18.786 Number Theory II Spring 2024
Problem Set #4 Due: 3/23/2024

Description

These problems are related to the material covered in Lectures 9-12. Your solutions
should be written up in latex and submitted as a pdf-file on Gradescope before midnight
on the date due. Collaboration is permitted/encouraged, but you must identify your col-
laborators or the name of your group on pset partners, and any references you consulted.
If there are none write “Sources consulted: none” at the top of your solution.

Instructions: Pick any combination of problems that sum to 100 points, then com-
plete the survey problem.

Problem 1. Modular forms on SLy(Z) (50 points)

Throughout this problem I' := SLy(Z) denotes the full modular group. Let I'y, be the
stabilizer of oo, and let

F:={z€H:|z| >1and |Re(z)| <1/2}

denote the standard fundamental domain for I'. For even integers k > 4 we define the
Eisenstein series G (z) as the Poincaré series (see (2.6.2) in [2]):

Gr(2) = Fi(2: 60, x0, Toos T) == D> x0(1)(0lr7)(2),
YET o \I'

where ¢g = 1 is the identity function and xq is the trivial character. We also define'

Ex(z) := —%Gk(x),

where By = %g(k) = 2k(—1)R/2H1 [* 7 dt € Q is the kth Bernoulli num-

ber, with By = %, By = —%, Bg = ﬁ (see Problem 3 for more on Bernoulli numbers).

(a) Let k > 4 be even. Prove that Fj(z) has the following g-expansion at oo:
E(z):_—&“+q+§:a (n)q"
k % 2 k—1 )

where ¢ := €2™% and o.(n) := > djn 4
(b) Let p = e™/3. Prove that for any k € Z and nonzero f € M(T) we have

k

ordeo (f) + 1ordi(f) + 1ordp(f) + Z ord,(f) = 12"

2 3
TeF—{i,p}

Conclude that dim M} = 0 unless k > 4 is even.

!Note that this is not the Ej defined in [2, §4.1].


https://www.gradescope.com/courses/730173
https://psetpartners.mit.edu

c) Let A := (G3 — G%)/1728. Prove that for even k > 4 the map f ~ Af defines
1 6
an isomorphism Mj_15 — Si. Conclude that dim M} = 1 and dim S, = 0 for
k=4,6,8,10,14.

(d) Prove that if 4a + 6b = k = 0 mod 12 then 3|a and GZG%/G§/6 = (G3/G3)*/3.
(e) Prove that for all even integers k > 2 we have

0 if k is odd or negative,
dim M (") = < |k/12] if K =2 mod 12 is positive and even.
|k/12] +1 if k # 2 mod 12 is positive and even.

(this is Corollary 4.1.4 in [2], you are being asked to give an alternative proof).

(f) Prove that {G$GY : a,b € Z>o with 4a + 6b = k} is a basis for M(T') for all k € Z.
(this is Theorem 4.1.8 in [2], you are being asked to give an alternative proof).

(g) Prove that the space Si(I') has a unique basis {f1,..., fa} such that a;(f;) = d;;
for 1 <4,j < d, where f; has g-expansion f; = > .5 ai(f;)q" at oo, and show that
fj € Z[[q]] (hint: use the Ej and A). This basis for Si(I") is called the Miller basis.

(h) Let {f1, f2} be the Miller basis for S3s(I"). Compute the integers agz(f;) for 1 <i <2
and express each f; in terms of the basis for Msg(I") given by part (f).

(i) Let T := Z[I'\A/T] be the Hecke algebra for I' = SLy(Z) over Z, with A the set
of integer matrices in GL3 (Q). For n € Z>; let T(n) € T denote the nth Hecke
operator T(n) := > .t aen L ol', where the sum is over double cosets of I' in A.
Show that for every even integer k£ > 4 and integer n > 1 we have

T(n)(Ey) == Eg|T(n) = og-1(n)Ey,

and compute the matrix of 7'(2) on the Miller basis for Ssg(I").

