These notes summarize the material in §2.3-2.5 of [1] covered in lecture.

8.1 Divisors of automorphic forms

For a compact Riemann surface X we define

$$
\operatorname{Div}(X)_{\mathbb{Q}}=\operatorname{Div}(X) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

and call elements of $\operatorname{Div}(X)_{\mathbb{Q}}$ divisors with rational coefficients.
Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice, so that $X_{\Gamma}:=\Gamma \backslash \mathbf{H}_{\Gamma}^{*}$ is a compact Riemann surface, and let $\pi_{\Gamma}: \mathbf{H}_{\Gamma}^{*} \rightarrow X$ be the projection map. Let $f \in A_{2 n}(\Gamma)$ be a nonzero automorphic form of weight $2 n$, and let $P \in X_{\Gamma}(\mathbb{C})$ and $z_{P} \in \pi_{\Gamma}^{-1}(P)$. In the previous lecture we defined

$$
\operatorname{ord}_{P}(f)= \begin{cases}\frac{1}{e} \operatorname{ord}_{z_{p}}(f) & \text { if } P \text { is an elliptic point of order } e, \\ \operatorname{ord}_{\infty}\left(\left.f\right|_{2 n} \sigma^{-1}\right) & \text { if } P \text { is a cusp and } \sigma z_{P}=\infty, \\ \operatorname{ord}_{z_{p}}(f) & \text { otherwise }\end{cases}
$$

Here $\operatorname{ord}_{\infty}\left(\left.f\right|_{2 n} \sigma^{-1}\right)$ is the index m of the first nonzero coefficient a_{m} in the Fourier expansion $\left(\left.f\right|_{2 n} \sigma^{-1}\right)(z)=\sum e^{2 \pi i m z / h}$ with $\pm \sigma \Gamma_{z_{P}} \sigma^{-1}= \pm\left\langle\left(\begin{array}{cc}1 & h \\ 0 & 1\end{array}\right)\right\rangle$. We also recall that $e=\# \Gamma_{z_{P}} / Z(\Gamma)$ is equal to the ramification index of the map π_{Γ} at e (the cardinality of $\pi_{\Gamma}^{-1}(Q)$ for every $Q \neq P$ in any sufficiently small neighborhood of P).

The lattice Γ has only finitely many inequivalent elliptic points and cusps (it is cofinite, hence geometrically finite), so we may define

$$
\operatorname{div}(f):=\sum_{P \in X_{\Gamma}(\mathbb{C})} \operatorname{ord}_{P}(f) P \in \operatorname{Div}\left(X_{\Gamma}\right)_{\mathbb{Q}} .
$$

In the previous lecture we associated to f a meromorphic differential $\omega_{f} \in \Omega^{n}\left(X_{\Gamma}\right)$ with

$$
\operatorname{ord}_{P}\left(\omega_{f}\right)= \begin{cases}\operatorname{ord}_{P}(f)-n\left(1-\frac{1}{e}\right) & \text { if } P \text { is an elliptic point of order } e \\ \operatorname{ord}_{P}(f)-n & \text { if } P \text { is a cusp, } \\ \operatorname{ord}_{P}(f) & \text { otherwise }\end{cases}
$$

Note that unlike $\operatorname{div}(f)$, the $\operatorname{divisor} \operatorname{div}\left(\omega_{f}\right) \in \operatorname{Div}\left(X_{\Gamma}\right)$ has integer coefficients (it is the divisor of a differential form), and the Riemann-Roch theorem implies

$$
\begin{equation*}
\operatorname{deg}\left(\operatorname{div}\left(\omega_{f}\right)\right)=2 n(g-1) \tag{1}
\end{equation*}
$$

where $g:=g\left(X_{\Gamma}\right)$ is the genus of X_{Γ}, as is true for any meromorphic differential of degree n on a compact Riemann surface of genus g.

