These notes summarize the material in §2.6 of [1] covered in lecture.

9.1 Poincaré series

Let k be an integer and let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice with a character $\chi: \Gamma \rightarrow U(1)$ of finite order such that $\chi(-1)=(-1)^{k}$ if $-1 \in \Gamma$. Let $\Lambda \leq \Gamma$ and let ϕ a meromorphic function on \mathbf{H} such that
(i) $\left.\phi\right|_{k} \lambda=\chi(\lambda) \phi$ for all $\lambda \in \Lambda$;
(ii) ϕ has only finitely many Λ-inequivalent poles $z_{1}, \ldots z_{m}$;
(iii) If x_{1}, \ldots, x_{r} are the Γ-inequivalent cusps of Γ, then for any open neighborhoods $U_{i} \ni z i$ and $V_{j} \ni x_{j}$ we have

$$
\int_{\Lambda \backslash \mathbf{H}^{\prime}}|\phi(z)| \operatorname{Im}(z)^{k / 2} d v(z)<\infty
$$

where $\mathbf{H}^{\prime}=\mathbf{H}-\bigcup_{i=1}^{m} \bigcup_{\lambda \in \Lambda} \lambda U_{i}-\bigcup_{j=1}^{r} \bigcup_{\gamma \in \Gamma} \gamma V_{j}$ and $d v(z)$ is the hyperbolic measure.
We now define the Poincaré series

$$
F(z):=F_{k}(z ; \phi, \chi, \Lambda, \Gamma)=\sum_{\gamma \in \Lambda \backslash \Gamma} \overline{\chi(\gamma)}\left(\left.\phi\right|_{k} \gamma\right)(z)
$$

If the sum defining $F(z)$ converges, then by construction we have $\left.F\right|_{k} \gamma=\chi(\gamma) F$ for all $\gamma \in \Gamma$ and $F \in \Omega_{k}(\Gamma, \chi)$ is an automorphic form of weight k for Γ with character χ.

Theorem 9.1. Let $\phi, \chi, \Lambda, \Gamma, z_{i}, F$ be as above. Then F converges absolutely and uniformly on any compact subset of $\mathbf{H}-\left\{\gamma z_{i} \mid \gamma \in \Gamma, 1 \leq i \leq m\right\}$ and $F \in \Omega_{k}(\Gamma, \chi)$.
Proof. See Theorem 2.6.6 in [1].
Now let $x \in \mathbb{P}^{1}(\mathbb{R})$ be a cusp of Γ, choose $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so $\sigma x=\infty$, and suppose that phi also satisfies
(iv) if x is not a cusp of Λ then $\left|\left(\left.\phi\right|_{k} \sigma^{-1}\right)(z)\right| \leq M|z|^{-1-\epsilon}$ on $\operatorname{Im}(z)>\ell$, for some $M, \ell, \epsilon>0$.
(v) if x is a cusp of Λ then $\left|\left(\left.\phi\right|_{k} \sigma^{-1}\right)(z)\right| \leq M|z|^{-\epsilon}$ on $\operatorname{Im}(z)>\ell$, for some $M, \ell>0$ and $\epsilon \geq 0$.

Theorem 9.2. Let $\Gamma, \Lambda, \phi, \chi, F$ be as above, let x_{0} be a cusp of Γ such that (iv) and (v) hold for $x \in \Gamma x_{0}$. Then F is holomorphic at x_{0}, and if $\epsilon>0$ in (v) then F vanishes at x_{0}.
Proof. This is Theorem 2.6.7 in [1].
We now assume that Γ has at least one cusp x, with $\sigma x=\infty$ and that

$$
\begin{equation*}
\chi(\gamma) j\left(\sigma \gamma \sigma^{-1}, z\right)^{k}=1 \text { for all } \gamma \in \Gamma_{x} \tag{1}
\end{equation*}
$$

a condition that does not depend on the choice of σ and which implies that if χ is trivial, k is odd, and $-1 \notin \Gamma$ then x is a regular cusp. Recall that

$$
\pm \sigma \Gamma_{x} \sigma^{-1}= \pm\left\langle\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right)\right\rangle
$$

for some $h>0$. For each $m \in \mathbb{Z}_{\geq 0}$ we define

$$
\phi_{m}(z):=\phi_{m}(z ; x, \sigma):=j(\sigma, z)^{-k} e^{2 \pi i m \sigma z / h} .
$$

It is easy to check that for all $k \geq 3$ the functions ϕ_{m} satisfy conditions (i) through (v) for $\Gamma, \chi, \Lambda=\Gamma_{x}, x$, and we have the following theorem.

Theorem 9.3. Assume $k \geq 3$ and let $\Gamma, \chi, \phi_{m}, x$ be as above, satisfying conditions (i)-(v) and (1). Then

