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These notes summarize the material in §2.3–2.5 of [1] covered in lecture.

8.1 Divisors of automorphic forms

For a compact Riemann surface X we define

Div(X )Q = Div(X )⊗ZQ

and call elements of Div(X )Q divisors with rational coefficients.
Let Γ ≤ SL2(R) be a lattice, so that XΓ := Γ\H∗Γ is a compact Riemann surface, and let

πΓ : H∗Γ → X be the projection map. Let f ∈ A2n(Γ ) be a nonzero automorphic form of weight 2n,
and let P ∈ XΓ (C) and zP ∈ π−1

Γ (P). In the previous lecture we defined

ordP( f ) =











1
e ordzP

( f ) if P is an elliptic point of order e,

ord∞( f |2nσ
−1) if P is a cusp and σzP =∞,

ordzP
( f ). otherwise

Here ord∞( f |2nσ
−1) is the index m of the first nonzero coefficient am in the Fourier expansion

( f |2nσ
−1)(z) =

∑

e2πimz/h with ±σΓzP
σ−1 = ±


�

1 h
0 1

��

. We also recall that e = #ΓzP
/Z(Γ ) is

equal to the ramification index of the map πΓ at e (the cardinality of π−1
Γ (Q) for every Q 6= P in

any sufficiently small neighborhood of P).
The lattice Γ has only finitely many inequivalent elliptic points and cusps (it is cofinite, hence

geometrically finite), so we may define

div( f ) :=
∑

P∈XΓ (C)

ordP( f )P ∈ Div(XΓ )Q.

In the previous lecture we associated to f a meromorphic differential ω f ∈ Ωn(XΓ ) with

ordP(ω f ) =











ordP( f )− n
�

1− 1
e

�

if P is an elliptic point of order e,

ordP( f )− n if P is a cusp,

ordP( f ) otherwise.

Note that unlike div( f ), the divisor div(ω f ) ∈ Div(XΓ ) has integer coefficients (it is the divisor
of a differential form), and the Riemann–Roch theorem implies

deg(div(ω f )) = 2n(g − 1), (1)

where g := g(XΓ ) is the genus of XΓ , as is true for any meromorphic differential of degree n on
a compact Riemann surface of genus g.

The following theorem follows immediately from the formulas above.

Theorem 8.1. For k ∈ 2Z and nonzero f ∈ Ak(Γ ) we have

div( f ) = div(ω f ) +
k
2

∑

P∈XΓ (C)

�

1− 1
eP

�

P

deg div( f ) = k(g − 1) + k
2

∑

P∈XΓ (C)

�

1− 1
eP

�

where eP is the ramification index of P and g = g(XΓ ), with 1/eP = 0 when P is a cusp.
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Corollary 8.2 (Sturm bound). Let k ∈ 2Z>0, let Γ ≤ SL2(R) be a lattice with r ≥ 1 inequivalent
cusps and s ≥ 0 inequivalent elliptic points, and let g be the genus of XΓ . Let x be a cusp of Γ and
choose σ ∈ SL2(R) so that σx =∞. Suppose f1, f2 ∈ Mk(Γ ) have Fourier expansions

( f1|kσ−1 =
∑

n≥0

ane2πinz/h and ( f2|kσ−1)(z) =
∑

n≥0

bne2πinz/h

at x, with an = bn for n≤ k(g − 1+ (r + s)/2). Then f1 = f2.

Proof. Suppose f1 6= f1. Then f1 − f2 and ω := ω f1− f2 are nonzero. Let P = πΓ (x), and let
n> k(g − 1) + k(r + s)/2 be the least positive integer for which an 6= bn. Then

ordP(ω) = ordP( f − g)− k
2 = n− k

2 > k(g − 1+ (r + s− 1)/2).

