Description

Your solutions should be written up in latex and submitted as a pdf-file on Gradescope before midnight on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators or the name of your group on pset partners, and any references you consulted. If there are none write "Sources consulted: none" at the top of your solution. Pick any combination of problems that sum to 100 points, then complete the survey problem.

Problem 1. Commutator subgroups and adelic images of E / \mathbb{Q} (50 points)

Let E / \mathbb{Q} be an elliptic curve without potential complex multiplication, let

$$
\rho_{E}: \mathrm{Gal}_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\widehat{\mathbb{Z}})
$$

be its adelic Galois representation, and let $G_{E}:=\rho_{E}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ denote its image.
Serre's open image theorem implies that G_{E} is an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$, and in particular, has finite index. The goal of this problem is to prove another result of Serre, which states that the index $\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): G_{E}\right]$ is divisible by 2 , and we thus never have $G_{E}=\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$; the proof also gives an explicit non-obvious constraint on the open subgroups of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ that can arise as Galois images of elliptic curves E / \mathbb{Q} that allows us to rule out some otherwise plausible looking candidates.

Recall that every group G has a commutator subgroup

$$
[G: G]:=\left\{g h g^{-1} h^{-1}: g, h \in G\right\}
$$

a normal subgroup of G that determines the maximal abelian quotient $G^{\mathrm{ab}}:=G /[G: G]$. For any $G \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ the commutator subgroup $[G, G]$ lies in the intersection $G \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$. Indeed, $G \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$ is a normal subgroup contained in the kernel of the determinant map det: $G \rightarrow \widehat{\mathbb{Z}}^{\times}$, and we have an abelian quotient $G /\left(G \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})\right) \subseteq \widehat{\mathbb{Z}}^{\times}=\mathrm{GL}_{2}(\widehat{\mathbb{Z}}) / \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$.

One might naïvely guess that $[G, G]=G \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$, but this is not always true. Indeed, it fails for $G=\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$, but it always holds for G_{E} (as you will prove). This depends crucially on the fact that E is defined over \mathbb{Q} rather than an extension of \mathbb{Q}; for elliptic curves E over number fields K that do not contain any roots of unity other than ± 1 we will have $\rho_{E}\left(G_{K}\right)=\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ for most E / K, except when $K=\mathbb{Q}$.

For an open $H \leq \mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$ the level of H is the least ℓ^{n} for which $H=\pi_{\ell^{n}}^{-1}\left(\pi_{\ell^{n}}(H)\right)$, where $\pi_{\ell^{n}}: \mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right) \rightarrow \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ is the reduction-modulo- ℓ^{n} map.

Let $\chi_{\mathrm{cyc}}: \mathrm{Gal}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}^{\times}$be the cyclotomic character defined by $\sigma\left(\zeta_{n}\right)=\zeta_{n}^{\chi \text { cyc }(\sigma) \bmod n}$.
(a) Show that for every $m \in \mathbb{Z}_{\geq 1}$ the reduction-modulo- m map $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / m \mathbb{Z})$ is surjective.
(b) Show that $\# \mathrm{SL}_{2}(\mathbb{Z})^{\mathrm{ab}} \mid 12$ and $\mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})^{\mathrm{ab}}, \mathrm{SL}_{2}(Z / 3 \mathbb{Z})^{\mathrm{ab}}, \mathrm{SL}_{2}(Z / 4 \mathbb{Z})^{\mathrm{ab}}$ are cyclic of order $2,3,4$, respectively.
(c) Show that $\mathrm{SL}_{2}(\mathbb{Z})^{\mathrm{ab}} \simeq \mathbb{Z} / 12 \mathbb{Z}$ and reduction modulo 12 induces an isomorphism $\mathrm{SL}_{2}(\mathbb{Z})^{\mathrm{ab}} \xrightarrow{\sim} \mathrm{SL}_{2}(\mathbb{Z} / 12 \mathbb{Z})^{\text {ab }}$. Then show that for any positive integer m the group $\mathrm{SL}_{2}(\mathbb{Z} / m \mathbb{Z})^{\mathrm{ab}}$ is cyclic of order $\operatorname{gcd}(m, 12)$.
(d) Show that $\mathrm{SL}_{2}\left(\mathbb{Z}_{2}\right)^{\mathrm{ab}}$ is cyclic of order $4, \mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)^{\mathrm{ab}}$ is cyclic of order 3, and $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)^{\mathrm{ab}}$ is trivial for every prime $\ell \geq 5$, and that the commutator subgroup of $\mathrm{SL}_{2}\left(\mathbb{Z}_{2}\right)$ has level 4 in $\mathrm{SL}_{2}\left(\mathbb{Z}_{2}\right)$, while the commutator subgroup of $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ has level 3 in $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.
(e) Show that the commutator subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ is $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$ for all $\ell \geq 3$.
(f) Show that the commutator subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ has level 2 and index 2 in $\mathrm{SL}_{2}\left(\mathbb{Z}_{2}\right)$ and conclude that the commutator subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ is an open subgroup of $\mathrm{SL}_{2}(\widehat{\mathbb{Z}})$ of level 2 and index 2 , and in particular, is not equal to $\mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})$.
(g) Show that if G is an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ or $\mathrm{SL}_{2}(\widehat{\mathbb{Z}})$ then $[G, G]$ is an open subgroup of $\mathrm{SL}_{2}(\widehat{\mathbb{Z}})$.
(h) Show that det $0 \rho_{E}=\chi_{\text {cyc }}^{-1}$, and conclude that $\operatorname{det}\left(G_{E}\right)=\widehat{\mathbb{Z}}^{\times}$.

