Description

These problems are related to the material covered in Lectures 4-8. Your solutions should be written up in latex and submitted as a pdf-file on Gradescope before midnight on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators or the name of your group on pset partners, and any references you consulted. If there are none write "Sources consulted: none" at the top of your solution.

Problem 1. Automorphic forms in an adelic setting (50 points)

Let $\mathbb{A}_{\mathbb{Q}}$ denote the adele ring of \mathbb{Q} , which we recall contains \mathbb{Q} embedded diagonally as the subring of principal adeles. Let $\mathbb{A}_{\mathbb{Q}}^{\infty} := \{a \in \mathbb{A}_{\mathbb{Q}} : ||a||_{\infty} = 0\}$ denote the finite adeles, and embed each completion of \mathbb{Q} in $\mathbb{A}_{\mathbb{Q}}$ via $(x \mapsto (0, \ldots, 0, x, 0, \ldots, 0))$.¹

Note that under these embeddings the finite adeles $\mathbb{A}_{\mathbb{Q}}^{\infty} \subseteq \mathbb{A}_{\mathbb{Q}}$ and the \mathbb{Q} -completions $\mathbb{Q}_p, \mathbb{R} \subseteq \mathbb{A}_{\mathbb{Q}}$ are $\mathbb{A}_{\mathbb{Q}}$ -ideals that are rings, but they are not subrings of $\mathbb{A}_{\mathbb{Q}}$ (because they do not contain $1 \in \mathbb{A}_{\mathbb{Q}}$), whereas $\mathbb{Q} \subseteq \mathbb{A}_{\mathbb{Q}}$ is a subring but not an $\mathbb{A}_{\mathbb{Q}}$ -ideal.

(a) Show that one can embed $\operatorname{GL}_2(\mathbb{A}^{\infty}_{\mathbb{Q}})$ and $\operatorname{GL}_2(\mathbb{R})$ in $\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ so that we have isomorphisms of topological groups

$$\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})\simeq\mathrm{GL}_2(\mathbb{A}_\mathbb{Q}^\infty)\times\mathrm{GL}_2(\mathbb{R})\simeq\mathrm{GL}_2(\mathbb{A}_\mathbb{Q}^\infty)\mathrm{GL}_2(\mathbb{R})=\mathrm{GL}_2(\mathbb{R})\mathrm{GL}_2(\mathbb{A}_\mathbb{Q}^\infty),$$

and thus may view any subgroup of $\operatorname{GL}_2(\mathbb{R})$ or $\operatorname{GL}_2(\mathbb{A}^\infty_{\mathbb{Q}})$ as a subgroup of $\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$.

Let $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p \simeq \varprojlim_n \mathbb{Z}/n\mathbb{Z}$ denote the profinite completion of \mathbb{Z} , which we view as a subring of $\mathbb{A}_{\mathbb{Q}}^{\infty}$ (via the embeddings of $\mathbb{Z}_p \subseteq \mathbb{Q}_p$). For each positive integer N we define

$$K_0(N) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\widehat{\mathbb{Z}}) : c \equiv 0 \mod N \} \subseteq \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}}^{\infty}),$$

$$\Gamma_0(N) := K_0(N) \cap \operatorname{GL}_2^+(\mathbb{Z}) \subseteq \operatorname{SL}_2(\mathbb{Z}).$$

(b) Show that

$$\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}}) = \operatorname{GL}_2(\mathbb{Q})\operatorname{GL}_2^+(\mathbb{R})K_0(N),$$

thus we can write any $a \in \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ as $g = \gamma \sigma \kappa$ with $\gamma \in \operatorname{GL}_2(\mathbb{Q})$, $\sigma \in \operatorname{GL}_2^+(\mathbb{R})$, and $\kappa \in K_0(N)$, not necessarily uniquely.

(c) Show that there is a natural isomorphism of topological coset/double-coset spaces

$$\Gamma_0(N) \backslash \mathrm{GL}_2^+(\mathbb{R}) \simeq \mathrm{GL}_2(\mathbb{Q}) \backslash \mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}) / K_0(N).$$

(d) Let $K_{\infty}^+ = SO_2(\mathbb{R})$ and let Z_{∞}^+ denote the subgroup of scalar matrices in $GL_2^+(\mathbb{R})$. Show that we have a natural isomorphism of topological spaces

$$\Gamma_0(N) \setminus \mathbf{H} \simeq \mathrm{GL}_2(\mathbb{Q}) \setminus \mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}) / K_0(N) K_\infty^+ Z_\infty^+$$

and that $\Gamma_0(N)$ is an arithmetic lattice in $\mathrm{SL}_2(\mathbb{R})$. Let $X_0(N) := X_{\Gamma_0(N)}$ denote the corresponding compact Riemann surface.

¹See the 18.785 Lecture notes for more about the ring $\mathbb{A}_{\mathbb{Q}}$.

