
18.786 Number Theory II Spring 2024

Problem Set #6 Due: 5/7/2024

Description

Your solutions should be written up in latex and submitted as a pdf-file on Gradescope
before midnight on the date due. Collaboration is permitted/encouraged, but you must
identify your collaborators or the name of your group on pset partners, and any references
you consulted. If there are none write “Sources consulted: none” at the top of your
solution.

Instructions: Pick any combination of problems that sum to 100 points, then com-
plete the survey problem. Note that problems 2 and 3 have a computational component,
and while you can solve them on paper, you are encouraged to use a computer algebra
system to assist with the computations. You are also (strongly) encouraged to check
your results against examples in the LMFDB before submitting your solutions.

Problem 1. Kernels of Hecke operators on Sk(N,χ) (50 points)

Throughout this problem we fix N ∈ Z≥1, k ∈ Z>2, a Dirichlet character χ of modulus N
for which χ(−1) = (−1)k, and we let Sk(N,χ) := Sk(Γ0(N), χ) and Sk(N) := Sk(Γ0(N)).

For each positive integer n define the sets

∆n(N) :=
{(

a b
c d

)
∈ M2(Z) : c ≡ 0 mod N, a ⊥ N, ad− bc = n

}
,

∆∗n(N) :=
{(

a b
c d

)
∈ M2(Z) : c ≡ 0 mod N, d ⊥ N, ad− bc = n

}
,

(which we note coincide when n ⊥ N), and the function

Kn(z1, z2, χ) := nk−1
∑

α∈∆∗
n(N)

χ(d)j(α, z1)−k(αz1 + z2)−k,

for z1, z2 ∈ H := {z ∈ C : Im(z) > 0}, with j(
(
a b
c d

)
, z) := cz + d.

(a) Prove that Kn satisfies the identity

Kn(z1,−z̄2, χ) = (−1)kKn(−z̄1, z2, χ),

and that for any fixed z1, z2 ∈ H we have Kn(z, z2, χ),Kn(z1, z, χ) ∈ Sk(N,χ).
Conclude that Kn(z, z, χ) ∈ S2k(N) (no matter what χ is).

(b) Prove that for n ⊥ N we also have the identities

Kn(z2, z1, χ) = χ(n)Kn(z1, z2, χ),

Kn(z1,−z̄2, χ) = (−1)kχ(n)Kn(z2,−z̄1, χ).

If ∆n(N) =
∐r
i=1 Γ0(N)αi with αi =

(
ai bi
ci di

)
, we may define the action of the Hecke

operator T (n) on f ∈ Sk(N,χ) via

f |kT (n) = nk/2−1
∑
i

χ(ai)f |kαi.

Recall that for n ⊥ N we have f |kT (n) = χ(n)f |kT ∗(n) (see Lecture 12), in which case
we could also have defined this action using a decomposition of ∆∗n(N) and replacing
χ(ai) with χ(di) (but this is not true when gcd(n,N) > 1).
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(c) Derive the following explicit expression for the action of T (n) on f ∈ Sk(N,χ):

f |kT (n) =
1

n

∑
ad=n,a>0

χ(a)ak
∑

0≤b<d
f(az+bd ).

(d) Let q := q(z) = e2πiz. Show that if f ∈ Sk(N,χ) has q-expansion f(z) =
∑

m≥1 amq
m

then f |kT (n) has q-expansion
∑

m≥1 bmq
m where

bm =
∑

d| gcd(m,n),d>0

χ(d)dk−1amn/d2 .

As in lecture, we will work with the inner product on the Hilbert space L2
k(Γ0(N), χ)

〈f, g〉 :=

∫
Γ0(N)\H

f(z)g(z) Im(z)kdv(z).

which is equal to the Petersson inner product on Sk(N,χ) ⊆ L2
k(Γ, χ) multiplied by a

factor of v(Γ0(N)/H) = π
3ψ(N), where ψ(N) := [SL2(Z) : Γ0(N)] = N

∏
p|N (1− 1

p).
We note the following identity, valid for z2 ∈ H and f ∈ Sk(N,χ), which you are not

required to prove:∫
H
f(z1)(z1 + z2)

−k
Im(z1)kdv(z1) =

4π

k − 1
(i/2)kf(−z̄2).

