Let E/\mathbb{Q} be an elliptic curve without potential complex multiplication, let

$$\rho_E : \text{Gal}_\mathbb{Q} \rightarrow \text{GL}_2(\hat{\mathbb{Z}})$$

be its adelic Galois representation, and let $G_E := \rho_E(\text{Gal}_\mathbb{Q})$ denote its image.

Serre’s open image theorem implies that G_E is an open subgroup of $\text{GL}_2(\hat{\mathbb{Z}})$, and in particular, has finite index. The goal of this problem is to prove another result of Serre, which states that the index $[\text{GL}_2(\hat{\mathbb{Z}}) : G_E]$ is divisible by 2, and we thus never have $G_E = \text{GL}_2(\hat{\mathbb{Z}})$; the proof also gives an explicit non-obvious constraint on the open subgroups of $\text{GL}_2(\hat{\mathbb{Z}})$ that can arise as Galois images of elliptic curves E/\mathbb{Q} that allows us to rule out some otherwise plausible looking candidates.

Recall that every group G has a **commutator subgroup**

$$[G : G] := \{ghg^{-1}h^{-1} : g, h \in G\},$$

a normal subgroup of G that determines the **maximal abelian quotient** $G_{\text{ab}} := G/[G : G].$

For any $G \leq \text{GL}_2(\hat{\mathbb{Z}})$ the commutator subgroup $[G, G]$ lies in the intersection $G \cap \text{SL}_2(\hat{\mathbb{Z}}).$

Indeed, $G \cap \text{SL}_2(\hat{\mathbb{Z}})$ is a normal subgroup contained in the kernel of the determinant map $\text{det} : G \rightarrow \hat{\mathbb{Z}}^\times,$ and we have an abelian quotient $G/(G \cap \text{SL}_2(\hat{\mathbb{Z}})) \subseteq \hat{\mathbb{Z}}^\times = \text{GL}_2(\hat{\mathbb{Z}})/\text{SL}_2(\hat{\mathbb{Z}}).$

One might na"ively guess that $[G, G] = G \cap \text{SL}_2(\hat{\mathbb{Z}}),$ but this is not always true. Indeed, it fails for $G = \text{GL}_2(\hat{\mathbb{Z}}),$ but it always holds for G_E (as you will prove). This depends crucially on the fact that E is defined over \mathbb{Q} rather than an extension of \mathbb{Q}; for elliptic curves E over number fields K that do not contain any roots of unity other than ± 1 we will have $\rho_E(G_K) = \text{GL}_2(\hat{\mathbb{Z}})$ for most $E/K,$ except when $K = \mathbb{Q}.$

For an open $H \leq \text{SL}_2(\mathbb{Z}_\ell)$ the **level** of H is the least ℓ^n for which $H = \pi_{\ell^n}^{-1}(\pi_{\ell^n}(H)),$ where $\pi_{\ell^n} : \text{SL}_2(\mathbb{Z}_\ell) \rightarrow \text{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ is the reduction-modulo-ℓ^n map.

Let $\chi_{\text{cyc}} : \text{Gal}_\mathbb{Q} \rightarrow \hat{\mathbb{Z}}^\times$ be the **cyclotomic character** defined by $\sigma(\zeta_n) = \zeta_n^{\chi_{\text{cyc}}(\sigma) \mod n}.$

(a) Show that for every $m \in \mathbb{Z}_{\geq 1}$ the reduction-modulo-m map $\text{SL}_2(\mathbb{Z}) \rightarrow \text{SL}_2(\mathbb{Z}/m\mathbb{Z})$ is surjective.

(b) Show that $\#\text{SL}_2(\mathbb{Z})_{\text{ab}}|12$ and $\text{SL}_2(\mathbb{Z}/2\mathbb{Z})_{\text{ab}}, \text{SL}_2(\mathbb{Z}/3\mathbb{Z})_{\text{ab}}, \text{SL}_2(\mathbb{Z}/4\mathbb{Z})_{\text{ab}}$ are cyclic of order 2, 3, 4, respectively.

