18.786 Number theory II Spring 2024
Lecture #8 2/28/2024

These notes summarize the material in §2.3-2.5 of [1] covered in lecture.

8.1 Divisors of automorphic forms

For a compact Riemann surface X we define
Div(X)y = Div(X) ®;, Q

and call elements of Div(X)q divisors with rational coefficients.

Let I' < SL,(R) be a lattice, so that X; := I'\H}. is a compact Riemann surface, and let
7. Hi. — X be the projection map. Let f € A,,(T') be a nonzero automorphic form of weight 2n,
and let P € X(C) and zp € n;l (P). In the previous lecture we defined

%ordzp () if P is an elliptic point of order e,
ordp(f) =1 ordeo (flo,0!) if Pisa cusp and ozp = 00,
ord,,(f). otherwise

Here ord ., (f |,0 1) is the index m of the first nonzero coefficient a,, in the Fourier expansion
(flano () = Dl e2mimz/h with toT, 07! = :l:(((l)}ll > We also recall that e = #T,,/Z(T) is
equal to the ramification index of the map 7t at e (the cardinality of n;l (Q) for every Q # P in
any sufficiently small neighborhood of P).

The lattice I has only finitely many inequivalent elliptic points and cusps (it is cofinite, hence
geometrically finite), so we may define

div(f) = Y ordp(f)P € Div(Xp)q.

PeXr(C)
In the previous lecture we associated to f a meromorphic differential w; € Q"(Xr) with
ordp(f)— n(l - %) if P is an elliptic point of order e,

ordp(wys) = { ordp(f)—n if P is a cusp,
ordp(f) otherwise.

Note that unlike div(f), the divisor div(w,) € Div(Xr) has integer coefficients (it is the divisor
of a differential form), and the Riemann—Roch theorem implies

deg(div(wy)) = 2n(g —1), (D

where g := g(X7) is the genus of Xt, as is true for any meromorphic differential of degree n on
a compact Riemann surface of genus g.
The following theorem follows immediately from the formulas above.

Theorem 8.1. For k € 2Z and nongero f € A;(T") we have

div(f) =div(w)+5 > (1-2)p

PeX(C)

degdiv(f) = k(g—1)+§ Z (1—%)

Pexr(C)

where ep is the ramification index of P and g = g(Xt), with 1/ep = 0 when P is a cusp.
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Corollary 8.2 (Sturm bound). Let k € 2Z-, let I < SL,(R) be a lattice with r > 1 inequivalent
cusps and s > 0 inequivalent elliptic points, and let g be the genus of Xr. Let x be a cusp of I' and
choose o € SLy(R) so that ox = 00. Suppose f, fo € Mi(T') have Fourier expansions

(fiko™ =D @™ and  (flio @) = Y bye?™
n>0 n>0
at x, with a, = b, forn < k(g—1+(r +s)/2). Then f; = f,.
Proof. Suppose f; # f1. Then f; — f, and w = wy _¢, are nonzero. Let P = mp(x), and let
n>k(g—1)+ k(r +s)/2 be the least positive integer for which a, # b,,. Then
ordp(w) = ordp(f —g)—g = n—% >k(g—1+(r+s—1)/2).

Now f; — f, is holomorphic, so ord,y(w) = —k/2 for every elliptic point or cusp Q # P, and
ordg(w) > O for every ordinary point R. It follows that

deg(div(w)) > k(g—1+(r+s—1)/2)—(r+s—1)k/2=k(g—1)
but this contradicts the degree equality implied by Riemann—Roch (1), so f; = f5. O

Remark 8.3. This corollary has some remarkable implications. If k(g — 1)+ k(r +s)/2 < 0
the hypothesis always holds, implying that every f € M;(T) is zero. It also implies that every
f € M(T) is uniquely determined by a finite prefix of its Fourier expansion at any cusp. This
yields an effective algorithm for testing whether two modular forms are equal or not, and if we
fix a basis for the finite dimensional C-vector space M;(T') it allows us to explicitly compute the
representation of any f € M, (T') as a linear combination of basis elements.