Now f1 − f2 is holomorphic, so ordQ(ω) ≥ −k/2 for every elliptic point or cusp Q 6= P, and
ordR(ω)≥ 0 for every ordinary point R. It follows that

deg(div(ω))> k(g − 1+ (r + s− 1)/2)− (r + s− 1)k/2= k(g − 1)

but this contradicts the degree equality implied by Riemann–Roch (1), so f1 = f2.

Remark 8.3. This corollary has some remarkable implications. If k(g − 1) + k(r + s)/2 < 0
the hypothesis always holds, implying that every f ∈ Mk(Γ ) is zero. It also implies that every
f ∈ Mk(Γ ) is uniquely determined by a finite prefix of its Fourier expansion at any cusp. This
yields an effective algorithm for testing whether two modular forms are equal or not, and if we
fix a basis for the finite dimensional C-vector space Mk(Γ ) it allows us to explicitly compute the
representation of any f ∈ Mk(Γ ) as a linear combination of basis elements.

8.2 Odd weight

For odd k we may assume −1 6∈ Γ , since f |k−1= − f is satisfied only when f = 0. Let f ∈ Ak(Γ )
be nonzero. Then f 2 ∈ A2k(Γ ), and we define

ordP( f ) := ordP( f
2)/2

and
div( f ) :=

∑

P∈XΓ (C)

ordp( f )P

Theorem 8.4. Let k be an odd integer and assume −1 6∈ Γ . For each nonzero f ∈ Ak(Γ ) we have

div( f ) = 1
2div(ω f 2) + k

2

∑

P

�

1− 1
eP

�

P

degdiv( f ) = k(g − 1) + k
2

∑

P

�

1− 1
eP

�

ordP( f ) ∈











1
2 +Z if P is an irregular cusp
1
eP
+Z if P is an elliptic point

0 otherwise

ordP(ω f 2) ∈

¨

1+ 2Z if P is a regular cusp

2Z otherwise

where eP is the ramification index at P with 1/eP = 0 if P is a cusp.
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8.3 Computing the measure of XΓ

As above, let Γ ≤ SL2(R) be a lattice and let XΓ := Γ\H∗Γ .

Lemma 8.5. Let m be the lcm of the orders of all elliptic P ∈ XΓ (C). There is a nonzero f ∈ A2m(Γ )
which has no zeros or poles at any cusp or any elliptic point in XΓ (C).

Proof. Let f ∈ A2m(Γ ) be nonzero. Then div( f ) = div(ω f ) +
k
2

∑

P

�

1 − 1
eP

�

P ∈ Div(XΓ ), since
k/2 = m ∈ Z is divisible by every eP ∈ Z. Let S be the (finite) set of elliptic points and cusps in
XΓ (C), let g := g(XΓ ), and choose n ∈ Z so that

−deg(div(g))− 1+ n> 2g − 2.

Fix Q 6∈ S and consider the divisors DQ := −div(g) + nQ and DP := −div(g)− P + nQ for each
P ∈ S. We have DQ ≥ DP , so L(DQ) ) L(DP), and deg(DQ)> deg(DP)> 2g − 2, so

dim L(DQ)− dim L(DP) = deg(DQ)− deg(DP) = 1,

for all P ∈ S by Riemann–Roch, since `(D) = deg(D)− g + 1 whenever deg(D)> 2g − 2.
It follows that the Riemann–Roch space

L(DQ) = {h ∈ C(XΓ ) : h= 0 or div(h) + DQ ≥ 0}

contains some h ∈ C(XΓ ) ' A0(Γ ) that does not lie in any of the L(DP), with ordP( f /h) = 0 for
P ∈ S, since ordP(h) = ordP( f ) for P ∈ S. Then f /h ∈ A2m(Γ ) has not zeros or poles on any
cusp or elliptic point in XΓ (C).

Recall that v(XΓ ) is defined as the measure of any (measurable) fundamental domain for Γ
under the hyperbolic measure dv(z) := d xd x

y2 on H, where z = x + i y , which is induced by the
Haar measure of SL2(R).