Recall the Kronecker-Weber theorem: the cyclotomic field $\mathbb{Q}^{\text {cyc }}=\bigcup_{n \geq 1} \mathbb{Q}\left(\zeta_{n}\right)$ is the maximal abelian extension $\mathbb{Q}^{\text {ab }}$ of \mathbb{Q}.
(h) Show that $G_{E} \cap \mathrm{SL}_{2}(\widehat{\mathbb{Z}})=\rho_{E}\left(\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}^{\text {ab }}\right)=\left[G_{E}, G_{E}\right]\right.$. Deduce that $G_{E} \neq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$, and moreover, that 2 divides the index $\left[\mathrm{GL}_{2}(\widehat{\mathbb{Z}}): G_{E}\right]$.

Problem 2. Quadratic twists and refinements (50 points)

Let $E: y^{2}=x^{3}+A x+B$ be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$, let d denote a nonsquare squarefree integer, and let $E_{d}: d y^{2}=x^{3}+A x+B$ denote the quadratic twist of E by $\mathbb{Q}(\sqrt{d}) / \mathbb{Q}$. Let $\chi_{\text {cyc }}: \operatorname{Gal}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}$ denote the cyclotomic character defined in Problem 1, and let $\chi_{d}: \mathrm{Gal}_{\mathbb{Q}} \rightarrow\{ \pm 1\}$ be the unique homomorphism that factors through the isomorphism $\operatorname{Gal}(\mathbb{Q}(\sqrt{d}) / \mathbb{Q})) \xrightarrow{\sim}\{ \pm 1\}$.

We write $H \sim K$ when H and K are conjugate subgroups of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ or $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$. When H is a subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ or $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ that contains -1 , we call the index-2 subgroups of H that do not contain -1 refinements of H.
(a) Show there is a unique homomorphism $\psi: \widehat{\mathbb{Z}} \rightarrow\{ \pm 1\}$ for which $\chi_{d}=\psi \circ \chi_{\text {cyc }}^{-1}$ and let $H_{d}:=\left\{\psi(\operatorname{det} g) g: g \in G_{E}\right\}$. Prove $H_{d} \sim \rho_{E_{d}}\left(\operatorname{Gal}_{\mathbb{Q}}\right)$ and $\pm \rho_{E}\left(\operatorname{Gal}_{\mathbb{Q}}\right) \sim \pm \rho_{E_{d}}\left(\operatorname{Gal}_{\mathbb{Q}}\right)$.
(b) Let H^{\prime} be an index-2 subgroup of $\pm \rho_{E}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ that does not contain -1 . Show that there is a unique d for which $\rho_{E_{d}}\left(\operatorname{Gal}_{\mathbb{Q}}\right) \sim H_{d} \sim H^{\prime}$. Conclude that every refinement of $\pm \rho_{E}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ can be realized as $\rho_{E^{\prime}}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ for some quadratic twist E^{\prime} / \mathbb{Q} of E that is unique up to \mathbb{Q}-isomorphism.
(c) For each $N \leq \mathbb{Z}_{\geq 1}$ show that all $\rho_{E, N}\left(\mathrm{Gal}_{\mathbb{Q}}\right) \sim \rho_{E_{d}, N}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ for all but finitely many d, and that every refinement of $\pm \rho_{E, N}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ arises as $\rho_{E_{d}, N}\left(\mathrm{Gal}_{\mathbb{Q}}\right)$ for a unique d that divides $\operatorname{disc}(\mathbb{Q}(E[N])$.

