Description

Your solutions should be written up in latex and submitted as a pdf-file on Gradescope before midnight on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators or the name of your group on pset partners, and any references you consulted. If there are none write "Sources consulted: none" at the top of your solution.

Instructions: Pick any combination of problems that sum to 100 points, then complete the survey problem. Note that problems 2 and 3 have a computational component, and while you can solve them on paper, you are encouraged to use a computer algebra system to assist with the computations. You are also (strongly) encouraged to check your results against examples in the LMFDB before submitting your solutions.

Problem 1. Kernels of Hecke operators on $S_{k}(N, \chi)$ (50 points)

Throughout this problem we fix $N \in \mathbb{Z}_{\geq 1}, k \in \mathbb{Z}_{>2}$, a Dirichlet character χ of modulus N for which $\chi(-1)=(-1)^{k}$, and we let $S_{k}(N, \chi):=S_{k}\left(\Gamma_{0}(N), \chi\right)$ and $S_{k}(N):=S_{k}\left(\Gamma_{0}(N)\right)$.

For each positive integer n define the sets

$$
\begin{aligned}
& \Delta_{n}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a \perp N, a d-b c=n\right\}, \\
& \Delta_{n}^{*}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, d \perp N, a d-b c=n\right\},
\end{aligned}
$$

(which we note coincide when $n \perp N$), and the function

$$
K_{n}\left(z_{1}, z_{2}, \chi\right):=n^{k-1} \sum_{\alpha \in \Delta_{n}^{*}(N)} \bar{\chi}(d) j\left(\alpha, z_{1}\right)^{-k}\left(\alpha z_{1}+z_{2}\right)^{-k},
$$

for $z_{1}, z_{2} \in \mathbf{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, with $j\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), z\right):=c z+d$.
(a) Prove that K_{n} satisfies the identity

$$
K_{n}\left(z_{1},-\bar{z}_{2}, \chi\right)=(-1)^{k} \overline{K_{n}\left(-\bar{z}_{1}, z_{2}, \bar{\chi}\right)},
$$

and that for any fixed $z_{1}, z_{2} \in \mathbf{H}$ we have $K_{n}\left(z, z_{2}, \chi\right), K_{n}\left(z_{1}, z, \bar{\chi}\right) \in S_{k}(N, \chi)$. Conclude that $K_{n}(z, z, \chi) \in S_{2 k}(N)$ (no matter what χ is).
(b) Prove that for $n \perp N$ we also have the identities

$$
\begin{aligned}
K_{n}\left(z_{2}, z_{1}, \chi\right) & =\overline{\chi(n)} K_{n}\left(z_{1}, z_{2}, \bar{\chi}\right), \\
K_{n}\left(z_{1},-\bar{z}_{2}, \chi\right) & =(-1)^{k} \overline{\chi(n) K_{n}\left(z_{2},-\bar{z}_{1}, \chi\right)} .
\end{aligned}
$$

If $\Delta_{n}(N)=\coprod_{i=1}^{r} \Gamma_{0}(N) \alpha_{i}$ with $\alpha_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right)$, we may define the action of the Hecke operator $T(n)$ on $f \in S_{k}(N, \chi)$ via

$$
\left.f\right|_{k} T(n)=\left.n^{k / 2-1} \sum_{i} \chi\left(a_{i}\right) f\right|_{k} \alpha_{i} .
$$

Recall that for $n \perp N$ we have $\left.f\right|_{k} T(n)=\left.\chi(n) f\right|_{k} T^{*}(n)$ (see Lecture 12), in which case we could also have defined this action using a decomposition of $\Delta_{n}^{*}(N)$ and replacing $\chi\left(a_{i}\right)$ with $\bar{\chi}\left(d_{i}\right)$ (but this is not true when $\operatorname{gcd}(n, N)>1$).
(c) Derive the following explicit expression for the action of $T(n)$ on $f \in S_{k}(N, \chi)$:

$$
\left.f\right|_{k} T(n)=\frac{1}{n} \sum_{a d=n, a>0} \chi(a) a^{k} \sum_{0 \leq b<d} f\left(\frac{a z+b}{d}\right) .
$$

