
18.786 Number Theory II Spring 2024

Problem Set #4 Due: 3/23/2024

Description

These problems are related to the material covered in Lectures 9-12. Your solutions
should be written up in latex and submitted as a pdf-file on Gradescope before midnight
on the date due. Collaboration is permitted/encouraged, but you must identify your col-
laborators or the name of your group on pset partners, and any references you consulted.
If there are none write “Sources consulted: none” at the top of your solution.

Instructions: Pick any combination of problems that sum to 100 points, then com-
plete the survey problem.

Problem 1. Modular forms on SL2(Z) (50 points)

Throughout this problem Γ := SL2(Z) denotes the full modular group. Let Γ∞ be the
stabilizer of ∞, and let

F := {z ∈ H : |z| ≥ 1 and |Re(z)| ≤ 1/2}

denote the standard fundamental domain for Γ. For even integers k ≥ 4 we define the
Eisenstein series Gk(z) as the Poincaré series (see (2.6.2) in [2]):

Gk(z) := Fk(z;φ0, χ0,Γ∞,Γ) :=
∑

γ∈Γ∞\Γ

χ0(γ)(φ0|kγ)(z),

where φ0 = 1 is the identity function and χ0 is the trivial character. We also define1

Ek(z) := −Bk
2k
Gk(x),

where Bk := (−1)k/2+12·k!
(2π)k

ζ(k) = 2k(−1)k/2+1
∫∞

0
tk−1

e2πt−1
dt ∈ Q is the kth Bernoulli num-

ber, with B2 = 1
2 , B4 = − 1

30 , B6 = 1
42 (see Problem 3 for more on Bernoulli numbers).

(a) Let k ≥ 4 be even. Prove that Ek(z) has the following q-expansion at ∞:

Ek(z) =
−Bk
2k

+ q +

∞∑
n=2

σk−1(n)qn,

where q := e2πiz and σe(n) :=
∑

d|n d
e.

(b) Let ρ = eπi/3. Prove that for any k ∈ Z and nonzero f ∈Mk(Γ) we have

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∑
τ∈F−{i,ρ}

ordτ (f) =
k

12
.

Conclude that dimMk = 0 unless k ≥ 4 is even.

1Note that this is not the Ek defined in [2, §4.1].
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(c) Let ∆ := (G3
4 − G2

6)/1728. Prove that for even k ≥ 4 the map f 7→ ∆f defines
an isomorphism Mk−12

∼−→ Sk. Conclude that dimMk = 1 and dimSk = 0 for
k = 4, 6, 8, 10, 14.

(d) Prove that if 4a+ 6b = k ≡ 0 mod 12 then 3|a and Ga4G
b
6/G

k/6
6 = (G3

4/G
2
6)a/3.

(e) Prove that for all even integers k ≥ 2 we have

dimMk(Γ) =


0 if k is odd or negative,

bk/12c if k ≡ 2 mod 12 is positive and even.

bk/12c+ 1 if k 6≡ 2 mod 12 is positive and even.

(this is Corollary 4.1.4 in [2], you are being asked to give an alternative proof).

(f) Prove that {Ga4Gb6 : a, b ∈ Z≥0 with 4a+ 6b = k} is a basis for Mk(Γ) for all k ∈ Z.
(this is Theorem 4.1.8 in [2], you are being asked to give an alternative proof).

(g) Prove that the space Sk(Γ) has a unique basis {f1, . . . , fd} such that ai(fj) = δij
for 1 ≤ i, j ≤ d, where fj has q-expansion fj =

∑
i≥0 ai(fj)q

i at ∞, and show that
fj ∈ Z[[q]] (hint: use the Ek and ∆). This basis for Sk(Γ) is called the Miller basis.

(h) Let {f1, f2} be the Miller basis for S38(Γ). Compute the integers a3(fi) for 1 ≤ i ≤ 2
and express each fi in terms of the basis for M38(Γ) given by part (f).

(i) Let T := Z[Γ\∆/Γ] be the Hecke algebra for Γ = SL2(Z) over Z, with ∆ the set
of integer matrices in GL+

2 (Q). For n ∈ Z≥1 let T (n) ∈ T denote the nth Hecke
operator T (n) :=

∑
detα=n ΓαΓ, where the sum is over double cosets of Γ in ∆.