Theorem 8.6. For any lattice Γ ≤ SL2(R) we have

1
2π v(XΓ ) = 2g − 2+

∑

P∈XΓ (C)

�

1− 1
eP

�

,

where eP is the ramification index of P, with 1/eP = 0 when P is a cusp, and g is the genus of XΓ .

Proof sketch. Pick m and nonzero f ∈ A2m(Γ ) via Lemma 8.5, and a measurable fundamental
domain F for Γ such that f has no zeros or poles on ∂ F . Let v1, . . . , vr be the vertices of F that
are cusps, and pick curves C1, . . . , Cr with Ci in a neighborhood of vi such that πΓ (Ci) is a circle
around π(vi) oriented counterclockwise. Let M be the compact set bounded by F and the curves
C1, . . . , Cr . Then

v(XΓ ) = v(F) = lim
Ci→x i

∫

M

d x ∧ d y
y2

,

where Ci → x i means we are shrinking the neighborhoods of x i in which the Ci lie so that the
measure of the part of F outside M tends to zero. Applying Stokes Theorem yields

∫

M

d x ∧ d y
y2

=

∫

∂M

dz
y
=

∫

∂M

�

dz
y
+

i
m

d(log f )
�

−
i
m

∫

∂M
d(log f ),
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where ∂M is oriented counterclockwise. One can show that the integrand in the first term on
the RHS is Γ -invariant, and since Γ acts on pairs of sides of F with opposite orientation, the
integral tends to zero as the Ci → x i , and we have

v(XΓ ) = 2π lim
Ci→x i

−
i
m

∫

∂M
d(log f ) = 2π

m deg(div( f ))

by Cauchy’s residue formula, since we can assume f has no zeros or poles on ∂M and its zeros
and poles in F all lie inside M . Applying Theorem 8.1 yields

1
2π v(XΓ ) =

1
m

�

2m(g − 1) +m
∑

P

�

1− 1
eP

�

�

= 2g − 2+
∑

P∈C(XΓ )

�

1− 1
ep

�

.

8.4 Dimension formulas

Let Γ ≤ SL2(R) be a lattice. For D ∈ Div(XΓ )Q we define

bDc :=
∑

P

brPcP

Lemma 8.7. Let Γ ∈ SL2(R) be a lattice with regular cusps P1, . . . , Ps and irregular cusps Ps+1, . . . , Pt .
Let f ∈ Ak(Γ ) be nonzero. We have the following isomorphisms of C-vector-spaces

• Mk(Γ )' L(bdiv( f )c);

• Sk(Γ )'

¨

L(bdiv( f )− (P1 + · · ·+ Pt)c) k even,

L(bdiv( f )− (P1 + · · ·+ Ps +
1
2 Ps+1 + · · ·+

1
2 Pt)c) k odd.

Proof. We have Ak(Γ ) = { f h|h ∈ A0(Γ )}, and it follows that

Mk = { f h : h ∈ A0(Γ ) : h= 0 or div( f h)≥ 0}
= {h ∈ C(XΓ ) : h= 0 or div(h) + div( f )≥ 0}
= L(b(div( f )c).

since div(h) + div( f )≥ 0 if and only if div(h) + bdiv( f )c ≥ 0.
Now consider f h ∈ Mk(Γ ) with h ∈ A0(Γ )' C(X ). Then

f h ∈ Sk(Γ ) ⇔ ordPi
( f f0)> 0 for 1≤ i ≤ t

If k is even then

f h ∈ Sk(Γ ) ⇔ ordPi
( f h)≥ 1 for 1≤ i ≤ t

⇔ ordPi
( f ) + ordPi

(h)− 1≥ 0 for 1≤ i ≤ t

⇔ h ∈ L(bdiv( f )− (P1 + · · ·+ Pt)c)

which implies Sk(Γ )' L(bdiv( f )− (P1+ · · ·+ Pt)c). For k odd a similar argument works, except
we use the bound ordPi