Problem 2. Hecke operators on I'; (IN) (50 points)

Fix N € Z~¢. In lecture, we considered the Hecke algebra
T(Lo(N), Ao(N)) == Z[To(N)\Ao(N)/To(N)],

where

Io(N):={(2%) € SLa(Z) : c=0mod N,a L N},
Ao(N):={(2%) € My (Z): ¢c=0mod N,a L N},

see [2, 4.5]. We now want to consider the Hecke algebra T(I'1(N), A1(NV)), where

Ii(N):={(2%) € SLy(Z) : c=0mod N,a =d =1mod N},
Ai(N):={a=(%%) € My (Z): c=0mod N,a=1mod N}.

We also define the diamond operator (d) for each d € (Z/NZ)*, which acts on modular
forms of weight k via f +— f|ro4, where o4 € SLy(Z) satisfies

o4 = (1(/)d 2) mod N.



Throughout this problem x denotes a Dirichlet character of modulus N, and for any
integer m we write m|N° to indicate that every prime divisor of m is also a prime
divisor of N.

(a) Show that

M(To(N),x) = {f € Mp(T1(N)) : (d)f = x(d) f for all d € (Z/NZ)"},

so (d) acts on My(I'o(N),x) via f+— x(d)f. Conclude that (d) acts on My(I'1(NV))
and this action does not depend on the choice of gy.

We now define Hecke operators T'(n),T(a,d) € T(I'1(N), A1(N)), with a|ld L N, via

T(n):= Y Ti(N)al'(N),  T(a,d):=T1(N)oa(§3)T1(IN),

det a=n

where the sum for T'(n) is over double cosets of I';(N) in Aj(N).

(b) Show that T(I';(N), A1(N)) is commutative and for any a € A;(N) we can choose
Aty...,0p € A1<N) so that Fl(N)aI‘l(N) = |_|Z‘P1(N)Oéi = |_|Z'CMZ‘F1(N>.

(c) Prove that every Hecke operator I'1(N)al'1(N) with a € Aj(N) can be uniquely
expressed in the form

T(m)T(a,d) = T(a, d)T(m),
with m|N*° and a|d L N.

(d) Show that T(I'y(N),A1(N)) = (T'(p),T(q,q) : p,q prime,q L N) and that we also
have To(I'1(N), A1(N)) = (T'(n)).

(e) For each n € Z>g let A™ := {a € A1(N) : deta = n} so that Aj(N) = Up>oA™.
For each positive integer a L N fix a choice of o, € SLa(Z). Show that for each
n € Z~o we have
=] [ mi@W)ea(gh).

ad:n 0<b<d
1N

Conclude that for each f € My (To(IV), x) we have

f‘kT _nk 1 Z Z Icf az-i-b),

ad=n 0<b<d
al N

and
FIkT(d, d) = d*2x(d)f.

(f) Show that when we restrict the action of T(I'1(N), A1(N)) to My(T'o(N), x) we have
T(m)T(n)= Y d"'X(d)T(mn/d),
d| ged(m,n)
and derive the identity

ZT(”)”ﬂ = H (1 —T(p)p~° + X(p)pk7172s)

n>1 p

-1

where both of the equalities above are identities of operators on My (I'o(N), x).



(g) Prove the following identity of operators on My(I'1(N)):

valid for all primes p.

Problem 3. Computing Bernoulli numbers (50 points)

For integers n > 0, the Bernoulli polynomials By, (x) € Q[z] are defined as the coefficients
of the exponential generating function

tet® By (z) ,,
E(t,z) := o = Z t".

n!
n>0

The nth Bernoulli number is then defined as B,, = B,(0).