The following theorem follows immediately from the formulas above.
Theorem 8.1. For $k \in 2 \mathbb{Z}$ and nonzero $f \in A_{k}(\Gamma)$ we have

$$
\begin{aligned}
\operatorname{div}(f) & =\operatorname{div}\left(\omega_{f}\right)+\frac{k}{2} \sum_{P \in X_{\mathrm{r}}(\mathbb{C})}\left(1-\frac{1}{e_{P}}\right) P \\
\operatorname{deg} \operatorname{div}(f) & =k(g-1)+\frac{k}{2} \sum_{P \in X_{\mathrm{r}}(\mathbb{C})}\left(1-\frac{1}{e_{P}}\right)
\end{aligned}
$$

where e_{P} is the ramification index of P and $g=g\left(X_{\Gamma}\right)$, with $1 / e_{P}=0$ when P is a cusp.

Corollary 8.2 (Sturm bound). Let $k \in 2 \mathbb{Z}_{>0}$, let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice with $r \geq 1$ inequivalent cusps and $s \geq 0$ inequivalent elliptic points, and let g be the genus of X_{Γ}. Let x be a cusp of Γ and choose $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so that $\sigma x=\infty$. Suppose $f_{1}, f_{2} \in M_{k}(\Gamma)$ have Fourier expansions

$$
\left(\left.f_{1}\right|_{k} \sigma^{-1}=\sum_{n \geq 0} a_{n} e^{2 \pi i n z / h} \quad \text { and } \quad\left(\left.f_{2}\right|_{k} \sigma^{-1}\right)(z)=\sum_{n \geq 0} b_{n} e^{2 \pi i n z / h}\right.
$$

at x, with $a_{n}=b_{n}$ for $n \leq k(g-1+(r+s) / 2)$. Then $f_{1}=f_{2}$.
Proof. Suppose $f_{1} \neq f_{1}$. Then $f_{1}-f_{2}$ and $\omega:=\omega_{f_{1}-f_{2}}$ are nonzero. Let $P=\pi_{\Gamma}(x)$, and let $n>k(g-1)+k(r+s) / 2$ be the least positive integer for which $a_{n} \neq b_{n}$. Then

$$
\operatorname{ord}_{P}(\omega)=\operatorname{ord}_{P}(f-g)-\frac{k}{2}=n-\frac{k}{2}>k(g-1+(r+s-1) / 2)
$$

Now $f_{1}-f_{2}$ is holomorphic, so $\operatorname{ord}_{Q}(\omega) \geq-k / 2$ for every elliptic point or cusp $Q \neq P$, and $\operatorname{ord}_{R}(\omega) \geq 0$ for every ordinary point R. It follows that

$$
\operatorname{deg}(\operatorname{div}(\omega))>k(g-1+(r+s-1) / 2)-(r+s-1) k / 2=k(g-1)
$$

but this contradicts the degree equality implied by Riemann-Roch (1), so $f_{1}=f_{2}$.
Remark 8.3. This corollary has some remarkable implications. If $k(g-1)+k(r+s) / 2<0$ the hypothesis always holds, implying that every $f \in M_{k}(\Gamma)$ is zero. It also implies that every $f \in M_{k}(\Gamma)$ is uniquely determined by a finite prefix of its Fourier expansion at any cusp. This yields an effective algorithm for testing whether two modular forms are equal or not, and if we fix a basis for the finite dimensional \mathbb{C}-vector space $M_{k}(\Gamma)$ it allows us to explicitly compute the representation of any $f \in M_{k}(\Gamma)$ as a linear combination of basis elements.

8.2 Odd weight

For odd k we may assume $-1 \notin \Gamma$, since $\left.f\right|_{k}-1=-f$ is satisfied only when $f=0$. Let $f \in A_{k}(\Gamma)$ be nonzero. Then $f^{2} \in A_{2 k}(\Gamma)$, and we define

$$
\operatorname{ord}_{P}(f):=\operatorname{ord}_{P}\left(f^{2}\right) / 2
$$

and

$$
\operatorname{div}(f):=\sum_{P \in X_{\Gamma}(\mathbb{C})} \operatorname{ord}_{p}(f) P
$$