(c) Show that $\text{SL}_2(\mathbb{Z})_{\text{ab}} \simeq \mathbb{Z}/12\mathbb{Z}$ and reduction modulo 12 induces an isomorphism $\text{SL}_2(\mathbb{Z})_{\text{ab}} \rightarrow \text{SL}_2(\mathbb{Z}/12\mathbb{Z})_{\text{ab}}.$ Then show that for any positive integer m the group $\text{SL}_2(\mathbb{Z}/m\mathbb{Z})_{\text{ab}}$ is cyclic of order $\gcd(m, 12).$
(d) Show that $SL_2(\mathbb{Z}_2)^{ab}$ is cyclic of order 4, $SL_2(\mathbb{Z}_3)^{ab}$ is cyclic of order 3, and $SL_2(\mathbb{Z}_4)^{ab}$ is trivial for every prime $\ell \geq 5$, and that the commutator subgroup of $SL_2(\mathbb{Z}_2)$ has level 4 in $SL_2(\mathbb{Z}_2)$, while the commutator subgroup of $SL_2(\mathbb{Z}_3)$ has level 3 in $SL_2(\mathbb{Z}_3)$.

(e) Show that the commutator subgroup of $GL_2(\mathbb{Z}_\ell)$ is $SL_2(\mathbb{Z}_\ell)$ for all $\ell \geq 3$.

(f) Show that the commutator subgroup of $GL_2(\mathbb{Z}_2)$ has level 2 and index 2 in $SL_2(\mathbb{Z}_2)$ and conclude that the commutator subgroup of $GL_2(\mathbb{Z})$ is an open subgroup of $SL_2(\mathbb{Z})$ of level 2 and index 2, and in particular, is not equal to $GL_2(\mathbb{Z}) \cap SL_2(\mathbb{Z})$.

(g) Show that if G is an open subgroup of $GL_2(\mathbb{Z})$ or $SL_2(\mathbb{Z})$ then $[G,G]$ is an open subgroup of $SL_2(\mathbb{Z})$.

(h) Show that $\det \circ \rho_E = \chi_{cyc}^{-1}$, and conclude that $\det(G_E) = \hat{\mathbb{Z}}^\times$.

Recall the Kronecker-Weber theorem: the cyclotomic field $\mathbb{Q}^{cyc} = \bigcup_{n \geq 1} \mathbb{Q}(\zeta_n)$ is the maximal abelian extension \mathbb{Q}^{ab} of \mathbb{Q}.

(i) Show that $G_E \cap SL_2(\mathbb{Z}) = \rho_E(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}^{ab})) = [G_E, G_E]$. Deduce that $G_E \neq GL_2(\mathbb{Z})$, and moreover, that 2 divides the index $[GL_2(\mathbb{Z}) : G_E]$.

Problem 2. Quadratic twists and refinements (50 points)

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} with $A, B \in \mathbb{Z}$, let d denote a nonsquare squarefree integer, and let $E_d: dy^2 = x^3 + Ax + B$ denote the quadratic twist of E by $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$. Let $\chi_{cyc}: \text{Gal}_\mathbb{Q} \to \hat{\mathbb{Z}}$ denote the cyclotomic character defined in Problem 1, and let $\chi_d: \text{Gal}_\mathbb{Q} \to \{\pm 1\}$ be the unique homomorphism that factors through the isomorphism $\text{Gal}(\mathbb{Q}(\sqrt{d})/\mathbb{Q})) \cong \{\pm 1\}$.

We write $H \sim K$ when H and K are conjugate subgroups of $GL_2(\mathbb{Z})$ or $GL_2(\mathbb{Z}/N\mathbb{Z})$.

When H is a subgroup of $GL_2(\mathbb{Z})$ or $GL_2(\mathbb{Z}/N\mathbb{Z})$ that contains -1, we call the index-2 subgroups of H that do not contain -1 refinements of H.

(a) Show there is a unique homomorphism $\psi: \hat{\mathbb{Z}} \to \{\pm 1\}$ for which $\chi_d = \psi \circ \chi_{cyc}^{-1}$ and let $H_d := \{\psi(\det g) : g \in G_E\}$. Prove $H_d \sim \rho_{E_d}(\text{Gal}_\mathbb{Q})$ and $\pm \rho_E(\text{Gal}_\mathbb{Q}) \sim \pm \rho_{E_d}(\text{Gal}_\mathbb{Q})$.

(b) Let H' be an index-2 subgroup of $\pm \rho_E(\text{Gal}_\mathbb{Q})$ that does not contain -1. Show that there is a unique d for which $\rho_{E_d}(\text{Gal}_\mathbb{Q}) \sim H_d \sim H'$. Conclude that every refinement of $\pm \rho_E(\text{Gal}_\mathbb{Q})$ can be realized as $\rho_{E'}(\text{Gal}_\mathbb{Q})$ for some quadratic twist E'/\mathbb{Q} of E that is unique up to \mathbb{Q}-isomorphism.

