
18.786 Number Theory II Spring 2024

Problem Set #1 Due: 2/16/2024

Description

These problems are related to material covered in Lectures 1–3. Your solutions should
be written up in latex (please do not submit handwritten solutions) and submitted as a
pdf-file on Gradescope before midnight on the date due. You can use the latex source
for this problem set as a template, and are welcome to use the latex environment of your
choice (I currently use Overleaf and Texmaker, but there are many other options).

Collaboration is permitted/encouraged, but you must identify your collaborators or
the name of your group on pset partners, as well any references you consulted that are
not listed in the course syllabus. If there are none write “Sources consulted: none”
at the top of your solution. Each student is expected to write their own solutions; it is
fine to discuss the problems with others, but your work must be your own.

Instructions: Pick a combination of problems to solve that sum to 100 and write up
your answers in latex, then complete the survey problem 4.

As in [1], we use H := {z ∈ C : Im(z) > 0} to denote the complex upper half plane.

Problem 1. Geodesic spaces (50 points)

Let (X, d) be a metric space. A path in X is a continuous function γ : [a, b]→ X we may
also denote γ : x→ y, where x = γ(a) and y = γ(b). The length of a path is

l(γ) := sup
a=t0<···<tn=b

n∑
i=1

d(γ(ti−1), γ(ti)).

where the supremum is taken over all finite subdivisions of [a, b]. A metric space is a
length space if for all x, y ∈ X we have d(x, y) = infγ : x→y `(γ).

(a) For a piecewise smooth path γ : [a, b]→ H we define the hyperbolic length

`(γ) :=

∫ b

a

|γ′(t)|
Im(γ(t))

dt.

Show that d(x, y) := infγ : x→y `(γ) is a metric on H that makes (H, d) a length
space, with ` = l (in other words, the length function ` induces the metric d, which
induces the length function l). We call d the hyperbolic metric on H.

Definition. A geodesic path γ : [a, b]→ X is a distance preserving path; that is, we have
d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b]. A geodesic line (resp. geodesic ray) is a distance
preserving continuous map R → X (resp. R≥0 → X).1 By a geodesic path/line/ray
in X we mean the image of a geodesic path/line/ray. A geodesic space is a metric space
in which every pair of points can be connected by a geodesic path. A geodesic space
is straight if every geodesic path lies in a geodesic line, and uniquely geodesic if every
x, y ∈ X are connected by a unique geodesic path. A subset of a geodesic space is convex
if it contains all geodesic paths between points in the set.

1N.B.: This differs from the definition of a geodesic segment as a shortest path definition used in
lecture, and from the two definitions most commonly used in Riemannian geometry; it is slightly stronger.
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(b) Show that H is a geodesic space that is a uniquely geodesic space under both the
Euclidean metric |z1 − z2| and the hyperbolic metric defined above, but that it is
only straight for the hyperbolic metric, and automorphisms of H (as a Riemann
surface) are isometries only for the hyperbolic metric.

(c) Show that the topologies on H induced by the Euclidean metric and the hyperbolic
metric coincide (in both cases the open balls B<r(x) := {z ∈ H : d(x, z) < r} of
radius r > 0 about some x ∈ H are a basis for the topology).

(d) Show that Euclidean and hyperbolic open balls are convex under both the Euclidean
and hyperbolic metric, and give examples of subsets of H that are convex under one
metric but not the other (in both directions).

(e) Show that under the hyperbolic metric (i) for any distinct z1, z2 ∈ H the set

Cz1,z2 := {z ∈ H : d(z, z1) = d(z, z2)}

is a geodesic line γ : R→ H, (ii) H− Cz1,z2 is the union of two disjoint convex sets
that can meaningfully be called left and right half-planes (relative to γ), (iii) every
geodesic line arises in this way. Does this apply to all Riemann surfaces that are
straight uniquely geodesic spaces for a given metric?

Problem 2. Fuchsian groups (50 points)

For any subgroup Γ of SL2(R) we call z ∈ P1(C) = C ∪ {∞} a limit point of Γ if there is
a w ∈ P1(C) and an infinite sequence of distinct γn ∈ Γ such that lim γnw = z, Let Λ(Γ)
to denote the set of of all limit points of Γ, and let Z(Γ) := Γ ∩ {±1}.

(a) Let Γ be a subgroup of SL2(R) and let H be the upper half plane equipped with the
hyperbolic metric defined in Problem 1. Show that the following are equivalent.

(1) Every z ∈ H lies in an open U ⊆ H for which {γ ∈ Γ : U ∩ γU 6= ∅} is finite.

(2) Γ is discrete.

(3) Any sequence in Γ converging to 1 is eventually constant.

(4) For every real B > 0 the subset of Γ with matrix entries in [−B,B] is finite.

(5) Λ(Γ) is a closed subset of P1(R) = R ∪ {∞}.

Such a group is called a Fuchsian group.

(b) Let Γ = 〈γ〉 be a cyclic subgroup of SL2(R) with γ 6= ±1 and consider the three
cases where γ is elliptic, parabolic, or hyperbolic. Compute Λ(Γ) in each case and
determine whether (or under what conditions) Γ is Fuchsian.