Theorem 8.4. Let k be an odd integer and assume $-1 \notin \Gamma$. For each nonzero $f \in A_{k}(\Gamma)$ we have

$$
\begin{aligned}
& \operatorname{div}(f)=\frac{1}{2} \operatorname{div}\left(\omega_{f^{2}}\right)+\frac{k}{2} \sum_{P}\left(1-\frac{1}{e_{P}}\right) P \\
& \operatorname{deg} \operatorname{div}(f)=k(g-1)+\frac{k}{2} \sum_{P}\left(1-\frac{1}{e_{P}}\right) \\
& \operatorname{ord}_{P}(f) \in \begin{cases}\frac{1}{2}+\mathbb{Z} & \text { if } P \text { is an irregular cusp } \\
\frac{1}{e_{P}}+\mathbb{Z} & \text { if } P \text { is an elliptic point } \\
0 & \text { otherwise }\end{cases} \\
& \operatorname{ord}_{P}\left(\omega_{f^{2}}\right) \in \begin{cases}1+2 \mathbb{Z} & \text { if } P \text { is a regular cusp } \\
2 \mathbb{Z} & \text { otherwise }\end{cases}
\end{aligned}
$$

where e_{P} is the ramification index at P with $1 / e_{P}=0$ if P is a cusp.

8.3 Computing the measure of X_{Γ}

As above, let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice and let $X_{\Gamma}:=\Gamma \backslash \mathbf{H}_{\Gamma}^{*}$.
Lemma 8.5. Let m be the 1 cm of the orders of all elliptic $P \in X_{\Gamma}(\mathbb{C})$. There is a nonzero $f \in A_{2 m}(\Gamma)$ which has no zeros or poles at any cusp or any elliptic point in $X_{\Gamma}(\mathbb{C})$.

Proof. Let $f \in A_{2 m}(\Gamma)$ be nonzero. Then $\operatorname{div}(f)=\operatorname{div}\left(\omega_{f}\right)+\frac{k}{2} \sum_{P}\left(1-\frac{1}{e_{P}}\right) P \in \operatorname{Div}\left(X_{\Gamma}\right)$, since $k / 2=m \in \mathbb{Z}$ is divisible by every $e_{P} \in \mathbb{Z}$. Let S be the (finite) set of elliptic points and cusps in $X_{\Gamma}(\mathbb{C})$, let $g:=g\left(X_{\Gamma}\right)$, and choose $n \in \mathbb{Z}$ so that

$$
-\operatorname{deg}(\operatorname{div}(g))-1+n>2 g-2
$$

Fix $Q \notin S$ and consider the divisors $D_{Q}:=-\operatorname{div}(g)+n Q$ and $D_{P}:=-\operatorname{div}(g)-P+n Q$ for each $P \in S$. We have $D_{Q} \geq D_{P}$, so $L\left(D_{Q}\right) \supsetneq L\left(D_{P}\right)$, and $\operatorname{deg}\left(D_{Q}\right)>\operatorname{deg}\left(D_{P}\right)>2 g-2$, so

$$
\operatorname{dim} L\left(D_{Q}\right)-\operatorname{dim} L\left(D_{P}\right)=\operatorname{deg}\left(D_{Q}\right)-\operatorname{deg}\left(D_{P}\right)=1,
$$

for all $P \in S$ by Riemann-Roch, since $\ell(D)=\operatorname{deg}(D)-g+1$ whenever $\operatorname{deg}(D)>2 g-2$.
It follows that the Riemann-Roch space

$$
L\left(D_{Q}\right)=\left\{h \in \mathbb{C}\left(X_{\Gamma}\right): h=0 \text { or } \operatorname{div}(h)+D_{Q} \geq 0\right\}
$$

contains some $h \in \mathbb{C}\left(X_{\Gamma}\right) \simeq A_{0}(\Gamma)$ that does not lie in any of the $L\left(D_{P}\right)$, with $\operatorname{ord}_{P}(f / h)=0$ for $P \in S$, since $\operatorname{ord}_{P}(h)=\operatorname{ord}_{P}(f)$ for $P \in S$. Then $f / h \in A_{2 m}(\Gamma)$ has not zeros or poles on any cusp or elliptic point in $X_{\Gamma}(\mathbb{C})$.

Recall that $v\left(X_{\Gamma}\right)$ is defined as the measure of any (measurable) fundamental domain for Γ under the hyperbolic measure $d v(z):=\frac{d x d x}{y^{2}}$ on \mathbf{H}, where $z=x+i y$, which is induced by the Haar measure of $\mathrm{SL}_{2}(\mathbb{R})$.