(c) For each $N \leq 21$ show that all $\rho_{E,N}(\text{Gal}_\mathbb{Q}) \sim \rho_{E_{d,N}}(\text{Gal}_\mathbb{Q})$ for all but finitely many d, and that every refinement of $\pm \rho_{E,N}(\text{Gal}_\mathbb{Q})$ arises as $\rho_{E_{d,N}}(\text{Gal}_\mathbb{Q})$ for a unique d that divides $\text{disc}(\mathbb{Q}(E[N]))$.

Let H be an open subgroup of $GL_2(\mathbb{Z})$ of level N that contains -1. For each $M \geq 1$ let $\pi_M: GL_2(\mathbb{Z}) \to GL_2(\mathbb{Z}/M\mathbb{Z})$ denote the reduction-modulo-m map.

(d) Let $N|M \in \mathbb{Z}_{\geq 1}$. Show that H has a refinement of level dividing M if and only if $\pi_M(H)$ has a refinement, and the level of every refinement of H is a multiple of N.

(e) Show by example that H may admit a refinement of level $2N$ even when it has no refinements of level N.

(f) Show that H has a refinement whose level divides $2N$ if and only -1 is not a square in $\pi_{2N}(H)^{ab}$, the maximal abelian quotient of $\pi_{2n}(H)$.

(g) Show that if H has any refinements then it has infinitely many.

(h) Let $p \perp M \in \mathbb{Z}_{\geq 1}$ be an odd prime. Show that if H has a refinement of level NMp^e for some $e > 0$ then H has a refinement of level NM (hint: use Goursat’s lemma). Conclude that if H has a refinement then it has one of level $N2^e$ for some $e \geq 0$.

(i) Show that if H has a refinement of level $N2^e$ for some $e \geq 1$ then H has a refinement of level $2N$, and if N is odd then H has a refinement of level N.

Conclude that either H has no refinements or it has infinitely many, including one of level N or $2N$, depending on whether $-1 \in \pi_{2N}(H)^{ab}$ is a square or not.

Problem 3. Complex conjugation and curves of genus zero (50 points)

Recall that the categories of elliptic curves E/\mathbb{C} (up to isomorphism) and complex tori \mathbb{C}/L (up to homethety) are equivalent. Here $L \subseteq \mathbb{C}$ is a free \mathbb{Z}-module of rank 2 and thus has a \mathbb{Z}-module basis $[\omega_1, \omega_2]$ for some \mathbb{R}-linearly independent $\omega_1, \omega_2 \in \mathbb{C}^\times$. After applying the homethety $\pm \omega_2/\omega_1$ we can assume $L = [1, \tau]$ with $\tau \in \mathbb{H}$, in which case the corresponding elliptic curve E_L is defined by

$$E_L: y^2 = 4x^3 - g_2(\tau)x - g_3(\tau),$$

where $g_2(\tau) = 60 \sum'_{(m+n\tau)^2}^{'}$ and $g_3(\tau) = 140 \sum'_{(m+n\tau)^2}$, with the sums Σ' taken over the nonzero lattice points $m + n\tau \in L$. The map $\Phi: \mathbb{C}/L \to E_L(\mathbb{C})$ that sends L to the identity element of $E_L(\mathbb{C})$ and $z + L$ to the point $(\wp(z), \wp'(z))$ is then an isomorphism of topological groups that is also an isomorphism of compact Riemann surfaces, where

$$\wp(z) := \frac{1}{z^2} + \sum_{\omega \in L - \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right).$$

Every elliptic curve E/\mathbb{C} is isomorphic an elliptic curve defined by an equation of the form above, and this includes the base change to \mathbb{C} of any elliptic curve defined over \mathbb{Q}. Moreover, if $E: y^2 = x^3 + Ax + B$ is an elliptic curve over \mathbb{Q}, there is a $\tau \in \mathbb{H}$ for which $g_2(\tau) = -4A$ and $g_3(\tau) = -4B$, and for $L = [t, \tau]$ the corresponding curve E_L will have rational coefficients.

(a) Show that if $g_2(L), g_3(L) \in \mathbb{R}$ (so E_L is defined over \mathbb{R} not just \mathbb{C}), then L is stable under complex conjugation, in which case $\Phi(\mathbb{R}) \subseteq E_L(\mathbb{R})$ but $\Phi(\mathbb{C}) \not\subseteq E_L(\mathbb{R})$.