(d) Let $q:=q(z)=e^{2 \pi i z}$. Show that if $f \in S_{k}(N, \chi)$ has q-expansion $f(z)=\sum_{m \geq 1} a_{m} q^{m}$ then $\left.f\right|_{k} T(n)$ has q-expansion $\sum_{m \geq 1} b_{m} q^{m}$ where

$$
b_{m}=\sum_{d \mid \operatorname{gcd}(m, n), d>0} \chi(d) d^{k-1} a_{m n / d^{2}} .
$$

As in lecture, we will work with the inner product on the Hilbert space $L_{k}^{2}\left(\Gamma_{0}(N), \chi\right)$

$$
\langle f, g\rangle:=\int_{\Gamma_{0}(N) \backslash \mathbf{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d v(z) .
$$

which is equal to the Petersson inner product on $S_{k}(N, \chi) \subseteq L_{k}^{2}(\Gamma, \chi)$ multiplied by a factor of $v\left(\Gamma_{0}(N) / \mathbf{H}\right)=\frac{\pi}{3} \psi(N)$, where $\psi(N):=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1-\frac{1}{p}\right)$.

We note the following identity, valid for $z_{2} \in \mathbf{H}$ and $f \in S_{k}(N, \chi)$, which you are not required to prove:

$$
\int_{\mathbf{H}} f\left(z_{1}\right){\overline{\left(z_{1}+z_{2}\right)}}^{-k} \operatorname{Im}\left(z_{1}\right)^{k} d v\left(z_{1}\right)=\frac{4 \pi}{k-1}(i / 2)^{k} f\left(-\bar{z}_{2}\right) .
$$

(e) Prove that for $f \in S_{k}(N, \chi)$ and $z_{2} \in \mathbf{H}$ we have

$$
\left\langle f(z), K_{n}\left(z, z_{2}, \chi\right)\right\rangle=\frac{4 \pi}{k-1}(i / 2)^{k}\left(\left.f\right|_{k} T(n)\right)\left(-\bar{z}_{2}\right) .
$$

If T is a linear operator on a Hilbert space H of functions $X \rightarrow \mathbb{C}$, we call $K(x, y)$ a kernel function for T if $(T f)(y)=\left\langle f(x), K_{y}(x)\right\rangle$ for all $f \in H$, with $K_{y}(x):=K(x, y) \in H$ for all $y \in X$ (so a kernel function for H is a kernel function for the identity operator).
(f) Prove that

$$
\mathrm{K}_{n}\left(z_{1}, z_{2}\right):=\frac{k-1}{4 \pi}(2 i)^{k} K_{n}\left(z_{1},-\bar{z}_{2}, \chi\right)
$$

is the kernel function of the Hecke operator $T(n)$ on $S_{k}(N \chi)$, and in particular, $K_{1}\left(z_{1}, z_{2}\right)$ is the kernel function of $S_{k}(N, \chi)$.
(g) Prove that for $n \perp N$ we have

$$
\left\langle\left. f\right|_{k} T(n), g\right\rangle=\chi(n)\left\langle f,\left.g\right|_{k} T(n)\right\rangle
$$

for all $f, g \in S_{k}(N, \chi)$, thus $T(n)$ is a χ-Hermitian operator on $S_{k}(N, \chi)$.
(h) Let f_{1}, \ldots, f_{r} be a basis of eigenforms for $S_{k}(N, \chi)$ normalized so $\left.f_{i}\right|_{k} T(n)=a_{n}(f) f_{i}$ for $n \perp N$. Show that for $n \perp N$ we have

$$
\mathrm{K}_{n}\left(z_{1}, z_{2}\right)=\sum_{i=1}^{r} \frac{\overline{a_{n}\left(f_{i}\right)}}{\left\langle f_{i}, f_{i}\right\rangle} f_{i}\left(z_{1}\right) \overline{f_{i}\left(z_{2}\right)} .
$$

(i) Prove that for all n (whether coprime to N or not) we have

$$
\operatorname{tr}\left(T(n) \mid S_{k}(N, \chi)\right)=\int_{\Gamma_{0}(N) \backslash \mathbf{H}} \overline{\mathrm{K}_{n}(z, z)} \operatorname{Im}(z)^{k} d v(z) .
$$

Problem 2. Dirichlet characters and Conrey characters (50 points)