Theorem 8.6. For any lattice $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ we have

$$
\frac{1}{2 \pi} v\left(X_{\Gamma}\right)=2 g-2+\sum_{P \in X_{\Gamma}(\mathbb{C})}\left(1-\frac{1}{e_{p}}\right),
$$

where e_{P} is the ramification index of P, with $1 / e_{P}=0$ when P is a cusp, and g is the genus of X_{Γ}.
Proof sketch. Pick m and nonzero $f \in A_{2 m}(\Gamma)$ via Lemma 8.5, and a measurable fundamental domain F for Γ such that f has no zeros or poles on ∂F. Let v_{1}, \ldots, v_{r} be the vertices of F that are cusps, and pick curves C_{1}, \ldots, C_{r} with C_{i} in a neighborhood of v_{i} such that $\pi_{\Gamma}\left(C_{i}\right)$ is a circle around $\pi\left(v_{i}\right)$ oriented counterclockwise. Let M be the compact set bounded by F and the curves C_{1}, \ldots, C_{r}. Then

$$
v\left(X_{\Gamma}\right)=v(F)=\lim _{C_{i} \rightarrow x_{i}} \int_{M} \frac{d x \wedge d y}{y^{2}}
$$

where $C_{i} \rightarrow x_{i}$ means we are shrinking the neighborhoods of x_{i} in which the C_{i} lie so that the measure of the part of F outside M tends to zero. Applying Stokes Theorem yields

$$
\int_{M} \frac{d x \wedge d y}{y^{2}}=\int_{\partial M} \frac{d z}{y}=\int_{\partial M}\left(\frac{d z}{y}+\frac{i}{m} d(\log f)\right)-\frac{i}{m} \int_{\partial M} d(\log f),
$$

where ∂M is oriented counterclockwise. One can show that the integrand in the first term on the RHS is Γ-invariant, and since Γ acts on pairs of sides of F with opposite orientation, the integral tends to zero as the $C_{i} \rightarrow x_{i}$, and we have

$$
v\left(X_{\Gamma}\right)=2 \pi \lim _{C_{i} \rightarrow x_{i}}-\frac{i}{m} \int_{\partial M} d(\log f)=\frac{2 \pi}{m} \operatorname{deg}(\operatorname{div}(f))
$$

by Cauchy's residue formula, since we can assume f has no zeros or poles on ∂M and its zeros and poles in F all lie inside M. Applying Theorem 8.1 yields

$$
\frac{1}{2 \pi} v\left(X_{\Gamma}\right)=\frac{1}{m}\left(2 m(g-1)+m \sum_{P}\left(1-\frac{1}{e_{P}}\right)\right)=2 g-2+\sum_{P \in \mathbb{C}\left(X_{\Gamma}\right)}\left(1-\frac{1}{e_{p}}\right) .
$$

8.4 Dimension formulas

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice. For $D \in \operatorname{Div}\left(X_{\Gamma}\right)_{\mathbb{Q}}$ we define

$$
\lfloor D\rfloor:=\sum_{P}\left\lfloor r_{P}\right\rfloor P
$$

Lemma 8.7. Let $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$ be a lattice with regular cusps P_{1}, \ldots, P_{s} and irregular cusps P_{s+1}, \ldots, P_{t}. Let $f \in A_{k}(\Gamma)$ be nonzero. We have the following isomorphisms of \mathbb{C}-vector-spaces

- $M_{k}(\Gamma) \simeq L(\lfloor\operatorname{div}(f)\rfloor) ;$
- $S_{k}(\Gamma) \simeq \begin{cases}L\left(\left\lfloor\operatorname{div}(f)-\left(P_{1}+\cdots+P_{t}\right)\right\rfloor\right) & k \text { even }, \\ L\left(\left\lfloor\operatorname{div}(f)-\left(P_{1}+\cdots+P_{s}+\frac{1}{2} P_{s+1}+\cdots+\frac{1}{2} P_{t}\right)\right\rfloor\right) & k \text { odd } .\end{cases}$