(e) Prove that for f ∈ Sk(N,χ) and z2 ∈ H we have

〈f(z),Kn(z, z2, χ)〉 =
4π

k − 1
(i/2)k(f |kT (n))(−z̄2).

If T is a linear operator on a Hilbert space H of functions X → C, we call K(x, y) a
kernel function for T if (Tf)(y) = 〈f(x),Ky(x)〉 for all f ∈ H, with Ky(x) := K(x, y) ∈ H
for all y ∈ X (so a kernel function for H is a kernel function for the identity operator).

(f) Prove that

Kn(z1, z2) :=
k − 1

4π
(2i)kKn(z1,−z̄2, χ)

is the kernel function of the Hecke operator T (n) on Sk(N χ), and in particular,
K1(z1, z2) is the kernel function of Sk(N,χ).

(g) Prove that for n ⊥ N we have

〈f |kT (n), g〉 = χ(n)〈f, g|kT (n)〉

for all f, g ∈ Sk(N,χ), thus T (n) is a χ-Hermitian operator on Sk(N,χ).

(h) Let f1, . . . , fr be a basis of eigenforms for Sk(N,χ) normalized so fi|kT (n) = an(f)fi
for n ⊥ N . Show that for n ⊥ N we have

Kn(z1, z2) =

r∑
i=1

an(fi)

〈fi, fi〉
fi(z1)fi(z2).

(i) Prove that for all n (whether coprime to N or not) we have

tr(T (n)|Sk(N,χ)) =

∫
Γ0(N)\H

Kn(z, z) Im(z)kdv(z).



Problem 2. Dirichlet characters and Conrey characters (50 points)

Recall that a Dirichlet character is a totally multiplicative periodic function χ : Z → C;
this means that χ(1) = 1, χ(mn) = χ(m)χ(n) for all m,n ∈ Z, and there exists a
positive integer q for which χ(n + q) = χ(n) for all n ∈ Z, in which case we say that χ
is q-periodic. The least such q is the period of χ. A Dirichlet character of modulus q is a
q-periodic Dirichlet character for which χ(n) 6= 0 if and only if n ⊥ q, equivalently the
extension-by-zero of a character of (Z/qZ)×.

(a) Show that a product of Dirichlet characters is a Dirichlet character, and that every
Dirichlet character admits a unique factorization into Dirichlet characters whose
periods are powers of distinct primes.

(b) Show that every Dirichlet character of period q is a Dirichlet character of modulus q,
but not every q-periodic Dirichlet character is a Dirichlet character of modulus q,
and show that a Dirichlet character of modulus q is also a Dirichlet character of
modulus q′ for infinitely many distinct q′

Thus every Dirichlet character χ is the extension by zero of a group character, but
that group character is not uniquely determined unless the modulus is specified. If χ is
a Dirichlet character of modulus q and q′ is a multiple of q, the extension-by-zero of the
projection of χ to (Z/q′Z)× is a Dirichlet character of modulus q′ with χ′(n) = χ(n) for
all n ⊥ q′. We say that such a character χ′ is induced by χ. A Dirichlet character that
is not induced by any character other than itself is primitive.

(c) Show that for every Dirichlet character χ there is a minimal c ∈ Z≥1 dividing the
period q of χ for which χ(n+ cm) = χ(n) for all n, n+ cm ⊥ q, called the conductor
of χ, denoted cond(χ). Then show that the extension-by-zero χ′ of the projection
of χ to (Z/cZ)× is the unique primitive Dirichlet character that induces χ.

Dirichlet characters of conductor 1 are principal. The order of a Dirichlet character χ
is the least e ∈ Z≥1 such that χe is principal. The field of values Q(χ) := Q(χ(Z)) is the
number field obtained by adjoining all values of χ to Q. The fixed field of a Dirichlet
character of period q is the subfield of Q(ζq) fixed by all automorphisms ζq 7→ ζaq for
which χ(a) = 1.

(d) Let χ be a Dirichlet character order n and period q. Show that Q(χ) = Q(ζn) and
its fixed field is a cyclic extension of Q of degree n. Then show that the primitive
character inducing χ has the same order, field of values, and fixed field as χ (even
though it need not have the same period), and that the conductor c := cond(χ) is
the least positive integer for which Q(ζc) contains the fixed field of χ.