Recall that a Dirichlet character is a totally multiplicative periodic function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$; this means that $\chi(1)=1, \chi(m n)=\chi(m) \chi(n)$ for all $m, n \in \mathbb{Z}$, and there exists a positive integer q for which $\chi(n+q)=\chi(n)$ for all $n \in \mathbb{Z}$, in which case we say that χ is q-periodic. The least such q is the period of χ. A Dirichlet character of modulus q is a q-periodic Dirichlet character for which $\chi(n) \neq 0$ if and only if $n \perp q$, equivalently the extension-by-zero of a character of $(\mathbb{Z} / q \mathbb{Z})^{\times}$.
(a) Show that a product of Dirichlet characters is a Dirichlet character, and that every Dirichlet character admits a unique factorization into Dirichlet characters whose periods are powers of distinct primes.
(b) Show that every Dirichlet character of period q is a Dirichlet character of modulus q, but not every q-periodic Dirichlet character is a Dirichlet character of modulus q, and show that a Dirichlet character of modulus q is also a Dirichlet character of modulus q^{\prime} for infinitely many distinct q^{\prime}

Thus every Dirichlet character χ is the extension by zero of a group character, but that group character is not uniquely determined unless the modulus is specified. If χ is a Dirichlet character of modulus q and q^{\prime} is a multiple of q, the extension-by-zero of the projection of χ to $\left(\mathbb{Z} / q^{\prime} \mathbb{Z}\right)^{\times}$is a Dirichlet character of modulus q^{\prime} with $\chi^{\prime}(n)=\chi(n)$ for all $n \perp q^{\prime}$. We say that such a character χ^{\prime} is induced by χ. A Dirichlet character that is not induced by any character other than itself is primitive.
(c) Show that for every Dirichlet character χ there is a minimal $c \in \mathbb{Z}_{\geq 1}$ dividing the period q of χ for which $\chi(n+c m)=\chi(n)$ for all $n, n+c m \perp q$, called the conductor of χ, denoted $\operatorname{cond}(\chi)$. Then show that the extension-by-zero χ^{\prime} of the projection of χ to $(\mathbb{Z} / c \mathbb{Z})^{\times}$is the unique primitive Dirichlet character that induces χ.

Dirichlet characters of conductor 1 are principal. The order of a Dirichlet character χ is the least $e \in \mathbb{Z}_{\geq 1}$ such that χ^{e} is principal. The field of values $\mathbb{Q}(\chi):=\mathbb{Q}(\chi(\mathbb{Z}))$ is the number field obtained by adjoining all values of χ to \mathbb{Q}. The fixed field of a Dirichlet character of period q is the subfield of $\mathbb{Q}\left(\zeta_{q}\right)$ fixed by all automorphisms $\zeta_{q} \mapsto \zeta_{q}^{a}$ for which $\chi(a)=1$.
(d) Let χ be a Dirichlet character order n and period q. Show that $\mathbb{Q}(\chi)=\mathbb{Q}\left(\zeta_{n}\right)$ and its fixed field is a cyclic extension of \mathbb{Q} of degree n. Then show that the primitive character inducing χ has the same order, field of values, and fixed field as χ (even though it need not have the same period), and that the conductor $c:=\operatorname{cond}(\chi)$ is the least positive integer for which $\mathbb{Q}\left(\zeta_{c}\right)$ contains the fixed field of χ.

The parity of a Dirichlet character χ is determined by the value of $\chi(-1) \in\{ \pm 1\}$; we call χ even if $\chi(-1)=1$ and odd otherwise. Dirichlet characters χ and ψ are Galois conjugates if $\psi=\sigma \circ \chi$ for some $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. The set of Galois conjugates of a Dirichlet character χ is its Galois orbit.
(e) Show that Galois conjugate Dirichlet characters necessarily have the same period, conductor, parity, order, fixed field, and field of values, and that if χ and ψ are Galois conjugates, then the primitive characters that induce them are Galois conjugates.
(f) Show that if χ is a Dirichlet character of modulus q and order e then the size of its Galois orbit is determined by the Euler φ-function $\varphi(e):=\#(\mathbb{Z} / e \mathbb{Z})^{\times}$. Then show we can count Galois orbits of Dirichlet characters of modulus q via the formula

$$
\xi(q):=\sum_{e \mid \lambda(q)} \frac{\varphi(q, e)}{\varphi(e)},
$$

where $\lambda(q)$ is the exponent of the group $(\mathbb{Z} / q \mathbb{Z})^{\times}$(the least common multiple of the orders of its elements), and

$$
\varphi(q, e):=\#\left\{n \in(\mathbb{Z} / q \mathbb{Z})^{\times}: \operatorname{ord}(n)=e\right\}
$$

counts the elements of $(\mathbb{Z} / q \mathbb{Z})^{\times}$of order e. Describe a polynomial-time algorithm to compute $\xi(q)$, given the prime factorizations of q and $\lambda(q)$, and use it to compute $\xi(q)$ for $q=10^{100}, q=20!$, and $q=N$, where N is your 8 -digit student ID.