(a) Prove that By(xz) = 1, B}, () = nBp—1(x), and B, (1) = B,(0) for n # 1, and that
these properties uniquely determine the Bernoulli polynomials.

b) Prove that B, (z + 1) — B,,(z) = nz" ! and
(b)

Bu(z +y) = an (Z) Bi(z)y" ",

k=0
Use this to show that B,, can alternatively be defined by the recurrence By = 1 and

n—1

1 n+1
B, = — B
n—i—lZ( k ) F

k=0

for all n > 0, and show that B, = 0 for all odd n > 1.

(optional) This part is not required but you can use the result in your solution to (c).
Let n > 2 be an even integer. Generalize (b) to show that for all y € Z>; we have

1 Bu(@+y) — Bu(2)
(m+x)" 1_—n nez

and use this to deduce a formula for sums of nth powers using Bernoulli numbers

. n+1 n+1—k
_n+lz< k )B’“y '

Now derive a formula for B,, in terms of nth powers

y—1

m=1

n

1 & k
Bn = _ Z(—l)m< >mn,
k:0k+1m=0 m

and also in terms of the Stirling numbers {7} == & Zﬁlzo(—l)k*m (:l)m” that count the
number of ways to partition a set of n labelled objects into k& nonempty subsets:

B

k=0

“S(n, k).



(c) Let n > 2 be an even integer. Prove that v,(B,) > —1 for all primes p and that
vp(By) = —1 if and only if p — 1 divides n. In other words, when written in lowest
terms the denominator of the rational number B,, is H(p—1)|n D.

For a nonzero rational number r = a/b with a,b € Z coprime we define its height to be
h(r) := max(log |al,log |b]) € R>q.

(d) Eet ndZ 2 be an even integer. Using the identity ((n) = (—1)"/2“% and the
ounds
1 1 1
V2™ 2e e < nl < V2T Ee e Ton

arising from Stirling’s approximation, determine an effective upper bound for h(B,,)
as a function of n (you are not required to prove the identity but are free to do so!).

(e) Let M(b) denote the time to multiply two b-bit integers (the bound M (b) = O(blogb)
was recently proved [1], but in practice the Schonhage-Strassen algorithm [3] with
complexity O(blogbloglogb) is used). Estimate the complexity of computing B,
using the recursive formula above, assuming that it takes M(b)logb time to reduce
a ratio of b-bit integers to a rational number in lowest terms (this is achieved by the
fast Euclidean algorithm). Your answer should be an asymptotic upper bound (in
big O-notation) on the number of bit operations required, as a function of n.

(f) Describe an algorithm to compute B,, using Newton iteration to compute 1/ f mod-
ulo 2"t where f(z) = (e — 1)/z = Y >0 (nxT")!, and estimate its complexity.
Note that you can use Kronecker substitution to multiply two polynomials in Z[x]
of degree at most d with coefficients of height b in time O(M(bdlog d)) by replacing x

with a suitable power of 2.

(g) Let n > 2 be an even integer, let d = [, _;),, p be the denominator of By, and let A

be an approximation to 2-n!/(2m)" to b-bits of precision, such that 2° > *Bn)_ Let
P :=[(Ad)"/™ D] and let r := [[,< p(1—p~")~*. Show that if a = (—1)"/2" [drA]
then B, = a/d. -

(h) Estimate the complexity of computing B,, using the algorithm suggested by (e).

(i) Hlustrate the 3 algorithms to compute B, considered in this problem for n = 8.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest | Difficulty | Time Spent

Problem 1
Problem 2
Problem 3




Please rate each of the following lectures that you attended, according to the quality of
the material (1=*“useless”, 10="“fascinating”), the quality of the presentation (1="“epic
fail”, 10=“perfection”), the pace (1="“way too slow”, 10=“way too fast”, 5=*“just right”)
and the novelty of the material to you (1=*old hat”, 10="“all new”).

Date | Lecture Topic Material | Presentation | Pace | Novelty

3/11 | Poincare and Eisenstein series

3/13 | Hecke algebras

3/18 | Hecke algebras for modular groups

3/20 | Eigenforms and L-functions

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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