The parity of a Dirichlet character χ is determined by the value of χ(−1) ∈ {±1};
we call χ even if χ(−1) = 1 and odd otherwise. Dirichlet characters χ and ψ are Galois
conjugates if ψ = σ ◦ χ for some σ ∈ Gal(Q/Q). The set of Galois conjugates of a
Dirichlet character χ is its Galois orbit.

(e) Show that Galois conjugate Dirichlet characters necessarily have the same period,
conductor, parity, order, fixed field, and field of values, and that if χ and ψ are Galois
conjugates, then the primitive characters that induce them are Galois conjugates.



(f) Show that if χ is a Dirichlet character of modulus q and order e then the size of its
Galois orbit is determined by the Euler ϕ-function ϕ(e) := #(Z/eZ)×. Then show
we can count Galois orbits of Dirichlet characters of modulus q via the formula

ξ(q) :=
∑
e|λ(q)

ϕ(q, e)

ϕ(e)
,

where λ(q) is the exponent of the group (Z/qZ)× (the least common multiple of the
orders of its elements), and

ϕ(q, e) := #{n ∈ (Z/qZ)× : ord(n) = e}

counts the elements of (Z/qZ)× of order e. Describe a polynomial-time algorithm
to compute ξ(q), given the prime factorizations of q and λ(q), and use it to compute
ξ(q) for q = 10100, q = 20!, and q = N , where N is your 9-digit student ID.

Conrey characters provide an explicit isomorphism between (Z/qZ)× and the group
of Dirichlet characters of modulus q. For each modulus q ∈ Z≥1 and integers n,m ∈ Z
coprime to q we define the value χq(n,m) of the Dirichlet character χq(n, ·) associated
to the image of n in (Z/qZ)× as follows.

• For each odd prime p. let gp be the least positive integer that is a primitive root
modulo pe for all pe, and for n = gap mod pe and m = gbp mod pe coprime to p let

χpe(n,m) := exp

(
2πabi

ϕ(pe)

)
.

• We define χ2(1, 1) = χ4(1, 1) = χ4(3, 1) = 1 and χ4(3, 3) = −1, and for 2e > 4, if
n ≡ εa5a mod 2e and m ≡ εb5b mod 2e with εa, εb ∈ {±1} then

χ2e(n,m) := exp

(
2πi

(
(1− εa)(1− εb)

8
+

ab

2e−2

))
.

• For general q with prime factorization q = pe11 · · · perr we define χq(m,n) to be the
product of χpeii

(n,m), and let χq(n,m) := 0 if either n or m is not coprime to q.

(g) Show that one can take gp to be the least positive integer that generates (Z/p2Z)×,
but the least positive integer that generates (Z/pZ)× need not generate (Z/p2Z)×

(hint: consider p = 40487).

The computation of χpe(n,m) requires computing discrete logarithms in (Z/peZ)×

to obtain the values of a and b that are used in the formulas above. This problem can
be efficiently reduced to a discrete logarithm problem in F×p = (Z/pZ)×, which makes
it easy to compute values of ϕq(n, ·) as long as known of the primes p|q are too large.
For large p there are subexponential-time algorithms for computing discrete logarithms
in F×p , but no polynomial-time algorithm is known. In most practical situations the
values of q that arise are small enough (less than 1012, say) so that one can simply use
a baby-steps giant-steps approach to obtain an Õ(

√
p) algorithm that is fast enough.

An attractive feature of Conrey characters is that most of the arithmetic invariants
of χq(n, ·) that one is interested in, including its order, parity, and conductor, can be
computed very quickly (in polynomial-time), provided one knows the factorization of q
and the factorization of p− 1 for primes p|q.



(h) Show that for q = pe11 · · · perr and m,n ∈ Z coprime to q the following hold:

• χq(m,n) = χq(n,m).

• χq(n, ·) =
∏
i χpeii

(n, ·) =
∏
i χpeii

(n mod pi, ·).

• ord(χq(n, ·)) = lcmi{ord(χpeii
(n, ·))}, with ord(χpe(n, ·)) the order of n in (Z/peZ)×.