( f h)≥ 1/2 for s < i ≤ t.
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Let e1, . . . , er be the orders of the elliptic points and t the number of cusps in XΓ (C). Define

d := 2g − 2+
r
∑

i=1

�

1− 1
ei

�

+ t,

let g := g(XΓ ), and fix a nonzero f ∈ Ak(Γ ). Theorem 8.1 implies that

deg(div( f )) = k
2 d and deg(bdiv( f )c) = k(g − 1) +

r
∑

i=1

�

k
2

�

1− 1
ei

�

�

+ b k
2ct

and we have d = v(XΓ )/(2π)> 0, by Theorem 8.6. We now consider k ∈ 2Z as follows:

• k < 0: we have deg(bdiv( f )c)≤ deg(div( f )) = kd/2< 0 so dim Mk(Γ ) = dim Sk(Γ ) = 0.

• k = 0: we have f ∈ C(XΓ )× and dim M0(Γ ) = `(div( f )) = 1 and

dim S0(Γ ) = `(div( f )− (P1 + · · ·+ Pt)) =

¨

1 if t = 0

0 if t > 0.

• k = 2: we have S2(Γ ) ' Ω1
0(XΓ ), as shown in Lecture 7, so dim S2(Γ ) = `(div(ω f )) = g,

and Mk(Γ )' Sk(Γ ) if t = 0, otherwise Riemann–Roch implies

dim Mk(Γ ) = `(bdiv( f )c) = deg(bdiv( f )c)− g + 1+ `(div(ω1)− bdiv( f )c) = g − 1+ t.

• For k > 2. Fix any nonzero f ∈ Ak(Γ ) and let D = div( f )− (P1+ · · ·+ Pt), where P1, . . . , Pt
are the cusps in XΓ (C). Then deg(D) = deg(div( f ))− t and

deg(bDc) = k(g − 1) +
r
∑

i=1

�

k
2

�

1− 1
ei

�

�

+
� k

2 − 1
�

t ≥ k−2
2 d + (2g − 2)> 2g − 2.

Lemma 8.7 and Riemann–Roch imply dim Sk(Γ ) = `(bDc) = deg(bDc)− g+1, and we also
have dim Mk(Γ ) = dim Sk(Γ ) + `(bdiv( f )c)− `(bDc) = dim Sk(Γ ) + t.

This yields the following theorem.

Theorem 8.8. Let Γ ∈ SL2(R) be a lattice, let e1, . . . , er be the orders of the elliptic points in XΓ (C),
let t be the number of cusps in XΓ (C), let g be the genus of XΓ and let k ∈ 2Z. Then

dim Sk(Γ ) =



















0 k < 0 or k = 0, t > 0

1 k = t = 0

g k = 2

(k− 1)(g − 1) +
∑r

i=1

�

k
2

�

1− 1
ei

�

�

+
� k

2 − 1
�

t k > 2

and

dim Mk(Γ ) =



























0 k < 0

1 k = 0

g k = 2, t = 0

g − 1+ t k = 2, t > 0

dim Sk(Γ ) + t k > 2
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For odd k 6= 1 a similar series of calculations yields the following result.

Theorem 8.9. Let Γ ∈ SL2(R) be a lattice with −1 6∈ Γ , let e1, . . . , er be the orders of the elliptic
points in XΓ (C), let u and v be the number of regular and irregular cusps in XΓ (C), let g be the
genus of XΓ and let k ∈ 1+ 2Z. Then

dimSk(Γ =

¨

0 k < 0

(k− 1)(g − 1) +
∑r

i=1

�

k
2

�

1− 1
ei

�

�

+ k−2
2 u+ k−1

2 v k ≥ 3

and

dim Mk(Γ ) =











0 k < 0

dim S1(Γ ) +
u
2 k = 1

dim Sk(Γ ) +
u
2 k ≥ 3

Proof. See [1, Theorem 2.5.3]

Remark 8.10. No general formula is known for dim S1(Γ ), even for congruence subgroups.
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