Description

These problems are related to the material covered in Lectures 4-8. Your solutions should be written up in latex and submitted as a pdf-file on Gradescope before midnight on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators or the name of your group on pset partners, and any references you consulted. If there are none write "Sources consulted: none" at the top of your solution.

Problem 1. Automorphic forms in an adelic setting (50 points)

Let $\mathbb{A}_{\mathbb{Q}}$ denote the adele ring of \mathbb{Q}, which we recall contains \mathbb{Q} embedded diagonally as the subring of principal adeles. Let $\mathbb{A}_{\mathbb{Q}}^{\infty}:=\left\{a \in \mathbb{A}_{\mathbb{Q}}:\|a\|_{\infty}=0\right\}$ denote the finite adeles, and embed each completion of \mathbb{Q} in $\mathbb{A} \mathbb{Q}$ via $(x \mapsto(0, \ldots, 0, x, 0, \ldots 0)) .{ }^{1}$

Note that under these embeddings the finite adeles $\mathbb{A}_{\mathbb{Q}}^{\infty} \subseteq \mathbb{A}_{\mathbb{Q}}$ and the \mathbb{Q}-completions $\mathbb{Q}_{p}, \mathbb{R} \subseteq \mathbb{A}_{\mathbb{Q}}$ are $\mathbb{A}_{\mathbb{Q}}$-ideals that are rings, but they are not subrings of $\mathbb{A}_{\mathbb{Q}}$ (because they do not contain $1 \in \mathbb{A}_{\mathbb{Q}}$), whereas $\mathbb{Q} \subseteq \mathbb{A}_{\mathbb{Q}}$ is a subring but not an $\mathbb{A}_{\mathbb{Q}}$-ideal.
(a) Show that one can embed $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right)$ and $\mathrm{GL}_{2}(\mathbb{R})$ in $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ so that we have isomorphisms of topological groups

$$
\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right) \times \mathrm{GL}_{2}(\mathbb{R}) \simeq \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right) \mathrm{GL}_{2}(\mathbb{R})=\mathrm{GL}_{2}(\mathbb{R}) \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right)
$$

and thus may view any subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ or $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right)$ as a subgroup of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
Let $\widehat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p} \simeq \lim _{n} \mathbb{Z} / n \mathbb{Z}$ denote the profinite completion of \mathbb{Z}, which we view as a subring of $\mathbb{A}_{\mathbb{Q}}^{\infty}$ (via the embeddings of $\mathbb{Z}_{p} \subseteq \mathbb{Q}_{p}$). For each positive integer N we define

$$
\begin{aligned}
K_{0}(N) & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\widehat{\mathbb{Z}}): c \equiv 0 \bmod N\right\} \subseteq \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right), \\
\Gamma_{0}(N) & :=K_{0}(N) \cap \mathrm{GL}_{2}^{+}(\mathbb{Z}) \subseteq \mathrm{SL}_{2}(\mathbb{Z}) .
\end{aligned}
$$

(b) Show that

$$
\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)=\mathrm{GL}_{2}(\mathbb{Q}) \mathrm{GL}_{2}^{+}(\mathbb{R}) K_{0}(N),
$$

thus we can write any $a \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ as $g=\gamma \sigma \kappa$ with $\gamma \in \mathrm{GL}_{2}(\mathbb{Q}), \sigma \in \mathrm{GL}_{2}^{+}(\mathbb{R})$, and $\kappa \in K_{0}(N)$, not necessarily uniquely.
(c) Show that there is a natural isomorphism of topological coset/double-coset spaces

$$
\Gamma_{0}(N) \backslash \mathrm{GL}_{2}^{+}(\mathbb{R}) \simeq \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / K_{0}(N) .
$$

(d) Let $K_{\infty}^{+}=\mathrm{SO}_{2}(\mathbb{R})$ and let Z_{∞}^{+}denote the subgroup of scalar matrices in $\mathrm{GL}_{2}^{+}(\mathbb{R})$. Show that we have a natural isomorphism of topological spaces

$$
\Gamma_{0}(N) \backslash \mathbf{H} \simeq \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / K_{0}(N) K_{\infty}^{+} Z_{\infty}^{+}
$$

and that $\Gamma_{0}(N)$ is an arithmetic lattice in $\mathrm{SL}_{2}(\mathbb{R})$. Let $X_{0}(N):=X_{\Gamma_{0}(N)}$ denote the corresponding compact Riemann surface.