(c) Show that if a Fuchsian group Γ is abelian then Γ/Z(Γ) is cyclic.

(d) Show that the SL2(R)-normalizer of a nonabelian Fuchsian group is Fuchsian.

(e) Let Γ be a Fuchsian group. Show that the following are equivalent.

(1) #Λ(Γ) ≤ 2

(2) There is a finite Γ-orbit in H ∪ RP1.

(3) Γ/Z(Γ) is abelian or conjugate to 〈D,S〉, where D is diagonal and S := ( 0 −1
1 0 ).

Such a group is called an elementary Fuchsian group.



Problem 3. Dirichlet domains (100 points)

Throughout this problem Γ ⊆ SL2(R) is a Fuchsian group. Recall that given any z0 ∈ H
that is not an elliptic point we can construct a Dirichlet domain

Fz0 := {z ∈ H : d(z, z0) ≤ d(z, γz0) for all γ ∈ Γ},

where d is the hyperbolic distance metric on H. We proved in class that Fz0 is a
convex locally finite fundamental domain for Γ whose boundary ∂F is a union of geodesic
segments Lγ := Fz0 ∩ γFz0 called sides, whose intersections in H are vertices; points in
∂H = R ∪ {∞} that are the common endpoint of two sides of F that are geodesic rays
are ideal vertices and are not considered vertices for the purpose of this problem. Recall
that sides are required to have nonzero (possibly infinite) length. Locally finite means
that every compact A ⊆ H intersects only finitely many Γ-translates of Fz0 .

(a) Let F be a Dirichlet domain for Γ and let T := {γ ∈ Γ : F ∩ γF 6= ∅}. Show that T
generates Γ and includes a conjugate of every elliptic element of Γ.

We now refine our notion of sides and vertices as follows. For sides Lγ with γ2 = ±1
we have γLγ = Lγ and γ thus fixes the midpoint of Lγ (and swaps its end points). In this
case it will be convenient to view Lγ as two distinct sides that intersect at the midpoint
of Lγ , which we now consider a vertex.

Each vertex of F lies in two sides of F , one of which we unambiguously distinguish
as the clockwise side of v1 (the one on the right if we look at v1 from the interior of F ).

Let S denote the set of sides of a Dirichlet domain F , and define

P := {(γ, L, L′) : L′ = γL} ⊆ Γ× (S × S).

Let G(P ) be the projection of P to Γ modulo Z(Γ) (keep only one of γ and −γ).

(b) Define a relation ∼ on S by letting L ∼ L′ if and only if (γ, L, L′) ∈ P for some
γ ∈ Γ. Show that this is an equivalence relation that partitions S into pairs of sides
{L,L′} with L = F ∩ γ−1F and L′ = γL = F ∩ γF .

(c) Show that G(P ) generates Γ/Z(Γ) and that if S is finite then G(P ) is finite.

(d) Let v1 be a vertex of F . Show that there is an open neighborhood U of v1 that
contains no other vertices of F and intersects no sides of F that do not contain v1,
and a finite list of elements 1 = δ0, δ1, . . . , δn ∈ Γ such that the sets δiF are all
distinct and U ⊆ ∪ni=0δiF with v1 ∈ δiF for 0 ≤ i ≤ n.

(e) Let v1 be a vertex of F , let L1 be the clockwise side of F , let L′1 = γ1L1 be the
unique side of F paired with L1 via (c) (such a γ1 exists, it need not be unique),
and let v2 = γ1v1. Show that v2 is a vertex of F , so we can similarly let L2 be its
clockwise side, let L′2 = γ2L2 be the paired side, and define v3 = γ2v2. Continuing
in this fashion, we get a sequence of vertices v1, v2, . . . and group elements γ1, γ2, . . .
Show that after finitely many steps we return to vm+1 = v1.

(f) With vi and γi as in part (e), let δ = (γm · · · γ1)−1. Show that the value of m in
part (e) divides n + 1, where n is as in part (d), that F ∩ Γv1 = {v1, . . . , vm−1}
(with the vi as in part (e)), and that δ fixes v1 and has order e := (n + 1)/m. We



call δe = 1 the vertex cycle relation for v1. Show that if v′1 = γv1 is a vertex of F
then the cycle relation for v′1 is (γ−1δγ)e = γ−1δeγ = 1. Let R(P ) be the set of
vertex cycle relations for vertices in F .

(g) Show that Γ/Z(Γ) is isomorphic to the free group on G(P ) with relations R(P ).

(h) For Γ = SL2(Z), compute a Dirichlet domain using z0 = 2i and compute generators
and relations for Γ/Z(Γ) = PSL2(Z) using the above method.

(i) Do the same for Γ = Γ(2) := {γ ∈ SL2(Z) : γ ≡ 1 mod 2}.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

2/5 Automorphisms of H

2/7 Fuchsian groups

2/12 Dirichlet domains

2/14 Quotients by Fuchsian groups

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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