Show that for every even integer k ≥ 4 and integer n ≥ 1 we have

T (n)(Ek) := Ek|T (n) = σk−1(n)Ek,

and compute the matrix of T (2) on the Miller basis for S38(Γ).

Problem 2. Hecke operators on Γ1(N) (50 points)

Fix N ∈ Z>0. In lecture, we considered the Hecke algebra

T(Γ0(N),∆0(N)) := Z[Γ0(N)\∆0(N)/Γ0(N)],

where

Γ0(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N, a ⊥ N},

∆0(N) := {
(
a b
c d

)
∈M+

2 (Z) : c ≡ 0 mod N, a ⊥ N},

see [2, 4.5]. We now want to consider the Hecke algebra T(Γ1(N),∆1(N)), where

Γ1(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N, a ≡ d ≡ 1 mod N},

∆1(N) := {α =
(
a b
c d

)
∈M+

2 (Z) : c ≡ 0 mod N, a ≡ 1 mod N}.

We also define the diamond operator 〈d〉 for each d ∈ (Z/NZ)×, which acts on modular
forms of weight k via f 7→ f |kσd, where σd ∈ SL2(Z) satisfies

σd ≡
(

1/d 0
0 d

)
mod N.



Throughout this problem χ denotes a Dirichlet character of modulus N , and for any
integer m we write m|N∞ to indicate that every prime divisor of m is also a prime
divisor of N .

(a) Show that

Mk(Γ0(N), χ) = {f ∈Mk(Γ1(N)) : 〈d〉f = χ(d)f for all d ∈ (Z/NZ)×},

so 〈d〉 acts on Mk(Γ0(N), χ) via f 7→ χ(d)f . Conclude that 〈d〉 acts on Mk(Γ1(N))
and this action does not depend on the choice of σd.

We now define Hecke operators T (n), T (a, d) ∈ T(Γ1(N),∆1(N)), with a|d ⊥ N , via

T (n) :=
∑

detα=n

Γ1(N)αΓ1(N), T (a, d) := Γ1(N)σa
(
a 0
0 d

)
Γ1(N),

where the sum for T (n) is over double cosets of Γ1(N) in ∆1(N).

(b) Show that T(Γ1(N),∆1(N)) is commutative and for any α ∈ ∆1(N) we can choose
α1, . . . , αn ∈ ∆1(N) so that Γ1(N)αΓ1(N) = tiΓ1(N)αi = tiαiΓ1(N).

(c) Prove that every Hecke operator Γ1(N)αΓ1(N) with α ∈ ∆1(N) can be uniquely
expressed in the form

T (m)T (a, d) = T (a, d)T (m),

with m|N∞ and a|d ⊥ N .

(d) Show that T(Γ1(N),∆1(N)) = 〈T (p), T (q, q) : p, q prime, q ⊥ N〉 and that we also
have TQ(Γ1(N),∆1(N)) = 〈T (n)〉.

(e) For each n ∈ Z>0 let ∆n := {α ∈ ∆1(N) : detα = n} so that ∆1(N) = tn≥0∆n.
For each positive integer a ⊥ N fix a choice of σa ∈ SL2(Z). Show that for each
n ∈ Z>0 we have

∆n =
⊔
ad=n
a⊥N

⊔
0≤b<d

Γ1(N)σa
(
a b
0 d

)
.

Conclude that for each f ∈Mk(Γ0(N), χ) we have

f |kT (n) = nk−1
∑
ad=n
a⊥N

∑
0≤b<d

χ(a)d−kf
(
az+b
d

)
,

and
f |kT (d, d) = dk−2χ(d)f.

(f) Show that when we restrict the action of T(Γ1(N),∆1(N)) to Mk(Γ0(N), χ) we have

T (m)T (n) =
∑

d| gcd(m,n)

dk−1χ(d)T (mn/d2),

and derive the identity∑
n≥1

T (n)n−s =
∏
p

(
1− T (p)p−s + χ(p)pk−1−2s

)−1

where both of the equalities above are identities of operators on Mk(Γ0(N), χ).



(g) Prove the following identity of operators on Mk(Γ1(N)):

pk−1〈p〉 = T (p)2 − T (p2),

valid for all primes p.