Now let E be an elliptic curve over \mathbb{Q}, let $\rho_E: \text{Gal}_Q \to \mathbb{GL}_2(\mathbb{Z})$ be its adelic Galois representation, fix an embedding $\overline{\mathbb{Q}} \subseteq \mathbb{C}$, and let $c \in \text{Gal}_Q$ denote the automorphism corresponding to the action of complex conjugation on $\overline{\mathbb{Q}} \subseteq \mathbb{C}$.

(b) Show that $E(\mathbb{R})$ has a subgroup isomorphic to \mathbb{R}/\mathbb{Z}, and we can choose a compatible system of bases for $E[N]$ so that $\rho_E(c)$ is upper triangular with a 1 in the upper left. Then show that $\det(\rho_E(c)) = -1$ and $\text{tr}(\rho_E(c)) = 0$. Conclude that for $N > 2$ we cannot have $E[N] \subseteq E(\mathbb{Q})$.
(c) Show that for odd N we can chose a basis for $E[N]$ so that $\rho_E(c) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$, but this is not necessarily true for $N = 4$. Then show that for every N we can choose a basis for $E[N]$ so that $\rho_E(c)$ is either $\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$ or $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$.

(d) Let $H \leq \text{GL}_2(\mathbb{Z})$ be an open subgroup of level N. Show that if the reduction of H to $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ contains no element conjugate to $\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$ or $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ then $X_H(\mathbb{R}) = \emptyset$, and in particular, $X_H(\mathbb{Q}) = \emptyset$.

Let X be a nice (smooth, projective, geometrically integral) curve over \mathbb{Q} of genus 0. Then X can be defined by a quadratic form $ax^2 + by^2 + cz^2 = 0$ with $a, b, c \in \mathbb{Z}$ and $abc \neq 0$. Recall that if X has a rational point P, then $X \simeq \mathbb{P}^1_{\mathbb{Q}}$ (the isomorphism identifies $Q \in X(\mathbb{Q})$ with the slope of the line \overline{PQ}) and X has infinitely many rational points. The Hasse-Minkowski theorem implies that X has a rational point if and only if it has a rational point over every completion of \mathbb{Q}. It follows from Hilbert reciprocity that the number of places $p \leq \infty$ of \mathbb{Q} for which $X(\mathbb{Q}_p) = \emptyset$ is finite and even.

(f) Show that if p is an odd prime that does not divide abc then $X(\mathbb{Q}_p) \neq \emptyset$.

Let $H \leq \text{GL}_2(\mathbb{Z})$ be an open subgroup of level N with $\det(H) = \mathbb{Z}^\times$. Then X_H is a nice curve over \mathbb{Q} that has good reduction modulo every prime $p \nmid N$ (this means that the reduction of X_H to \mathbb{F}_p is also a nice curve). If X_H has genus zero this means that we can choose an integral model $ax^2 + by^2 + cz^2$ for X_H with $p \nmid abc$.

(g) Suppose N is a prime power and X_H has genus zero. Show that $X_H(\mathbb{Q}) = \emptyset$ if and only if the image of H to $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ contains no conjugate of $\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$ or $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$.

(h) By applying the genus formula for X_H with $H = \{-1\} \leq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ (see the notes for Lecture 21), derive a formula for $g(X(N))$ as a function of N and list the positive integers N for which $g(X(N)) = 0$; your list should include $N \leq 3$. Conclude that for the N in your list, for every H of level N we have $g(X_H) = 0$.

(i) Up to conjugation there are 6 subgroups of $\text{GL}_2(\mathbb{Z}/3\mathbb{Z})$ with $\det(H) = (\mathbb{Z}/3\mathbb{Z})^\times$ that contain -1; their indexes are 1, 3, 4, 6, 6, 12. Use (g) to determine which of the corresponding modular curves X_H have rational points.

(j) Up to conjugation there are 3 subgroups of $\text{GL}_2(\mathbb{Z}/3\mathbb{Z})$ with $\det(H) = (\mathbb{Z}/3\mathbb{Z})^\times$ that do not contain -1; there indexes are 8, 8, 24. Determine which of the corresponding modular curves X_H have rational points.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount of time you spent on each problem to the nearest half hour.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Interest</th>
<th>Difficulty</th>
<th>Time Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Please rate each of the following lectures that you attended, according to the quality of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) and the novelty of the material to you (1=“old hat”, 10=“all new”).

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Material</th>
<th>Presentation</th>
<th>Pace</th>
<th>Novelty</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/6</td>
<td>Modular curves X_H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>Counting points on X_H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.