Let $k \in \mathbb{Z}_{>0}$ be even. For any cusp form $f \in S_k(\Gamma_0(N))$, we define the function $\varphi_f \colon \mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$ by writing $g \in \mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}})$ in the form $g = \gamma \sigma \kappa$ as in (b) and putting

$$\varphi_f(g) := (f|_k \sigma)(i),$$

where $(f|_k\sigma)(z) := \det(\sigma)^{k/2} j(\sigma, z)^{-k} f(\sigma z)$ is the slash operator and $j(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) := cz+d$ is the automorphy factor.

(e) Show that φ_f is well defined, in other words, for all $\gamma, \gamma' \in \mathrm{GL}_2(\mathbb{Q}), \sigma, \sigma' \in \mathrm{GL}_2^+(\mathbb{R}), \kappa, \kappa' \in K_0(N)$ such that $\gamma \sigma \kappa = \gamma' \sigma' \kappa'$, we have $(f|_k \sigma)(i) = (f|_k \sigma')(i)$.

Define $\xi \colon K_{\infty}^+ \to \mathbb{C}$ by $\xi(r_{\theta}) := e^{ik\theta}$ for $r_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \in K_{\infty}^+ = \mathrm{SO}_2(\mathbb{R}).$

(f) Let $K := K_0(N)K_{\infty}^+$. Show that $\varphi := \varphi_f$ satisfies the following:

- (i) **automorphy**: $\varphi(\gamma g) = \varphi(g)$ for all $\gamma \in GL_2(\mathbb{Q})$ and $g \in GL_2(\mathbb{A}_{\mathbb{Q}})$.
- (ii) K-finite: $\varphi(gr_{\theta}\kappa) = \xi(r_{\theta})\varphi(g)$ for all $g \in \mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}), r_{\theta} \in K^+_{\infty}, \kappa \in K_0(N)$, so the \mathbb{C} -vector space spanned by $\{\varphi(gh) : h \in K\}$ has finite dimension.
- (iii) central action: $\varphi(\lambda g) = \varphi(g)$ for all scalar $\lambda \in \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ and $g \in \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$.
- (iv) Z-finite: For every $g \in \operatorname{GL}_2(\mathbb{A}^{\infty}_{\mathbb{O}})$ the map $\mathbf{H} \to \mathbb{C}$ given by

$$z \mapsto \varphi(g\sigma) j(\sigma, i)^k \det(\sigma)^{-k/2}$$

where $\sigma \in \operatorname{GL}_2^+(\mathbb{R})$ satisfies $\sigma i = z$, is well-defined and holomorphic.

(v) moderate growth: There exist $c, r \in \mathbb{R}_{>0}$ such that for all $g \in \mathrm{GL}_2(\mathbb{A}^{\infty}_{\mathbb{Q}})$ the function ϕ_g on $\mathrm{GL}_2^+(\mathbb{R})$ defined by $\sigma \mapsto \varphi(g\sigma)$ satisfies the bound

$$|\phi_g(\sigma)| \le c \|\sigma\|^r,$$

with $\|\sigma\| := a^2 + b^2 + c^2 + d^2 + \det(\sigma)^{-2}$ for $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- (vi) **cuspidal**: Show that the function ϕ_g defined in (v) is bounded on $\operatorname{GL}_2^+(\mathbb{R})$.
- (g) Show that any smooth function $\varphi : \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$ satisfying conditions (i)-(vi) above arises as φ_f for some $f \in S_k(\Gamma_0(N))$. Such functions are cuspidal automorphic forms on $\mathbb{A}_{\mathbb{Q}}$ for $K_0(N)$.

Remark. Our definition of K-finiteness depends not only on K, but also on the choice of the function ξ (a fundamental idempotent). Our definition of Z-finiteness is specific to the GL₂ setting, where holomorphicity is equivalent to being an eigenfunction for the Casimir element Δ , which together with 1 generates the center $Z(\mathfrak{g})$ of the universal enveloping algebra for the complexified Lie algebra $\mathfrak{g} := \mathfrak{gl}_2 \otimes_{\mathbb{R}} \mathbb{C}$; in general one specifies a finite index ideal of $Z(\mathfrak{g})$ that annihilates φ . An automorphic form on $\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ is cuspidal if for all $g \in \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ we have

$$\int_{\mathbb{Q}\setminus\mathbb{A}_{\mathbb{Q}}}\varphi(\left(\begin{smallmatrix}1&x\\0&1\end{smallmatrix}\right)g)\,dx=0$$

See [1, Cor. 12.4] for a proof that this is implied by the cuspidal condition above.

Remark. The $\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ automorphic forms for $K_0(N)$ described in this problem admitt many generalizations, including: (1) replace \mathbb{Q} with a number field F and $\widehat{\mathbb{Z}}$ with $\widehat{\mathcal{O}}_F$, (2) replace GL_2 with a connected linear algebraic group G and $\Gamma_0(N)$ with any arithmetic subgroup of G(F) (and adjust $K_0(N)$ and $\operatorname{GL}_2^+(\mathbb{R})$ accordingly), (3) allow a character χ (and adjust the fundamental idempotent and the central action condition accordingly).