8.2 0dd weight

For odd k we may assume —1 ¢ T', since f |, —1 = —f is satisfied only when f = 0. Let f € A(I)
be nonzero. Then f2 € Ay (T'), and we define

ordp(f) := ordp(f?)/2

and

div(f) := Z ord, (f)P

PeX;(C)
Theorem 8.4. Let k be an odd integer and assume —1 € T'. For each nongzero f € A (T") we have

div(f) = 3div(wp) + 5 > (1-2)P

P

degdiv(f) =k(g—1)+5> (1-2)
P

% +7Z if P is an irregular cusp
ordp(f) e é +7 if P is an elliptic point

0 otherwise

1+2Z if Pis aregular cusp

ordp(ws2) €
p f2) {ZZ otherwise

where ep is the ramification index at P with 1/ep =0 if P is a cusp.
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8.3 Computing the measure of X
As above, let I' < SL,(R) be a lattice and let Xy := I'\Hj..

Lemma 8.5. Let m be the lcm of the orders of all elliptic P € X(C). There is a nongero f € Ay,,(T")
which has no zeros or poles at any cusp or any elliptic point in X(C).

Proof. Let f € Ayp(T) be nonzero. Then div(f) = div(w;) + gzp(l - %)P € Div(Xt), since
k/2 = m € Z is divisible by every ep € Z. Let S be the (finite) set of elliptic points and cusps in
X1 (C), let g := g(Xy), and choose n € Z so that

—deg(div(g))—1+n>2g—2.

Fix Q € S and consider the divisors D, := —div(g) + nQ and Dp := —div(g) — P + nQ for each
P €S. We have D, > Dp, so L(Dg) 2 L(Dp), and deg(D,) > deg(Dp) > 2g — 2, so

dim L(Dg,) —dim L(Dp) = deg(D,) —deg(Dp) =1,

for all P € S by Riemann-Roch, since £(D) = deg(D) — g + 1 whenever deg(D) > 2g — 2.
It follows that the Riemann—Roch space

L(Dg) = {h € C(Xt) : h =0 or div(h) + D, = 0}

contains some h € C(X}) ~ A,y(T') that does not lie in any of the L(Djp), with ordp(f /h) = 0 for
P € S, since ordp(h) = ordp(f) for P € S. Then f /h € A,,,,(T') has not zeros or poles on any

cusp or elliptic point in X(C). O
Recall that v(X}) is defined as the measure of any (measurable) fundamental domain for I'
under the hyperbolic measure dv(z) = d’;zx on H, where z = x + iy, which is induced by the

Haar measure of SL,(R).

Theorem 8.6. For any lattice I' < SL,(R) we have
v =2g—2+ > (1-2),
Pexr(C)
where ep is the ramification index of P, with 1/ep = 0 when P is a cusp, and g is the genus of Xr.

Proof sketch. Pick m and nonzero f € A,,,(T') via Lemma 8.5, and a measurable fundamental
domain F for I such that f has no zeros or poles on JF. Let vy,..., Vv, be the vertices of F that
are cusps, and pick curves Cy, ..., C, with C; in a neighborhood of v; such that ©-(C;) is a circle
around 7t(v;) oriented counterclockwise. Let M be the compact set bounded by F and the curves

Cy,...,C,.. Then
dx Nnd
y(Xp) = v(F) = lim f XA
i=Xi ) Yy

where C; — x; means we are shrinking the neighborhoods of x; in which the C; lie so that the
measure of the part of F outside M tends to zero. Applying Stokes Theorem yields

fdxAdyzf d_zzf (g_,_id(logf))_if d(logf),
v Y om Y om Y o m " Jom
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where d M is oriented counterclockwise. One can show that the integrand in the first term on
the RHS is I'-invariant, and since I' acts on pairs of sides of F with opposite orientation, the

integral tends to zero as the C; — x;, and we have

v(Xp) =2 lim —ir;l J d(log f) = Z¢ deg(div(f))
v oM

by Cauchy’s residue formula, since we can assume f has no zeros or poles on d M and its zeros

and poles in F all lie inside M. Applying Theorem 8.1 yields

V() =5 (Zm(g—1)+m2(1—i)) =2¢-2+ ), (1-3)
p

PeC(Xy)

8.4 Dimension formulas

Let ' < SL,(R) be a lattice. For D € Div(Xt)g we define

LDJ:= ) IrplP
P

Lemma 8.7. Let T € SL,(R) be a lattice with regular cusps Py, ..., P, and irregular cusps Py 1, . . .

