18.786 Number theory II Spring 2024
Lecture #9 3/13/2024

These notes summarize the material in §2.6 of [1] covered in lecture.

9.1 Poincaré series

Let k be an integer and let I' < SL,(R) be a lattice with a character y : I' — U(1) of finite order
such that y(—1) = (—1)*if —1 €T. Let A < T and let ¢ a meromorphic function on H such that

(1) ¢lkA=yx(A)¢ for all A € A;
(ii) ¢ has only finitely many A-inequivalent poles 2y, ...2,,;

(iii) If x4,...,x, are the T'-inequivalent cusps of T, then for any open neighborhoods U; > zi
and V; 3 x; we have

f ¢ (2)| Im(2)*/?dv(z) < oo,
A\H’

where H' = H—{JiL, Uzea AU; = U= U, er vV; and dv(z) is the hyperbolic measure.

We now define the Poincaré series

F(z):=F(z: ¢, 2, A0 = >, 2@ 1))

yEA\T

If the sum defining F(z) converges, then by construction we have F|,y = y(y)F forall y € T
and F € Q,(T, y) is an automorphic form of weight k for I with character y.

Theorem 9.1. Let ¢, x,A,T,2;,F be as above. Then F converges absolutely and uniformly on any
compact subset of H— {yz;|y €T,1 <i <m} and F € Q. (T, ).

Proof. See Theorem 2.6.6in [1]. O

Now let x € P!(R) be a cusp of T, choose o € SLy(R) so ox = 00, and suppose that phi
also satisfies

(iv) if x is not a cusp of A then |(¢|,o1)(2)| < M|z|~7¢ on Im(z) > ¢, for some M,{,e > 0.
(v) if x is a cusp of A then |(¢ |0 )(2)| < M|z|~¢ on Im(z) > ¢, for some M,{ > 0 and € > 0.

Theorem 9.2. Let T, A, ¢, x,F be as above, let xy be a cusp of T such that (iv) and (v) hold for
x € I'xy. Then F is holomorphic at x,, and if € > 0 in (v) then F vanishes at x.

Proof. This is Theorem 2.6.7 in [1]. O
We now assume that I" has at least one cusp x, with ocx = oo and that
1(Njloyo™,z)k =1forally eT,, (1)

a condition that does not depend on the choice of ¢ and which implies that if y is trivial, k is
odd, and —1 ¢ T then x is a regular cusp. Recall that

sor,o = +((31))
for some h > 0. For each m € Z-, we define
Om(2) = Pn(z;x,0) = j(o-’z)_keZﬂSimO'z/h.

It is easy to check that for all k > 3 the functions ¢,, satisfy conditions (i) through (v) for
T, x,A =T, x, and we have the following theorem.
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Theorem 9.3. Assume k >3 andlet T, y, ¢,,, x be as above, satisfying conditions (i)—(v) and (1).
Then

* Ifm>1then Fi(2; ¢, x Ty, T) € Sk (T, x) is a cusp form of weight k for T with character y.

* If m =0 then F(z) := Fi(2; ¢g, x T, ) € My (T, y) is a modular form of weight k for T with
character y whose Fourier expansion at x has the form

(e ]
(Flio™)(z) =1+ D e/t
n=1
and which vanishes at all cusps that are T'-inequivalent to x.

Definition 9.4. The Poincaré series Fy(z; ¢¢, ¥, Iy, ) in Theorem 9.3 is an Eisenstein series.

Theorem 9.5. Assume k > 3 andlet T, y, ¢,,, x be as above, satisfying conditions (i)—(v) and (1).
Let ox = 00 and for m € Zs define

gzim) = Fi(2; s 2, Ty, T).

Let f € Si(T, x) have Fourier expansion
oo
(Fleo™)(z) = | ane /"
n=1

at x, then

(m)\ _ (m) k _J)0 ifm=0
(f.elm)= JF SO @mE dv(z)—{am( s =2t >0

proof sketch. Without loss of generality we may assume x = oo and o = 1. As shown in the
proof of [1, Theorem 2.6.10], the integral in the Petersson inner product converges uniformly,
allowing us to swap the order of integration and the sum defining F;. With z = x + iy we have

f F@EM @ ImE)dvE)= > x(r) f F@)e @ myEMj(y, 2y Im(z)*dv(z)
'\H I'\H

yel \T'

oo prh
— f J f(z)e—zmmé/hyk—zdxdy
0 0

00 e} h

— Z a, f e—27r(m+n)y/hyk—2dy f eZﬂ:i(n—m)x/hdx
n=1 0 0

)0 ifm=0

B {am(4nm)1_khk(k —2)! ifm>0

1 oni . .
where we have used the fact that fo e2™MnXq x vanishes for all nonzero integers n. O

Corollary 9.6. Under the hypotheses of Thoerem 9.5, the set { g,ﬁm)(z) :m > 1} generates Si.(T', y ).
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(m)

Proof. Let V be the subspace of Sy (T, x) spanned by the g,

, let

vi= {f :Se(T,x): (f,g,(cm)) =0form> 1}

be its orthogonal complement with respect to the Petersson inner product, and consider f € V

with Fourier expansion f(z) = Z:;l a,e?™ /M at x. Theorem 9.5 implies that a,, = 0 for all

m=>1,s0 f =0. O

Let &(T, y) denote the orthogonal complement of S;(T, y) in M (T, y) with respect to the
Petersson inner product:

&(T, x) ={g e M(T,x):(f,g) =0forall f €S (T, x)}.

Corollary 9.7. Let T' < SL,(R) be a lattice and let x1, ..., x, be the T-inequivalent cusps that satisfy
(1). Assume k>3 and let T, y, ¢,, be as above, satisfying conditions (i)—(v). Then the functions

8i(z) =Fi(z;¢0, 1, Iy, ) €SI x)  (1<i<r)
are a basis for the C-vector space &.

Proof. Consider f € M (T, ). If x is a cusp of T that does not satisfy (1) then f vanishes at x.
Otherwise, let a(()l) be the constant term in the Fourier expansion of f at x;. Theorem 9.3 implies

that the functionf(z)—zir:1 a(()l)gi(z) lies in Sy (T, ), therefore My (T, y) = Si(T, y) PV, where
V is the subspace of My (T, y) spanned by the g;, and Theorem 9.5 implies that V is contained
in &(T, x) = Se(T, x)*, so Ex(T, ) = V is spanned by the g;, and Theorem 9.3 implies that
the g; are linearly independent and thus form a basis. O
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