Problem 2. Subgroups of the modular group (50 points)

In this problem we consider subgroups of the modular group $\Gamma(1) := \operatorname{SL}_2(\mathbb{Z})$. We use $\Gamma(N)$ to denote the subgroup of $\Gamma(1)$ congruent to the identity modulo a positive integer N. For any subgroup Γ of $\operatorname{SL}_2(\mathbb{Z})$ we use $\overline{\Gamma}$ to denote $\Gamma/Z(\Gamma) \subseteq \operatorname{PSL}_2(\mathbb{Z})$.

- (a) Show that $X(1) := X_{\Gamma(1)}$ has hyperbolic volume $\pi/3$ and is therefore compact.
- (b) Show that every elliptic element of $\Gamma(1)$ is conjugate to a power of $R := \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ or $S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, every parabolic element is conjugate to a power of $T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and that $\overline{\Gamma}(1)$ admits the presentation $\langle r, s | r^3 = s^2 = 1 \rangle$.
- (c) Show that the commutator subgroup $\overline{\Gamma}(1)' := \langle \alpha \beta \alpha^{-1} \beta^{-1} : \alpha, \beta \in \overline{\Gamma}(1) \rangle \leq \overline{\Gamma}(1)$ is a normal subgroup of index 6 is isomorphic to the free group on two letters.
- (d) Show that $\overline{\Gamma}(2) \leq \overline{\Gamma}(1)$ is also a normal subgroup of index 6 isomorphic to the free group on two letters.
- (e) Are the isomorphic normal subgroups $\overline{\Gamma}(1)', \overline{\Gamma}(2) \leq \overline{\Gamma}(1)$ equal? If not, describe their intersection and determine the least integer N (if any) for which $\overline{\Gamma}(N) \subseteq \overline{\Gamma}(1)'$.

For a subgroup Γ of $\Gamma(1)$ let $e_n(\Gamma)$ count the Γ -inequivalent elliptic points of order n, and let $e_{\infty}(\Gamma)$ count the Γ -inequivalent cusps.

(f) Prove that for any finite index subgroup Γ of $\Gamma(1)$ the following formula holds

$$g(\Gamma) := g(X_{\Gamma}) = 1 + \frac{[\overline{\Gamma}(1):\overline{\Gamma}]}{12} - \frac{e_2(\Gamma)}{4} - \frac{e_3(\Gamma)}{3} - \frac{e_{\infty}(\Gamma)}{2}$$

Your proof should rely only on material covered in the first two chapters of [2].

- (g) Compute an explicit (and reasonably sharp) lower bound on $g(\Gamma(N))$ as a function of N and determine its asymptotic growth. Use this to explicitly determine the sets of integers $\{N : g(\Gamma(N)) = g\}$ for $g \leq 10$ (you are welcome to use a computer algebra system to help, but you must prove your list is complete).
- (h) Let $\Gamma := \Gamma(1)'$ be the commutator subgroup of $\Gamma(1)$. Compute $g(\Gamma)$ using your formula, then compute dim $S_k(\Gamma)$ for $2 \le k \le 6$.

Definition. A congruence subgroup Γ is a subgroup of $SL(2,\mathbb{Z})$ that contains $\Gamma(N)$ for some positive integer N. The least such N is the level of Γ .

Definition. The width of a cusp x of a finite index $\Gamma \leq \text{SL}(2,\mathbb{Z})$ is the least integer $h \geq 1$ for which $\pm \sigma \Gamma_x \sigma_{-1} = \pm \langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \rangle$, where $\sigma \in \text{SL}_2(\mathbb{R})$ satisfies $\sigma x = \infty$.

- (i) Prove that for all $N \ge 1$, the group $\Gamma(1)/\Gamma(N) \simeq SL_2(\mathbb{Z}/N\mathbb{Z})$ contains a subgroup of index 7 only when 7|N, in which case it projects on to an index 7 subgroup of $SL(2, \mathbb{Z}/7\mathbb{Z})$. Conclude that every congruence subgroup of index 7 has level 7.
- (j) Consider the subgroup $\Gamma := \langle \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \rangle$ of SL(2, \mathbb{Z}) found in [3], which evidently has a cusp of width 5. Prove that if Γ contains $\Gamma(N)$ then the width of every cusp of Γ divides N. Then show that Γ has index 7 in SL(2, \mathbb{Z}) and is therefore not a congruence subgroup, and compute $g(\Gamma)$ using your formula.

Problem 3. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it (1 = "mind-numbing," 10 = "mind-blowing"), and how difficult you found it (1 = "trivial," 10 = "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			

Please rate each of the following lectures that you attended, according to the quality of the material (1="useless", 10="fascinating"), the quality of the presentation (1="epic fail", 10="perfection"), the pace (1="way too slow", 10="way too fast", 5="just right") and the novelty of the material to you (1="old hat", 10="all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
2/26	Meromorphic differentials				
2/28	Dimension formulas				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

References

- A. Knightly and C. Li, *Traces of Hecke operators*, American Mathematical Society, 2006.
- [2] T. Miyake, *Modular forms*, Springer, 2006.
- [3] A.J. Scholl, On the Hecke algebra of a noncongruence subgroup, Bull. London Math. Soc. 29 (1997), 395–399.