous. The topology
of X is generated by the inverse images of open sets in the X i .

3. If (X i) is a family of topological spaces, the coproduct (disjoint union) X :=
∐

i X i can be
given the coproduct topology in which the injections ιi : X i ,→ X are all continuous. The
open sets of X are precisely those sets whose inverse image is open in every X i .

4. If X is a topological space and ∼ is an equivalence relation on the set X , the set X/ ∼
of equivalence classes can be given the quotient topology in which the quotient map
π: X � X/ ∼ that sends elements to their equivalence classes is continuous. The open
sets of X/∼ are precisely those sets whose inverse image is open in X .

Below is a running list of easy and/or standard facts. You are welcome to use these on problem
sets without further justification.

fact justification

finite sets are compact trivial
a set is closed if and only if it contains its limit points trivial
closed subsets of a compact space are compact easy
closed/open sets in locally compact Hausdorff spaces are locally compact easy
a space is Hausdorff if and only the diagonal is closed easy
in a Hausdorff space limits are unique easy
compact subsets of a Hausdorff space are closed easy
a subset of Rn is compact if and only if it is closed and bounded Heine–Borel
continuous bijections f : X → Y with X compact, Y Hausdorff are open easy
any product connected spaces is connected easy
any product of totally disconnected spaces is totally disconnected easy
any product path connected spaces is path connected easy
any product of Hausdorff spaces is Hausdorff easy
any product of compact spaces is compact Tychonoff
finite products of locally compact spaces are locally compact easy
not all products of locally compact spaces are locally compact Rω

quasiproper maps to locally compact Hausdorff spaces are proper easy
if Y is compact the projection map X × Y → X is closed Tube lemma
compact⇒ limit point compact⇒ sequentially compact easy
for metric spaces: compact⇔ limit point compact⇔ sequentially compact easy
regular Hausdorff second countable⇔ metrizable and separable Urysohn
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