Let f € Ai(T') be nongero. We have the following isomorphisms of C-vector-spaces

© M(T) =~ L(|div(f)]);

e (1) L(Ldiv(f) = (P +---+P)]) k even,
S L) Pyt Pt g e+ 5POD kodd,

Proof. We have A, (T") = {fhlh € Ax(T')}, and it follows that

M, ={fh:heAy(T):h=0ordiv(fh) = 0}
={h € C(X) : h=0 or div(h) + div(f) > 0}
= L(L(div(f)]).

since div(h) + div(f) > 0 if and only if div(h) + | div(f)] = 0.
Now consider fh € M (T') with h € Ayp(T') ~ C(X). Then

fhes() < ordp(ffo)>0for1<i<t
If k is even then

fheS) & ordp(fh)>1for1<i<t
& ordp(f)+ordp(h)—1=>0for1<i<t
< hel(div(f)—(Py+---+P)])

,P..

which implies Si(T') ~ L(|div(f)—(P; +---+ P,)]). For k odd a similar argument works, except

we use the bound ordp (fh) > 1/2 fors <i<t.

O
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Let ey, ..., e, be the orders of the elliptic points and ¢ the number of cusps in X(C). Define

di=2g-2+) (1-1)+¢,
i=1
let g := g(Xt), and fix a nonzero f € A;(T'). Theorem 8.1 implies that
. _k . . - k 1 k
deg(div(f))=%d and  deg(ldiv(f))=k(g—1)+ > | 5(1—2) |+l
i=1
and we have d = v(Xy)/(2m) > 0, by Theorem 8.6. We now consider k € 27Z as follows:
* k <0: we have deg(|div(f)]) < deg(div(f)) = kd/2 < 0 so dim M (T") = dim S;(T") = 0.
* k=0: we have f € C(Xy)* and dim M,(T") = £(div(f)) =1 and

1 ift=0

dim Sy(T) =£(div(f)—(P; +---+P,)) = {0 >0

* k =2: we have S5(I') ~ Q(l)(XF), as shown in Lecture 7, so dimSy(T) = £(div(w()) = g,
and M (T) ~ S,(T) if t = 0, otherwise Riemann-Roch implies

dim M (') = £(|div(f)]) = deg(ldiv(f)]) — g + 1 + {(div(w;) = [div(f) ) =g =1 + .

* For k > 2. Fix any nonzero f € Ai(T') and let D = div(f)—(P; +:--+P,), where Py,..., P,
are the cusps in Xp(C). Then deg(D) = deg(div(f))—t and

deg(ID)) =k(g— 1)+ Y |5(1-2) |+ (5—1)r > FR2d+(2g—2)>2g-2.
i=1
Lemma 8.7 and Riemann-Roch imply dim S, (I') = £(| D|) = deg(|D])—g + 1, and we also
have dim M (T") = dim S (T") + £(|div(f)]) —£(|D]) = dim S;.(T') + ¢.

This yields the following theorem.

Theorem 8.8. Let I' € SL,(R) be a lattice, let eq,. .., e, be the orders of the elliptic points in X (C),
let t be the number of cusps in X(C), let g be the genus of Xt and let k € 27Z.. Then

0 k<Oork=0,t>0
dim S, (T') = k=9

(k—D(-D+X, | 50-2)|+(E-1)r k>2

and
(0 k<0
1 k=0
dimM,(T)=1 g k=2,t=0
g—1+t¢t k=2,t>0
\dimS(T)+t k>2
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For odd k # 1 a similar series of calculations yields the following result.

Theorem 8.9. Let I € SLy(R) be a lattice with —1 € T, let eq,...,e, be the orders of the elliptic
points in Xp(C), let u and v be the number of regular and irregular cusps in Xp(C), let g be the
genus of Xp and let k € 1+ 27Z. Then

dimS, (T 0 k<0
im = . _ _
k (k—D(e-D+X_ | 5(1-2)|+52u+ Ty k>3
and
0 k<0
dim M (I) =1 dimSy(IN+5 k=1
dimS(T)+4 k>3
Proof. See [1, Theorem 2.5.3] O

Remark 8.10. No general formula is known for dim S, (T'), even for congruence subgroups.
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