Problem 3. Computing Bernoulli numbers (50 points)

For integers n ≥ 0, the Bernoulli polynomials Bn(x) ∈ Q[x] are defined as the coefficients
of the exponential generating function

E(t, x) :=
tetx

et − 1
=
∑
n≥0

Bn(x)

n!
tn.

The nth Bernoulli number is then defined as Bn = Bn(0).

(a) Prove that B0(x) = 1, B′n(x) = nBn−1(x), and Bn(1) = Bn(0) for n 6= 1, and that
these properties uniquely determine the Bernoulli polynomials.

(b) Prove that Bn(x+ 1)−Bn(x) = nxn−1 and

Bn(x+ y) =
n∑
k=0

(
n

k

)
Bk(x)yn−k.

Use this to show that Bn can alternatively be defined by the recurrence B0 = 1 and

Bn = − 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk

for all n > 0, and show that Bn = 0 for all odd n > 1.

(optional) This part is not required but you can use the result in your solution to (c).
Let n ≥ 2 be an even integer. Generalize (b) to show that for all y ∈ Z≥1 we have

y−1∑
m=0

(m+ x)n−1 =
Bn(x+ y)−Bn(x)

n
,

and use this to deduce a formula for sums of nth powers using Bernoulli numbers

y−1∑
m=1

mn =
1

n+ 1

n∑
k=0

(
n+ 1

k

)
Bky

n+1−k.

Now derive a formula for Bn in terms of nth powers

Bn =

n∑
k=0

1

k + 1

k∑
m=0

(−1)m
(
k

m

)
mn,

and also in terms of the Stirling numbers
{
n
k

}
:= 1

k!

∑k
m=0(−1)k−m

(
k
m

)
mn that count the

number of ways to partition a set of n labelled objects into k nonempty subsets:

Bn =

n∑
k=0

k!

k + 1
(−1)kS(n, k).



(c) Let n ≥ 2 be an even integer. Prove that vp(Bn) ≥ −1 for all primes p and that
vp(Bn) = −1 if and only if p− 1 divides n. In other words, when written in lowest
terms the denominator of the rational number Bn is

∏
(p−1)|n p.

For a nonzero rational number r = a/b with a, b ∈ Z coprime we define its height to be
h(r) := max(log |a|, log |b|) ∈ R≥0.

(d) Let n ≥ 2 be an even integer. Using the identity ζ(n) = (−1)n/2+1 (2π)nBn
2·n! and the

bounds √
2πnn+

1
2 e−ne

1
12n+1 < n! <

√
2πnn+

1
2 e−ne

1
12n

arising from Stirling’s approximation, determine an effective upper bound for h(Bn)
as a function of n (you are not required to prove the identity but are free to do so!).

(e) Let M(b) denote the time to multiply two b-bit integers (the bound M(b) = O(b log b)
was recently proved [1], but in practice the Schönhage-Strassen algorithm [3] with
complexity O(b log b log log b) is used). Estimate the complexity of computing Bn
using the recursive formula above, assuming that it takes M(b) log b time to reduce
a ratio of b-bit integers to a rational number in lowest terms (this is achieved by the
fast Euclidean algorithm). Your answer should be an asymptotic upper bound (in
big O-notation) on the number of bit operations required, as a function of n.

(f) Describe an algorithm to compute Bn using Newton iteration to compute 1/f mod-
ulo xn+1, where f(x) = (ex − 1)/x =

∑
n≥0

xn

(n+1)! , and estimate its complexity.

Note that you can use Kronecker substitution to multiply two polynomials in Z[x]
of degree at most d with coefficients of height b in time O(M(bd log d)) by replacing x
with a suitable power of 2.

(g) Let n ≥ 2 be an even integer, let d =
∏

(p−1)|n p be the denominator of Bn and let A

be an approximation to 2 ·n!/(2π)n to b-bits of precision, such that 2b > eh(Bn). Let
P := d(Ad)1/(n−1)e and let r :=

∏
p≤P (1−p−n)−1. Show that if a = (−1)n/2+1ddrAe

then Bn = a/d.

(h) Estimate the complexity of computing Bn using the algorithm suggested by (e).

(i) Illustrate the 3 algorithms to compute Bn considered in this problem for n = 8.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3



Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

3/11 Poincare and Eisenstein series

3/13 Hecke algebras

3/18 Hecke algebras for modular groups

3/20 Eigenforms and L-functions

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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