[^0]Let $k \in \mathbb{Z}_{>0}$ be even. For any cusp form $f \in S_{k}\left(\Gamma_{0}(N)\right)$, we define the function $\varphi_{f}: \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) \rightarrow \mathbb{C}$ by writing $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ in the form $g=\gamma \sigma \kappa$ as in (b) and putting

$$
\varphi_{f}(g):=\left(\left.f\right|_{k} \sigma\right)(i),
$$

where $\left(\left.f\right|_{k} \sigma\right)(z):=\operatorname{det}(\sigma)^{k / 2} j(\sigma, z)^{-k} f(\sigma z)$ is the slash operator and $j\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), z\right):=c z+d$ is the automorphy factor.
(e) Show that φ_{f} is well defined, in other words, for all $\gamma, \gamma^{\prime} \in \mathrm{GL}_{2}(\mathbb{Q}), \sigma, \sigma^{\prime} \in \mathrm{GL}_{2}^{+}(\mathbb{R})$, $\kappa, \kappa^{\prime} \in K_{0}(N)$ such that $\gamma \sigma \kappa=\gamma^{\prime} \sigma^{\prime} \kappa^{\prime}$, we have $\left(\left.f\right|_{k} \sigma\right)(i)=\left(\left.f\right|_{k} \sigma^{\prime}\right)(i)$.
Define $\xi: K_{\infty}^{+} \rightarrow \mathbb{C}$ by $\xi\left(r_{\theta}\right):=e^{i k \theta}$ for $r_{\theta}=\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta} \in K_{\infty}^{+}=\mathrm{SO}_{2}(\mathbb{R})$.
(f) Let $K:=K_{0}(N) K_{\infty}^{+}$. Show that $\varphi:=\varphi_{f}$ satisfies the following:
(i) automorphy: $\varphi(\gamma g)=\varphi(g)$ for all $\gamma \in \mathrm{GL}_{2}(\mathbb{Q})$ and $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
(ii) K-finite: $\varphi\left(g r_{\theta} \kappa\right)=\xi\left(r_{\theta}\right) \varphi(g)$ for all $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right), r_{\theta} \in K_{\infty}^{+}, \kappa \in K_{0}(N)$, so the \mathbb{C}-vector space spanned by $\{\varphi(g h): h \in K\}$ has finite dimension.
(iii) central action: $\varphi(\lambda g)=\varphi(g)$ for all scalar $\lambda \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ and $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
(iv) Z-finite: For every $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right)$ the map $\mathbf{H} \rightarrow \mathbb{C}$ given by

$$
z \mapsto \varphi(g \sigma) j(\sigma, i)^{k} \operatorname{det}(\sigma)^{-k / 2},
$$

where $\sigma \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ satisfies $\sigma i=z$, is well-defined and holomorphic.
(v) moderate growth: There exist $c, r \in \mathbb{R}_{>0}$ such that for all $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}^{\infty}\right)$ the function ϕ_{g} on $\mathrm{GL}_{2}^{+}(\mathbb{R})$ defined by $\sigma \mapsto \varphi(g \sigma)$ satisfies the bound

$$
\left|\phi_{g}(\sigma)\right| \leq c\|\sigma\|^{r},
$$

with $\|\sigma\|:=a^{2}+b^{2}+c^{2}+d^{2}+\operatorname{det}(\sigma)^{-2}$ for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(vi) cuspidal: Show that the function ϕ_{g} defined in (v) is bounded on $\mathrm{GL}_{2}^{+}(\mathbb{R})$.
(g) Show that any smooth function $\varphi: \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) \rightarrow \mathbb{C}$ satisfying conditions (i)-(vi) above arises as φ_{f} for some $f \in S_{k}\left(\Gamma_{0}(N)\right)$. Such functions are cuspidal automorphic forms on $\mathbb{A}_{\mathbb{Q}}$ for $K_{0}(N)$.

Remark. Our definition of K-finiteness depends not only on K, but also on the choice of the function ξ (a fundamental idempotent). Our definition of Z-finiteness is specific to the GL_{2} setting, where holomorphicity is equivalent to being an eigenfunction for the Casimir element Δ, which together with 1 generates the center $Z(\mathfrak{g})$ of the universal enveloping algebra for the complexified Lie algebra $\mathfrak{g}:=\mathfrak{g l}_{2} \otimes_{\mathbb{R}} \mathbb{C}$; in general one specifies a finite index ideal of $Z(\mathfrak{g})$ that annihilates φ. An automorphic form on $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ is cuspidal if for all $g \in \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ we have

$$
\int_{\mathbb{Q} \backslash \mathbb{A}_{\mathbb{Q}}} \varphi\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) d x=0 .
$$

See [1, Cor. 12.4] for a proof that this is implied by the cuspidal condition above.
Remark. The $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ automorphic forms for $K_{0}(N)$ described in this problem admit many generalizations, including: (1) replace \mathbb{Q} with a number field F and $\widehat{\mathbb{Z}}$ with $\widehat{\mathcal{O}}_{F}$, (2) replace GL_{2} with a connected linear algebraic group G and $\Gamma_{0}(N)$ with any arithmetic subgroup of $G(F)$ (and adjust $K_{0}(N)$ and $\mathrm{GL}_{2}^{+}(\mathbb{R})$ accordingly), (3) allow a character χ (and adjust the fundamental idempotent and the central action condition accordingly).