Conrey characters provide an explicit isomorphism between $(\mathbb{Z} / q \mathbb{Z})^{\times}$and the group of Dirichlet characters of modulus q. For each modulus $q \in \mathbb{Z}_{\geq 1}$ and integers $n, m \in \mathbb{Z}$ coprime to q we define the value $\chi_{q}(n, m)$ of the Dirichlet character $\chi_{q}(n, \cdot)$ associated to the image of n in $(\mathbb{Z} / q \mathbb{Z})^{\times}$as follows.

- For each odd prime p. let g_{p} be the least positive integer that is a primitive root modulo p^{e} for all p^{e}, and for $n=g_{p}^{a} \bmod p^{e}$ and $m=g_{p}^{b} \bmod p^{e}$ coprime to p let

$$
\chi_{p^{e}}(n, m):=\exp \left(\frac{2 \pi a b i}{\varphi\left(p^{e}\right)}\right) .
$$

- We define $\chi_{2}(1,1)=\chi_{4}(1,1)=\chi_{4}(3,1)=1$ and $\chi_{4}(3,3)=-1$, and for $2^{e}>4$, if $n \equiv \epsilon_{a} 5^{a} \bmod 2^{e}$ and $m \equiv \epsilon_{b} 5^{b} \bmod 2^{e}$ with $\epsilon_{a}, \epsilon_{b} \in\{ \pm 1\}$ then

$$
\chi_{2^{e}}(n, m):=\exp \left(2 \pi i\left(\frac{\left(1-\epsilon_{a}\right)\left(1-\epsilon_{b}\right)}{8}+\frac{a b}{2^{e-2}}\right)\right) .
$$

- For general q with prime factorization $q=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ we define $\chi_{q}(m, n)$ to be the product of $\chi_{p_{i}}{ }^{e_{i}}(n, m)$, and let $\chi_{q}(n, m):=0$ if either n or m is not coprime to q.
(g) Show that one can take g_{p} to be the least positive integer that generates $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$, but the least positive integer that generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$need not generate $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}$ (hint: consider $p=40487$).

The computation of $\chi_{p^{e}}(n, m)$ requires computing discrete logarithms in $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$ to obtain the values of a and b that are used in the formulas above. This problem can be efficiently reduced to a discrete logarithm problem in $\mathbb{F}_{p}^{\times}=(\mathbb{Z} / p \mathbb{Z})^{\times}$, which makes it easy to compute values of $\varphi_{q}(n, \cdot)$ as long as known of the primes $p \mid q$ are too large. For large p there are subexponential-time algorithms for computing discrete logarithms in \mathbb{F}_{p}^{\times}, but no polynomial-time algorithm is known. In most practical situations the values of q that arise are small enough (less than 10^{12}, say) so that one can simply use a baby-steps giant-steps approach to obtain an $\tilde{O}(\sqrt{p})$ algorithm that is fast enough.

An attractive feature of Conrey characters is that most of the arithmetic invariants of $\chi_{q}(n, \cdot)$ that one is interested in, including its order, parity, and conductor, can be computed very quickly (in polynomial-time), provided one knows the factorization of q and the factorization of $p-1$ for primes $p \mid q$.
(h) Show that for $q=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ and $m, n \in \mathbb{Z}$ coprime to q the following hold:

- $\chi_{q}(m, n)=\chi_{q}(n, m)$.
- $\chi_{q}(n, \cdot)=\prod_{i} \chi_{p_{i}^{e_{i}}}(n, \cdot)=\prod_{i} \chi_{p_{i}^{e_{i}}}\left(n \bmod p^{i}, \cdot\right)$.
- $\operatorname{ord}\left(\chi_{q}(n, \cdot)\right)=\operatorname{lcm}_{i}\left\{\operatorname{ord}\left(\chi_{p_{i}^{e_{i}}}(n, \cdot)\right)\right\}$, with ord $\left(\chi_{p^{e}}(n, \cdot)\right)$ the order of n in $\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{\times}$.
- $\operatorname{cond}\left(\chi_{q}(, \cdot)\right)=\prod_{i} \operatorname{cond}\left(\chi_{p_{i}}^{e_{i}}(n, \cdot)\right)$, where

$$
\operatorname{cond}\left(\chi_{p^{e}}(n, \cdot)\right)= \begin{cases}1 & \text { if } n \equiv 1 \bmod p^{e} \\ p^{a+2} & \text { if } n \not \equiv \pm 1 \bmod p^{e} \text { and } p=2 \\ p^{a+1} & \text { otherwise }\end{cases}
$$

with $a=v_{p}\left(\operatorname{ord}\left(\chi_{p^{e}}(n, \cdot)\right)\right)$.

- The value field of $\chi_{q}(n, \cdot)$ is real if and only if $n^{2} \equiv 1 \bmod q$.
- The parity of $\chi_{q}(n, \cdot)$ can be computed via

$$
\chi_{q}(n,-1)= \begin{cases}\prod_{\text {odd } p \mid q}\left(\frac{n}{p}\right) & \text { if } 4 \nmid q \\ \left(\frac{-1}{n}\right) \prod_{\text {odd } p \mid q}\left(\frac{n}{p}\right) & \text { otherwise. }\end{cases}
$$

where p ranges over odd prime divisors of q and $\left(\frac{a}{b}\right)$ is the Legendre symbol.
(i) Give a polynomial-time algorithm to compute the parity, order, conductor of $\chi_{q}(n, \cdot)$, given the prime factorizations of q and $p-1$ for primes $p \mid q$. Use it to compute the parity, order, conductor of $\chi_{q}(n, \cdot)$ for $q=10^{100}, q=20!$, and $q=N$, for the least $n>1$ coprime to q, where N is your 8 -digit student ID.

Problem 3. The trace formula for $S_{k}(N, \chi)$ (50 points)

Fix $n, N \in \mathbb{Z}_{\geq 1}, k \in \mathbb{Z}_{\geq 2}$, and a Dirichlet character χ of modulus N with $\chi(-1)=(-1)^{k}$. Using the results of Problem 1 it is possible (but highly non-trivial) to derive the following explicit trace formula which appears in [2, Theorem 3]: ${ }^{1}$

$$
\begin{aligned}
\operatorname{tr}\left(T(n) \mid S_{k}(N, \chi)\right)= & -\frac{1}{2} \sum_{t^{2} \leq 4 n} P_{k}(t, n) \sum_{u \mid N} H\left(\frac{4 n-t^{2}}{u^{2}}\right) C(N, \chi, u, t, n) \\
& -\frac{1}{2} \sum_{a d=n} \min (a, d)^{k-1} \Phi(N, \chi, a, d)+2 \delta_{k=2, \chi=1} \sigma_{1}(N, n) .
\end{aligned}
$$

where t ranges over \mathbb{Z} and u, a, d range over $\mathbb{Z}_{\geq 1}$ and $P_{k}, H, C, \Phi, \delta, \sigma_{1}$ are defined by:

- $P_{k}(t, n)$ is the coefficient of x^{k-2} in $\left(1-t x+n x^{2}\right)^{-1} \in \mathbb{Z}[[x]]$.

Equivalently, $P_{k}(t, n)=\frac{\alpha^{k-1}-\bar{\alpha}^{k-1}}{\alpha-\bar{\alpha}}$, where $\alpha, \bar{\alpha} \in \mathbb{C}$ are the roots of $x^{2}-t x+n$.