• cond(χq(, ·)) =
∏
i cond(χpeii

(n, ·)), where

cond(χpe(n, ·)) =


1 if n ≡ 1 mod pe,

pa+2 if n 6≡ ±1 mod pe and p = 2,

pa+1 otherwise,

with a = vp(ord(χpe(n, ·))).
• The value field of χq(n, ·) is real if and only if n2 ≡ 1 mod q.

• The parity of χq(n, ·) can be computed via

χq(n,−1) =


∏

odd p|q

(
n
p

)
if 4 - q(−1

n

)∏
odd p|q

(
n
p

)
otherwise.

where p ranges over odd prime divisors of q and
(
a
b

)
is the Legendre symbol.

(i) Give a polynomial-time algorithm to compute the parity, order, conductor of χq(n, ·),
given the prime factorizations of q and p− 1 for primes p|q. Use it to compute the
parity, order, conductor of χq(n, ·) for q = 10100, q = 20!, and q = N , for the least
n > 1 coprime to q, where N is your 9-digit student ID.

Problem 3. The trace formula for Sk(N,χ) (50 points)

Fix n,N ∈ Z≥1, k ∈ Z≥2, and a Dirichlet character χ of modulus N with χ(−1) = (−1)k.
Using the results of Problem 1 it is possible (but highly non-trivial) to derive the following
explicit trace formula which appears in [2, Theorem 3]:1

tr
(
T (n)|Sk(N,χ)

)
=− 1

2

∑
t2≤4n

Pk(t, n)
∑
u|N

H
(

4n−t2
u2

)
C(N,χ, u, t, n)

− 1

2

∑
ad=n

min(a, d)k−1Φ(N,χ, a, d) + 2δk=2,χ=1σ1(N,n).

where t ranges over Z and u, a, d range over Z≥1 and Pk, H,C,Φ, δ, σ1 are defined by:

• Pk(t, n) is the coefficient of xk−2 in (1− tx+ nx2)−1 ∈ Z[[x]].

Equivalently, Pk(t, n) = αk−1−ᾱk−1

α−ᾱ , where α, ᾱ ∈ C are the roots of x2 − tx+ n.

• H(n) is the Hurwitz class number: H(n) = 0 unless n ∈ Z≥0 and −n ≡ � mod 4, in
which case H(0) = − 1

12 and H(−D) counts SL2(Z) equivalence classes of positive
definite binary quadratic forms ax2 + bxy + cy2 of discriminant b2 − 4ac = D < 0,

1There is a minor error in [2, Lemma 4.5] that does not impact this theorem; see [1, A.2].



weighted by 1/3 and 1/2 for D = −3 and D = −4, respectively.
Equivalently, for D = v2D0 < 0 with D0 = discQ(

√
D) we have

H(−D) =
∑
u|v

2h(D/u2)

w(D/u2)
,

where h(D′) = #cl(O) and w(D′) = #O× for the imaginary quadratic order O of
discriminantD′ = D/u2 (soO has index v/u in the ring of integers ofK = Q(

√
D)).

• C(N,χ, u, t, n) is defined for u|N and u2|(t2 − 4n) with t2−4n
u2
≡ � mod 4 by

S(N, u, t, n) := {m ∈ Z ∩ [1, N ] : m ⊥ N and m2 − tm+ n ≡ 0 mod Nu}

B(N,χ, u, t, n) :=
ψ(N)

ψ(N/u)

∑
m∈S(N,u,t,n)

χ(m)

C(N,χ, u, t, n) :=
∑
a|u

µ(a)B(N,χ, u/a, t, n)

where ψ(N) = [Γ(1) : Γ0(N)] = N
∏
p|N (1 + 1

p) and µ(a) is the Möbius function.

• Φ(N,χ, a, d) is defined by

Φ(N,χ, a, d) =
∑

rs=N, m=gcd(r,s)

m| N
cond(χ)

m|(a−d)

ϕ(m)χ(α̂r,s(a, d))

where αr,s : Z/rZ×Z/sZ→ Z/ lcm(r, s)Z is the map determined by the CRT and
α̂r,s denotes any lift to Z, and ϕ(m) = #(Z/mZ)× is Euler’s ϕ-function.