Problem 2. Subgroups of the modular group (50 points)

In this problem we consider subgroups of the modular group $\Gamma(1):=\mathrm{SL}_{2}(\mathbb{Z})$. We use $\Gamma(N)$ to denote the subgroup of $\Gamma(1)$ congruent to the identity modulo a positive integer N. For any subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ we use $\bar{\Gamma}$ to denote $\Gamma / Z(\Gamma) \subseteq \operatorname{PSL}_{2}(\mathbb{Z})$.
(a) Show that $X(1):=X_{\Gamma(1)}$ has hyperbolic volume $\pi / 3$ and is therefore compact.
(b) Show that every elliptic element of $\Gamma(1)$ is conjugate to a power of $R:=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ or $S:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, every parabolic element is conjugate to a power of $T:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and that $\bar{\Gamma}(1)$ admits the presentation $\left\langle r, s \mid r^{3}=s^{2}=1\right\rangle$.
(c) Show that the commutator subgroup $\bar{\Gamma}(1)^{\prime}:=\left\langle\alpha \beta \alpha^{-1} \beta^{-1}: \alpha, \beta \in \bar{\Gamma}(1)\right\rangle \leq \bar{\Gamma}(1)$ is a normal subgroup of index 6 is isomorphic to the free group on two letters.
(d) Show that $\bar{\Gamma}(2) \leq \bar{\Gamma}(1)$ is also a normal subgroup of index 6 isomorphic to the free group on two letters.
(e) Are the isomorphic normal subgroups $\bar{\Gamma}(1)^{\prime}, \bar{\Gamma}(2) \leq \bar{\Gamma}(1)$ equal? If not, describe their intersection and determine the least integer N (if any) for which $\bar{\Gamma}(N) \subseteq \bar{\Gamma}(1)^{\prime}$.

For a subgroup Γ of $\Gamma(1)$ let $e_{n}(\Gamma)$ count the Γ-inequivalent elliptic points of order n, and let $e_{\infty}(\Gamma)$ count the Γ-inequivalent cusps.
(f) Prove that for any finite index subgroup Γ of $\Gamma(1)$ the following formula holds

$$
g(\Gamma):=g\left(X_{\Gamma}\right)=1+\frac{[\bar{\Gamma}(1): \bar{\Gamma}]}{12}-\frac{e_{2}(\Gamma)}{4}-\frac{e_{3}(\Gamma)}{3}-\frac{e_{\infty}(\Gamma)}{2} .
$$

Your proof should rely only on material covered in the first two chapters of [2].
(g) Compute an explicit (and reasonably sharp) lower bound on $g(\Gamma(N))$ as a function of N and determine its asymptotic growth. Use this to explicitly determine the sets of integers $\{N: g(\Gamma(N))=g\}$ for $g \leq 10$ (you are welcome to use a computer algebra system to help, but you must prove your list is complete).
(h) Let $\Gamma:=\Gamma(1)^{\prime}$ be the commutator subgroup of $\Gamma(1)$. Compute $g(\Gamma)$ using your formula, then compute $\operatorname{dim} S_{k}(\Gamma)$ for $2 \leq k \leq 6$.

Definition. A congruence subgroup Γ is a subgroup of $\operatorname{SL}(2, \mathbb{Z})$ that contains $\Gamma(N)$ for some positive integer N. The least such N is the level of Γ.

Definition. The width of a cusp x of a finite index $\Gamma \leq \operatorname{SL}(2, \mathbb{Z})$ is the least integer $h \geq 1$ for which $\pm \sigma \Gamma_{x} \sigma_{-1}= \pm\left\langle\left(\begin{array}{ll}1 & h \\ 0 & h\end{array}\right)\right\rangle$, where $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ satisfies $\sigma x=\infty$.
(i) Prove that for all $N \geq 1$, the group $\Gamma(1) / \Gamma(N) \simeq \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ contains a subgroup of index 7 only when $7 \mid N$, in which case it projects on to an index 7 subgroup of $\operatorname{SL}(2, \mathbb{Z} / 7 \mathbb{Z})$. Conclude that every congruence subgroup of index 7 has level 7 .
(j) Consider the subgroup $\Gamma:=\left\langle\left(\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)\right\rangle$ of $\operatorname{SL}(2, \mathbb{Z})$ found in [3], which evidently has a cusp of width 5 . Prove that if Γ contains $\Gamma(N)$ then the width of every cusp of Γ divides N. Then show that Γ has index 7 in $\operatorname{SL}(2, \mathbb{Z})$ and is therefore not a congruence subgroup, and compute $g(\Gamma)$ using your formula.

Problem 3. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it ($1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$2 / 26$	Meromorphic differentials				
$2 / 28$	Dimension formulas				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

References

[1] A. Knightly and C. Li, Traces of Hecke operators, American Mathematical Society, 2006.
[2] T. Miyake, Modular forms, Springer, 2006.
[3] A.J. Scholl, On the Hecke algebra of a noncongruence subgroup, Bull. London Math. Soc. 29 (1997), 395-399.

[^0]: ${ }^{1}$ See the 18.785 Lecture notes for more about the ring $\mathbb{A}_{\mathbb{Q}}$.