Proof. We have $A_{k}(\Gamma)=\left\{f h \mid h \in A_{0}(\Gamma)\right\}$, and it follows that

$$
\begin{aligned}
M_{k} & =\left\{f h: h \in A_{0}(\Gamma): h=0 \text { or } \operatorname{div}(f h) \geq 0\right\} \\
& =\left\{h \in \mathbb{C}\left(X_{\Gamma}\right): h=0 \text { or } \operatorname{div}(h)+\operatorname{div}(f) \geq 0\right\} \\
& =L(\lfloor(\operatorname{div}(f)\rfloor) .
\end{aligned}
$$

since $\operatorname{div}(h)+\operatorname{div}(f) \geq 0$ if and only if $\operatorname{div}(h)+\lfloor\operatorname{div}(f)\rfloor \geq 0$.
Now consider $f h \in M_{k}(\Gamma)$ with $h \in A_{0}(\Gamma) \simeq \mathbb{C}(X)$. Then

$$
f h \in S_{k}(\Gamma) \quad \Leftrightarrow \quad \operatorname{ord}_{P_{i}}\left(f f_{0}\right)>0 \text { for } 1 \leq i \leq t
$$

If k is even then

$$
\begin{aligned}
f h \in S_{k}(\Gamma) & \Leftrightarrow \quad \operatorname{ord}_{P_{i}}(f h) \geq 1 \text { for } 1 \leq i \leq t \\
& \Leftrightarrow \operatorname{ord}_{P_{i}}(f)+\operatorname{ord}_{P_{i}}(h)-1 \geq 0 \text { for } 1 \leq i \leq t \\
& \Leftrightarrow h \in L\left(\left\lfloor\operatorname{div}(f)-\left(P_{1}+\cdots+P_{t}\right)\right\rfloor\right)
\end{aligned}
$$

which implies $S_{k}(\Gamma) \simeq L\left(\left\lfloor\operatorname{div}(f)-\left(P_{1}+\cdots+P_{t}\right)\right\rfloor\right)$. For k odd a similar argument works, except we use the bound $\operatorname{ord}_{P_{i}}(f h) \geq 1 / 2$ for $s<i \leq t$.

Let e_{1}, \ldots, e_{r} be the orders of the elliptic points and t the number of cusps in $X_{\Gamma}(\mathbb{C})$. Define

$$
d:=2 g-2+\sum_{i=1}^{r}\left(1-\frac{1}{e_{i}}\right)+t
$$

let $g:=g\left(X_{\Gamma}\right)$, and fix a nonzero $f \in A_{k}(\Gamma)$. Theorem 8.1 implies that

$$
\operatorname{deg}(\operatorname{div}(f))=\frac{k}{2} d \quad \text { and } \quad \operatorname{deg}(\lfloor\operatorname{div}(f)\rfloor)=k(g-1)+\sum_{i=1}^{r}\left\lfloor\frac{k}{2}\left(1-\frac{1}{e_{i}}\right)\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor t
$$

and we have $d=v\left(X_{\Gamma}\right) /(2 \pi)>0$, by Theorem 8.6. We now consider $k \in 2 \mathbb{Z}$ as follows:

- $k<0$: we have $\operatorname{deg}(\lfloor\operatorname{div}(f)\rfloor) \leq \operatorname{deg}(\operatorname{div}(f))=k d / 2<0$ so $\operatorname{dim} M_{k}(\Gamma)=\operatorname{dim} S_{k}(\Gamma)=0$.
- $k=0$: we have $f \in \mathbb{C}\left(X_{\Gamma}\right)^{\times}$and $\operatorname{dim} M_{0}(\Gamma)=\ell(\operatorname{div}(f))=1$ and

$$
\operatorname{dim} S_{0}(\Gamma)=\ell\left(\operatorname{div}(f)-\left(P_{1}+\cdots+P_{t}\right)\right)= \begin{cases}1 & \text { if } t=0 \\ 0 & \text { if } t>0\end{cases}
$$

- $k=2$: we have $S_{2}(\Gamma) \simeq \Omega_{0}^{1}\left(X_{\Gamma}\right)$, as shown in Lecture 7 , so $\operatorname{dim} S_{2}(\Gamma)=\ell\left(\operatorname{div}\left(\omega_{f}\right)\right)=g$, and $M_{k}(\Gamma) \simeq S_{k}(\Gamma)$ if $t=0$, otherwise Riemann-Roch implies

$$
\operatorname{dim} M_{k}(\Gamma)=\ell(\lfloor\operatorname{div}(f)\rfloor)=\operatorname{deg}(\lfloor\operatorname{div}(f)\rfloor)-g+1+\ell\left(\operatorname{div}\left(\omega_{1}\right)-\lfloor\operatorname{div}(f)\rfloor\right)=g-1+t
$$