Let H be an open subgroup of $\mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ of level N that contains -1 . For each $M \in \mathbb{Z}_{\geq 1}$ let $\pi_{M}: \mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / M \mathbb{Z})$ denote the reduction-modulo- m map.
(d) Let $N \mid M \in \mathbb{Z}_{\geq 1}$. Show that H has a refinement of level dividing M if and only if $\pi_{M}(H)$ has a refinement, and the level of every refinement of H is a multiple of N.
(e) Show by example that H may admit a refinement of level $2 N$ even when it has no refinements of level N.
(f) Show that H has a refinement whose level divides $2 N$ if and only -1 is not a square in $\pi_{2 N}(H)^{\text {ab }}$, the maximal abelian quotient of $\pi_{2 n}(H)$.
(g) Show that if H has any refinements then it has infinitely many.
(h) Let $p \perp M \in \mathbb{Z}_{\geq 1}$ be an odd prime. Show that if H has a refinement of level $N M p^{e}$ for some $e>0$ then H has a refinement of level $N M$ (hint: use Goursat's lemma). Conclude that if H has a refinement then it has one of level $N 2^{e}$ for some $e \geq 0$.
(i) Show that if H has a refinement of level $N 2^{e}$ for some $e \geq 1$ then H has a refinement of level $2 N$, and if N is odd then H has a refinement of level N.
Conclude that either H has no refinements or it has infinitely many, including one of level N or $2 N$, depending on whether $-1 \in \pi_{2 N}(H)^{\text {ab }}$ is a square or not.

Problem 3. Complex conjugation and curves of genus zero (50 points)

Recall that the categories of elliptic curves E / \mathbb{C} (up to isomorphism) and complex tori \mathbb{C} / L (up to homethety) are equivalent. Here $L \subseteq \mathbb{C}$ is a free \mathbb{Z}-module of rank 2 and thus has a \mathbb{Z}-module basis $\left[\omega_{1}, \omega_{2}\right]$ for some \mathbb{R}-linearly independent $\omega_{1}, \omega_{2} \in \mathbb{C}^{\times}$. After applying the homethety $\pm \omega_{2} / \omega_{1}$ we can assume $L=[1, \tau]$ with $\tau \in \mathbf{H}$, in which case the corresponding elliptic curve E_{L} is defined by

$$
E_{L}: y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau),
$$

where $g_{2}(\tau)=60 \sum^{\prime} \frac{1}{(m+n \tau)^{4}}$ and $g_{3}(\tau)=140 \sum^{\prime} \frac{1}{(m+n \tau)^{6}}$, with the sums Σ^{\prime} taken over the nonzero lattice points $m+n \tau \in L$. The map $\Phi: \mathbb{C} / L \rightarrow E_{L}(\mathbb{C})$ that sends L to the identity element of $E_{L}(\mathbb{C})$ and $z+L$ to the point $\left(\wp^{\prime}(z), \wp^{\prime}(z)\right)$ is then an isomorphism of topological groups that is also an isomorphism of compact Riemann surfaces, where

$$
\wp(z):=\frac{1}{z^{2}}+\sum_{\omega \in L-\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

Every elliptic curve E / \mathbb{C} is isomorphic an elliptic curve defined by an equation of the form above, and this includes the base change to \mathbb{C} of any elliptic curve defined over \mathbb{Q}. Moreover, if $E: y^{2}=x^{3}+A x+B$ is an elliptic curve over \mathbb{Q}, there is a $\tau \in \mathbf{H}$ for which $g_{2}(\tau)=-4 A$ and $g_{3}(\tau)=-4 B$, and for $L=[t, \tau]$ the corresponding curve E_{L} will have rational coefficients.
(a) Show that if $g_{2}(L), g_{3}(L) \in \mathbb{R}$ (so E_{L} is defined over \mathbb{R} not just \mathbb{C}), then L is stable under complex conjugation, in which case $\Phi(\mathbb{R}) \subseteq E_{L}(\mathbb{R})$ but $\Phi(\mathbb{C}) \nsubseteq E_{L}(\mathbb{R})$.