- If $m \geq 1$ then $F_{k}\left(z ; \phi_{m}, \chi \Gamma_{x}, \Gamma\right) \in S_{k}(\Gamma, \chi)$ is a cusp form of weight k for Γ with character χ.
- If $m=0$ then $F(z):=F_{k}\left(z ; \phi_{0}, \chi \Gamma_{x}, \Gamma\right) \in M_{k}(\Gamma, \chi)$ is a modular form of weight k for Γ with character χ whose Fourier expansion at x has the form

$$
\left(\left.F\right|_{k} \sigma^{-1}\right)(z)=1+\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z / h}
$$

and which vanishes at all cusps that are Γ-inequivalent to x.
Definition 9.4. The Poincaré series $F_{k}\left(z ; \phi_{0}, \chi, \Gamma_{x}, \Gamma\right)$ in Theorem 9.3 is an Eisenstein series.
Theorem 9.5. Assume $k \geq 3$ and let $\Gamma, \chi, \phi_{m}, x$ be as above, satisfying conditions (i)-(v) and (1). Let $\sigma x=\infty$ and for $m \in \mathbb{Z}_{\geq 0}$ define

$$
g_{k}^{(m)}:=F_{k}\left(z ; \phi_{m}, \chi, \Gamma_{x}, \Gamma\right) .
$$

Let $f \in S_{k}(\Gamma, \chi)$ have Fourier expansion

$$
\left(\left.f\right|_{k} \sigma^{-1}\right)(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z / h}
$$

at x, then

$$
\left\langle f, g_{k}^{(m)}\right\rangle=\int_{\Gamma \backslash \mathbf{H}} f(z) \overline{g_{k}^{(m)}(z)} \operatorname{Im}(z)^{k} d v(z)= \begin{cases}0 & \text { if } m=0 \\ a_{m}(4 \pi m)^{1-k} h^{k}(k-2)! & \text { if } m>0\end{cases}
$$

proof sketch. Without loss of generality we may assume $x=\infty$ and $\sigma=1$. As shown in the proof of [1, Theorem 2.6.10], the integral in the Petersson inner product converges uniformly, allowing us to swap the order of integration and the sum defining F_{k}. With $z=x+i y$ we have

$$
\begin{aligned}
\int_{\Gamma \backslash \mathbf{H}} f(z) \overline{g_{k}^{(m)}(z)} \operatorname{Im}(z) d v(z) & =\sum_{\gamma \in \Gamma_{\Gamma} \backslash \Gamma} \chi(\gamma) \int_{\Gamma \backslash \mathbf{H}} f(z) e^{-2 p i m y \bar{z} / h} j(\gamma, \bar{z})^{-k} \operatorname{Im}(z)^{k} d v(z) \\
& =\int_{0}^{\infty} \int_{0}^{h} f(z) e^{-2 \pi i m \bar{z} / h} y^{k-2} d x d y \\
& =\sum_{n=1}^{\infty} a_{n} \int_{0}^{\infty} e^{-2 \pi(m+n) y / h} y^{k-2} d y \int_{0}^{h} e^{2 \pi i(n-m) x / h} d x \\
& = \begin{cases}0 & \text { if } m=0 \\
a_{m}(4 \pi m)^{1-k} h^{k}(k-2)! & \text { if } m>0\end{cases}
\end{aligned}
$$

where we have used the fact that $\int_{0}^{1} e^{2 \pi i n x} d x$ vanishes for all nonzero integers n.
Corollary 9.6. Under the hypotheses of Thoerem 9.5, the set $\left\{g_{k}^{(m)}(z): m \geq 1\right\}$ generates $S_{k}(\Gamma, \chi)$.

Proof. Let V be the subspace of $S_{k}(\Gamma, \chi)$ spanned by the $g_{k}^{(m)}$, let

$$
V^{\perp}:=\left\{f: S_{k}(\Gamma, \chi):\left\langle f, g_{k}^{(m)}\right\rangle=0 \text { for } m \geq 1\right\}
$$

be its orthogonal complement with respect to the Petersson inner product, and consider $f \in V$ with Fourier expansion $f(z)=\sum_{n \geq 1}^{\infty} a_{n} e^{2 \pi i n z / h}$ at x. Theorem 9.5 implies that $a_{m}=0$ for all $m \geq 1$, so $f=0$.

Let $\mathscr{E}_{k}(\Gamma, \chi)$ denote the orthogonal complement of $S_{k}(\Gamma, \chi)$ in $M_{k}(\Gamma, \chi)$ with respect to the Petersson inner product:

$$
\mathscr{E}_{k}(\Gamma, \chi):=\left\{g \in M_{k}(\Gamma, \chi):\langle f, g\rangle=0 \text { for all } f \in S_{k}(\Gamma, \chi)\right\} .
$$

Corollary 9.7. Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice and let x_{1}, \ldots, x_{r} be the Γ-inequivalent cusps that satisfy (1). Assume $k \geq 3$ and let Γ, χ, ϕ_{m} be as above, satisfying conditions (i)-(v). Then the functions

$$
g_{i}(z):=F_{k}\left(z ; \phi_{0}, \chi, \Gamma_{x_{i}}, \Gamma\right) \in S_{k}(\Gamma, \chi) \quad(1 \leq i \leq r)
$$

are a basis for the \mathbb{C}-vector space \mathscr{E}_{k}.
Proof. Consider $f \in M_{k}(\Gamma, \chi)$. If x is a cusp of Γ that does not satisfy (1) then f vanishes at x. Otherwise, let $a_{0}^{(i)}$ be the constant term in the Fourier expansion of f at x_{i}. Theorem 9.3 implies that the function $f(z)-\sum_{i=1}^{r} a_{0}^{(i)} g_{i}(z)$ lies in $S_{k}(\Gamma, \chi)$, therefore $M_{k}(\Gamma, \chi)=S_{k}(\Gamma, \chi) \oplus V$, where V is the subspace of $M_{k}(\Gamma, \chi)$ spanned by the g_{i}, and Theorem 9.5 implies that V is contained in $\mathscr{E}_{k}(\Gamma, \chi)=S_{k}(\Gamma, \chi)^{\perp}$, so $E_{k}(\Gamma, \chi)=V$ is spanned by the g_{i}, and Theorem 9.3 implies that the g_{i} are linearly independent and thus form a basis.

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