- $H(n)$ is the Hurwitz class number: $H(n)=0$ unless $n \in \mathbb{Z}_{\geq 0}$ and $-n \equiv \square \bmod 4$, in which case $H(0)=-\frac{1}{12}$ and $H(-D)$ counts $\mathrm{SL}_{2}(\mathbb{Z})$ equivalence classes of positive definite binary quadratic forms $a x^{2}+b x y+c y^{2}$ of discriminant $b^{2}-4 a c=D<0$,

[^0]weighted by $1 / 3$ and $1 / 2$ for $D=-3$ and $D=-4$, respectively. Equivalently, for $D=v^{2} D_{0}<0$ with $D_{0}=\operatorname{disc} \mathbb{Q}(\sqrt{D})$ we have
$$
H(-D)=\sum_{u \mid v} \frac{2 h\left(D / u^{2}\right)}{w\left(D / u^{2}\right)},
$$
where $h\left(D^{\prime}\right)=\# \mathrm{cl}(\mathcal{O})$ and $w\left(D^{\prime}\right)=\# \mathcal{O}^{\times}$for the imaginary quadratic order \mathcal{O} of discriminant $D^{\prime}=D / u^{2}$ (so \mathcal{O} has index v / u in the ring of integers of $K=\mathbb{Q}(\sqrt{D})$).

- $C(N, \chi, u, t, n)$ is defined for $u \mid N$ and $u^{2} \mid\left(t^{2}-4 n\right)$ with $\frac{t^{2}-4 n}{u^{2}} \equiv \square \bmod 4$ by

$$
\begin{aligned}
S(N, u, t, n) & :=\left\{m \in \mathbb{Z} \cap[1, N]: m \perp N \text { and } m^{2}-t m+n \equiv 0 \bmod N u\right\} \\
B(N, \chi, u, t, n) & :=\frac{\psi(N)}{\psi(N / u)} \sum_{m \in S(N, u, t, n)} \chi(m) \\
C(N, \chi, u, t, n) & :=\sum_{a \mid u} \mu(a) B(N, \chi, u / a, t, n)
\end{aligned}
$$

where $\psi(N)=\left[\Gamma(1): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+\frac{1}{p}\right)$ and $\mu(a)$ is the Möbius function.

- $\Phi(N, \chi, a, d)$ is defined by

$$
\Phi(N, \chi, a, d)=\sum_{\substack{r s=N, m=\operatorname{gcd}(r, s) \\ m\left|\frac{N}{\operatorname{cond}(\chi)} \\ m\right|(a-d)}} \varphi(m) \chi\left(\hat{\alpha}_{r, s}(a, d)\right)
$$

where $\alpha_{r, s}: \mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / s \mathbb{Z} \rightarrow \mathbb{Z} / \operatorname{lcm}(r, s) \mathbb{Z}$ is the map determined by the CRT and $\hat{\alpha}_{r, s}$ denotes any lift to \mathbb{Z}, and $\varphi(m)=\#(\mathbb{Z} / m \mathbb{Z})^{\times}$is Euler's φ-function.

- $\delta_{k=2, \chi-1} \in\{0,1\}$ is 1 iff $k=2$ and χ is trivial, and $\sigma_{1}(N, n)=\sum_{a \mid n, a \perp N} \frac{n}{a} \in \mathbb{Z}$.
(a) Prove that $\operatorname{tr}\left(T(n) \mid S_{k}(N, \chi)\right) \in \mathbb{Q}(\chi)$, where $\mathbb{Q}(\chi)$ is the value field of χ, and that summing over the Galois orbit of χ yields an integer. Conclude that if $f(z)=\sum a_{n} q^{n}$ is the q-expansion of a newform in $S_{k}(N, \chi)$, then the a_{n} are algebraic numbers that generate a number field $\mathbb{Q}(f)$ that contains $\mathbb{Q}(\chi)$ (in fact the a_{n} are algebraic integers, but you are not required to prove this).
(b) Show that for any fixed $t, n \in \mathbb{Z}$ with $t^{2} \leq 4 n$, the function $g(k):=P_{k}(t, n)$ defines a sequence of integers satisfying a second order linear recurrence. Use this to develop an algorithm to efficiently compute $P_{k}(t, n)$ using only integer arithmetic, with a running time that is quasilinear in $k \log (n)$ (assume that multiplying two b-bit integers take $O(b \log b)$ time and adding two b-bit integers takes $O(b)$ time).
(c) Show that $C(N, \chi, u, t, n)$ is a multiplicative function of N that can be computed using the values of $C\left(p^{e}, \chi^{\prime}, p^{a}, t, n\right)$, where $e=v_{p}(N), a=v_{p}(u)$, and χ^{\prime} is the Dirichlet character of modulus p^{e} that appears in the factorization of χ into Dirichlet characters of prime power modulus, and give a similar argument for $\Phi(N, \chi, a, d)$.
(d) By specializing the formula for $\operatorname{tr}\left(T(n) \mid S_{k}(N)\right)$ to $n=1$ and $\chi=1$, derive a formula for computing $\operatorname{dim} S_{k}(N)=\operatorname{tr}\left(T(1) \mid S_{k}(N)\right)$ that has the form