- For $k>2$. Fix any nonzero $f \in A_{k}(\Gamma)$ and let $D=\operatorname{div}(f)-\left(P_{1}+\cdots+P_{t}\right)$, where P_{1}, \ldots, P_{t} are the cusps in $X_{\Gamma}(\mathbb{C})$. Then $\operatorname{deg}(D)=\operatorname{deg}(\operatorname{div}(f))-t$ and

$$
\operatorname{deg}(\lfloor D\rfloor)=k(g-1)+\sum_{i=1}^{r}\left\lfloor\frac{k}{2}\left(1-\frac{1}{e_{i}}\right)\right\rfloor+\left(\frac{k}{2}-1\right) t \geq \frac{k-2}{2} d+(2 g-2)>2 g-2
$$

Lemma 8.7 and Riemann-Roch imply $\operatorname{dim} S_{k}(\Gamma)=\ell(\lfloor D\rfloor)=\operatorname{deg}(\lfloor D\rfloor)-g+1$, and we also have $\operatorname{dim} M_{k}(\Gamma)=\operatorname{dim} S_{k}(\Gamma)+\ell(\lfloor\operatorname{div}(f)\rfloor)-\ell(\lfloor D\rfloor)=\operatorname{dim} S_{k}(\Gamma)+t$.

This yields the following theorem.
Theorem 8.8. Let $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$ be a lattice, let e_{1}, \ldots, e_{r} be the orders of the elliptic points in $X_{\Gamma}(\mathbb{C})$, let t be the number of cusps in $X_{\Gamma}(\mathbb{C})$, let g be the genus of X_{Γ} and let $k \in 2 \mathbb{Z}$. Then

$$
\operatorname{dim} S_{k}(\Gamma)= \begin{cases}0 & k<0 \text { or } k=0, t>0 \\ 1 & k=t=0 \\ g & k=2 \\ (k-1)(g-1)+\sum_{i=1}^{r}\left\lfloor\frac{k}{2}\left(1-\frac{1}{e_{i}}\right)\right\rfloor+\left(\frac{k}{2}-1\right) t & k>2\end{cases}
$$

and

$$
\operatorname{dim} M_{k}(\Gamma)= \begin{cases}0 & k<0 \\ 1 & k=0 \\ g & k=2, t=0 \\ g-1+t & k=2, t>0 \\ \operatorname{dim} S_{k}(\Gamma)+t & k>2\end{cases}
$$

For odd $k \neq 1$ a similar series of calculations yields the following result.
Theorem 8.9. Let $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$ be a lattice with $-1 \notin \Gamma$, let e_{1}, \ldots, e_{r} be the orders of the elliptic points in $X_{\Gamma}(\mathbb{C})$, let u and v be the number of regular and irregular cusps in $X_{\Gamma}(\mathbb{C})$, let g be the genus of X_{Γ} and let $k \in 1+2 \mathbb{Z}$. Then

$$
\operatorname{dim}_{k}\left(\Gamma= \begin{cases}0 & k<0 \\ (k-1)(g-1)+\sum_{i=1}^{r}\left\lfloor\frac{k}{2}\left(1-\frac{1}{e_{i}}\right)\right\rfloor+\frac{k-2}{2} u+\frac{k-1}{2} v & k \geq 3\end{cases}\right.
$$

and

$$
\operatorname{dim} M_{k}(\Gamma)= \begin{cases}0 & k<0 \\ \operatorname{dim} S_{1}(\Gamma)+\frac{u}{2} & k=1 \\ \operatorname{dim} S_{k}(\Gamma)+\frac{u}{2} & k \geq 3\end{cases}
$$

Proof. See [1, Theorem 2.5.3]
Remark 8.10. No general formula is known for $\operatorname{dim} S_{1}(\Gamma)$, even for congruence subgroups.

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