Now let E be an elliptic curve over \mathbb{Q}, let $\rho_{E}: \operatorname{Gal}_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ be its adelic Galois representation, fix an embedding $\overline{\mathbb{Q}} \subseteq \mathbb{C}$, and let $c \in \operatorname{Gal}_{\mathbb{Q}}$ denote the automorphism corresponding to the action of complex conjugation on $\overline{\mathbb{Q}} \subseteq \mathbb{C}$.
(b) Show that $E(\mathbb{R})$ has a subgroup isomorphic to \mathbb{R} / \mathbb{Z}, and we can choose a compatible system of bases for $E[N]$ so that $\rho_{E}(c)$ is upper triangular with a 1 in the upper left. Then show that $\operatorname{det}\left(\rho_{E}(c)\right)=-1$ and $\operatorname{tr}\left(\rho_{E}(c)\right)=0$. Conclude that for $N>2$ we cannot have $E[N] \subseteq E(\mathbb{Q})$.
(c) Show that for odd N we can chose a basis for $E[N]$ so that $\rho_{E}(c)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, but this is not necessarily true for $N=4$. Then show that for every N we can choose a basis for $E[N]$ so that $\rho_{E}(c)$ is either $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ or $\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$.
(d) Let $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ be an open subgroup of level N. Show that if the reduction of H to $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ contains no element conjugate to $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ or $\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$ then $X_{H}(\mathbb{R})=\emptyset$, and in particular, $X_{H}(\mathbb{Q})=\emptyset$.

Let X be a nice (smooth, projective, geometrically integral) curve over \mathbb{Q} of genus 0 . Then X can be defined by a quadratic form $a x^{2}+b y^{2}+c z^{2}=0$ with $a, b, c \in \mathbb{Z}$ and $a b c \neq 0$. Recall that if X has a rational point P, then $X \simeq \mathbb{P}_{\mathbb{Q}}^{1}$ (the isomorphism identifies $Q \in X(\mathbb{Q})$ with the slope of the line $\overline{P Q})$ and X has infinitely many rational points. The Hasse-Minkowski theorem implies that X has a rational point if and only if it has a rational point over every completion of \mathbb{Q}. It follows from Hilbert reciprocity that the number of places $p \leq \infty$ of \mathbb{Q} for which $X\left(\mathbb{Q}_{p}\right)=\emptyset$ is finite and even.
(f) Show that if p is an odd prime that does not divide $a b c$ then $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$.

Let $H \leq \mathrm{GL}_{2}(\widehat{\mathbb{Z}})$ be an open subgroup of level N with $\operatorname{det}(H)=\mathbb{Z}^{\times}$. Then X_{H} is a nice curve over \mathbb{Q} that has good reduction modulo every prime $p \nmid N$ (this means that the reduction of X_{H} to \mathbb{F}_{p} is also a nice curve). If X_{H} has genus zero this means that we can choose an integral model $a x^{2}+b y^{2}+c z^{2}$ for X_{H} with $p \nmid a b c$.
(g) Suppose N is a prime power and X_{H} has genus zero. Show that $X_{H}(\mathbb{Q})=\emptyset$ if and only if the image of H to $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ contains no conjugate of $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ or $\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$.
(h) By applying the genus formula for X_{H} with $H=\{ \pm 1\} \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ (see the notes for Lecture 21), derive a formula for $g(X(N))$ as a function of N and list the positive integers N for which $g(X(N))=0$; your list should include $N \leq 3$. Conclude that for the N in your list, for every H of level N we have $g\left(X_{H}\right)=0$.
(i) Up to conjugation there are 6 subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ with $\operatorname{det}(H)=(\mathbb{Z} / 3 \mathbb{Z})^{\times}$ that contain -1 ; their indexes are $1,3,4,6,6,12$. Use (\mathbf{g}) to determine which of the corresponding modular curves X_{H} have rational points.
(j) Up to conjugation there are 3 subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ with $\operatorname{det}(H)=(\mathbb{Z} / 3 \mathbb{Z})^{\times}$that do not contain -1 ; there indexes are $8,8,24$. Determine which of the corresponding modular curves X_{H} have rational points.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing" $)$, and how difficult you found it $(1=$ "trivial," $10=$ "brutal" $)$. Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$5 / 6$	Modular curves X_{H}				
$5 / 8$	Counting points on X_{H}				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