$$
\operatorname{dim} S_{k}(N)=\frac{1}{12} w(k) \cdot \prod_{p^{e} \| N} v(p, e)+\delta_{k=2},
$$

where $w(k)$ and $v(p, e)$ are quadruples of integers, with the $v(p, e)$ multiplied pointwise, followed by a dot product with $v(k)$. Use your formula to compute $\operatorname{dim} S_{k}(N)$ for $k \in\left\{2,10^{12}\right\}$ and $N=10^{20}, N=20$!, and N equal to your 8 -digit student ID.
(e) Recall from Lecture 15 that we have a decomposition

$$
S_{k}(N) \simeq \bigoplus_{M \mid N} S_{k}^{\text {new }}(M)^{\oplus \sigma_{0}(N / M)}
$$

where $\sigma_{0}(n)=\sum_{d \mid n} 1$ counts the divisors of n. This implies

$$
\operatorname{dim} S_{k}(N)=\sum_{M \mid N} \sum_{d \left\lvert\, \frac{N}{M}\right.} \operatorname{dim} S_{k}^{\mathrm{new}}(M) .
$$

For each fixed k, part (d) implies that $\operatorname{dim} S_{k}(N)$ is a sum of multiplicative functions of N. Use Möbius inversion to express $\operatorname{dim} S_{k}^{\text {new }}(N)$ as a sum of multiplicative functions of N to a obtain a formula of the form

$$
\operatorname{dim} S_{k}^{\text {new }}(N)=\frac{1}{12} w(k) \cdot \prod_{p^{e} \| N} u(p, e)+\delta_{k=2} \cdot \mu(N),
$$

where $w(k)$ and $u(p, e)$ are quadruples of integers as in (d), and give explicit formulas for $u(p, e)$. Then use your formulas to compute the dimension of $S_{k}^{\text {new }}(N)$ for the values of k and N used in (d).
(f) Note that $\operatorname{tr}\left(T(n) \mid S_{k}(N, \chi)\right)=0$ whenever $\chi(-1) \neq(-1)^{k}$, since $\operatorname{dim} S_{k}(N, \chi)=0$. Show $C(N, \chi, u, t, n)=\chi(-1) C(N, \chi, u,-t, n)$ and $P_{k}(k, t, n)=(-1)^{k} P_{k}(k,-t, n)$, and conclude that if $\chi(-1) \neq(-1)^{k}$ then the double sum in the first line of the trace formula vanishes for $\chi(-1) \neq(-1)^{k}$.
Then show that $\Phi(N, \chi,-a,-d)=\chi(-1) \Phi(N, \chi, a, d)$ and conclude that if we replace $\Phi(N, \chi, a, d)$ with $\left(\Phi(N, \chi, a, d)+(-1)^{k} \Phi(N, \chi,-a,-d)\right) / 2$ in the trace formula it is then valid for all χ, without any restriction on parity. By summing this generalized trace formula over all χ of modulus N, show that for $N \geq 5$ we have

$$
\operatorname{dim} S_{k}\left(\Gamma_{1}(N)\right)=\frac{k-1}{24} \prod_{p^{e} \| N}\left(p^{2 e}-p^{2 e-2}\right)-\frac{1}{4} \prod_{p^{e} \| N}\left(\left(p^{2}-1\right)+e(p-1)^{2}\right) p^{e-2}+\delta_{k=2} .
$$

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it ($1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$4 / 22$	Traces of Hecke operators				
$4 / 24$	Modular abelian varieties				
$4 / 29$	Level structures on elliptic curves				
$5 / 1$	Modular curves				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

References

[1] Eran Assaf, A note on the trace formula, arXiv:2311.03523.
[2] Alexandru A. Popa, On the trace formula for Hecke operators on congruence subgroups, II, Res. Math. Sci. 5 (2018), article no. 3.

[^0]: ${ }^{1}$ There is a minor error in $[2$, Lemma 4.5] that does not impact this theorem; see [1, A.2].