• δk=2,χ−1 ∈ {0, 1} is 1 iff k = 2 and χ is trivial, and σ1(N,n) =
∑

a|n,a⊥N
n
a ∈ Z.

(a) Prove that tr(T (n)|Sk(N,χ)) ∈ Q(χ), where Q(χ) is the value field of χ, and that
summing over the Galois orbit of χ yields an integer. Conclude that if f(z) =

∑
anq

n

is the q-expansion of a newform in Sk(N,χ), then the an are algebraic numbers
that generate a number field Q(f) that contains Q(χ) (in fact the an are algebraic
integers, but you are not required to prove this).

(b) Show that for any fixed t, n ∈ Z with t2 ≤ 4n, the function g(k) := Pk(t, n) de-
fines a sequence of integers satisfying a second order linear recurrence. Use this to
develop an algorithm to efficiently compute Pk(t, n) using only integer arithmetic,
with a running time that is quasilinear in k log(n) (assume that multiplying two
b-bit integers take O(b log b) time and adding two b-bit integers takes O(b) time).

(c) Show that C(N,χ, u, t, n) is a multiplicative function of N that can be computed
using the values of C(pe, χ′, pa, t, n), where e = vp(N), a = vp(u), and χ′ is the
Dirichlet character of modulus pe that appears in the factorization of χ into Dirichlet
characters of prime power modulus, and give a similar argument for Φ(N,χ, a, d).



(d) By specializing the formula for tr(T (n)|Sk(N)) to n = 1 and χ = 1, derive a formula
for computing dimSk(N) = tr

(
T (1)|Sk(N)

)
that has the form

dimSk(N) = 1
12w(k) ·

∏
pe‖N

v(p, e) + δk=2,

where w(k) and v(p, e) are quadruples of integers, with the v(p, e) multiplied point-
wise, followed by a dot product with v(k). Use your formula to compute dimSk(N)
for k ∈ {2, 1012} and N = 1020, N = 20!, and N equal to your 9-digit student ID.

(e) Recall from Lecture 15 that we have a decomposition

Sk(N) '
⊕
M |N

Snew
k (M)⊕σ0(N/M)

where σ0(n) =
∑

d|n 1 counts the divisors of n. This implies

dimSk(N) =
∑
M |N

∑
d|NM

dimSnew
k (M).

For each fixed k, part (d) implies that dimSk(N) is a sum of multiplicative functions
of N . Use Möbius inversion to express dimSnew

k (N) as a sum of multiplicative
functions of N to a obtain a formula of the form

dimSnew
k (N) = 1

12w(k) ·
∏
pe‖N

u(p, e) + δk=2 · µ(N),

where w(k) and u(p, e) are quadruples of integers as in (d), and give explicit formulas
for u(p, e). Then use your formulas to compute the dimension of Snew

k (N) for the
values of k and N used in (d).

(f) Note that tr(T (n)|Sk(N,χ)) = 0 whenever χ(−1) 6= (−1)k, since dimSk(N,χ) = 0.
Show C(N,χ, u, t, n) = χ(−1)C(N,χ, u,−t, n) and Pk(k, t, n) = (−1)kPk(k,−t, n),
and conclude that if χ(−1) 6= (−1)k then the double sum in the first line of the trace
formula vanishes for χ(−1) 6= (−1)k.

Then show that Φ(N,χ,−a,−d) = χ(−1)Φ(N,χ, a, d) and conclude that if we re-
place Φ(N,χ, a, d) with (Φ(N,χ, a, d) + (−1)kΦ(N,χ,−a,−d))/2 in the trace for-
mula it is then valid for all χ, without any restriction on parity. By summing this
generalized trace formula over all χ of modulus N , show that for N ≥ 5 we have

dimSk(Γ1(N)) =
k − 1

24

∏
pe‖N

(
p2e − p2e−2

)
− 1

4

∏
pe‖N

(
(p2− 1) + e(p− 1)2)pe−2 + δk=2.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.



Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

4/22 Traces of Hecke operators

4/24 Modular abelian varieties

4/29 Level structures on elliptic curves

5/1 Modular curves

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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