These notes summarize the material in §2.2-2.3 of [1] presented in lecture.

7.1 Meromorphic differentials on compact Riemann surfaces

Let X be a (connected) Riemann surface with holomorphic atlas $\left\{\psi_{i}: U_{i} \xrightarrow{\sim} V_{i} \subseteq \mathbb{C}\right\}$ and transition maps $\psi_{i j}:=\psi_{j} \circ \psi_{i}^{-1}: V_{i j} \rightarrow V_{j}$ defined for all $U_{i} \cap U_{j} \neq \emptyset$, where $V_{i j}:=\psi_{i}\left(U_{i} \cap U_{j}\right)$.
Definition 7.1. Let n be an integer. A meromorphic differential ω of degree n on X is (the equivalence class of) a collection of meromorphic functions $\left\{\omega_{i}: V_{i} \rightarrow \mathbb{C}\right\}$ such that

$$
\omega_{i}=\left(\omega_{j} \circ \psi_{i j}\right)\left(d \psi_{i} / d \psi_{j}\right)^{n}
$$

on $V_{i j}$ whenever $U_{i} \cap U_{j} \neq \emptyset$. Meromorphic differentials $\left\{\omega_{i}\right\}$ and $\left\{\theta_{i}\right\}$ of degree n are equivalent if $\left\{\omega_{i}\right\} \cup\left\{\theta_{i}\right\}$ is also a meromorphic differential of degree n.

Remark 7.2. A meromorphic differential of degree 0 is a meromorphic function $X \rightarrow \mathbb{C}$, equivalently, a holomorphic map $X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ that is not identically ∞. Nonconstant meromorphic functions $X \rightarrow \mathbb{C}$ are the same thing as nonconstant holomorphic maps $X \rightarrow \mathbb{P}^{1}(\mathbb{C})$.

We note the following, all of which are compatible with equivalence:

- Taking all $\omega_{i}=0$ yields the zero differential, which is a meromorphic differential of degree n for all $n \in \mathbb{Z}$.
- If $\omega=\left\{\omega_{i}\right\}$ is a nonzero differential of degree n then $\omega^{-1}:=\left\{1 / \omega_{i}\right\}$ is a nonzero differential of degree $-n$.
- If ω is a meromorphic differential of degree n then so is $c \omega:=\left\{c \omega_{i}\right\}$ for any $c \in \mathbb{C}$.
- If ω and ω^{\prime} are meromorphic differentials of degree n then so is $\omega+\omega^{\prime}:=\left\{\omega_{i}+\omega_{i}^{\prime}\right\}$.
- If ω and ω^{\prime} are meromorphic differentials of degrees m and n then their product $\omega \omega^{\prime}:=$ $\left\{\omega_{i} \omega_{i}^{\prime}\right\}$ is a meromorphic differential of degree $m+n$.
It follows that the set of meromorphic differentials of degree n on X forms a \mathbb{C}-vector space $\Omega^{n}(X)$, and we have a graded algebra of meromorphic differentials

$$
\Omega(X):=\bigoplus_{n \in \mathbb{Z}} \Omega^{n}(X),
$$

in which $\Omega^{0}(X) \simeq \mathbb{C}(X)$ is the field of meromorphic functions on X. In particular, each \mathbb{C}-vector space $\Omega^{n}(X)$ is also an $\Omega^{0}(X)$-vector space.

From now on we shall assume that X is compact. This implies that X is a smooth projective curve over \mathbb{C} with function field $\mathbb{C}(X) \simeq \Omega^{0}(X)$ Recall that the categories of Riemann surfaces (with holomorphic maps), smooth projective curves over \mathbb{C} (with dominant morphisms), and function fields of transcendence degree 1 over \mathbb{C} (with field homomorphisms) are equivalent categories. The functor from Riemann surfaces to curves is covariant, while the functor from curves to function fields is contravariant.

For each $f \in \mathbb{C}(X)$ we define a differential $d f:=\left\{d f_{i}\right\}$, where $f_{i}:=f \circ \psi_{i}^{-1}$, which is zero if and only if f is constant, and $(d f)^{n} \in \Omega^{n}(X)$ for all $n \in \mathbb{Z}$. Note that $\mathbb{C}(X) \neq \mathbb{C}$ contains a nonconstant f, thus there are nonzero differentials of every degree and $\operatorname{dim}_{\mathbb{C}(X)} \Omega^{n}(X)>0$. On the other hand, if we pick a nonzero $\omega \in \Omega^{n}$, multiplication by ω^{-1} defines an isomorphism $\Omega^{n}(X) \xrightarrow{\sim} \Omega^{0}(X)$ of $\mathbb{C}(X)$-vector spaces. Thus for every $n \in \mathbb{Z}$ we have

$$
\operatorname{dim}_{\mathbb{C}(X)} \Omega^{n}(X)=1
$$

7.2 Divisors

The divisor group $\operatorname{Div}(X):=\bigoplus_{P \in X(\mathbb{C})} \mathbb{Z}$ of X is the free abelian group generated by $X(\mathbb{C})$:

$$
\operatorname{Div}(X):=\left\{\sum_{P \in X(\mathbb{C})} n_{P} P: n_{P} \in \mathbb{Z} \text { with } n_{P}=0 \text { for all but finitely many } P\right\} .
$$

For $D=\sum n_{P} P \in \operatorname{Div}(X)$, the degree of the divisor D is $\operatorname{deg}(D):=\sum_{P} n_{P}$, and the map

$$
\begin{aligned}
\operatorname{deg}: \operatorname{Div}(X) & \rightarrow \mathbb{Z} \\
D & \mapsto \operatorname{deg}(D)
\end{aligned}
$$

is a group homomorphism. For each $f \in \mathbb{C}(X)^{\times}$we have a divisor

$$
\operatorname{div}(f):=\sum_{P \in X(\mathbb{C})} \operatorname{ord}_{P}(f) P,
$$

where $\operatorname{ord}_{P}(f)$ is the order of vanishing of f at P. Divisors arising in this way are called principal.
For any $f, g \in \mathbb{C}(X)^{\times}$we have $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g)$ and $\operatorname{deg}(\operatorname{div}(f))=0$. The set of principal divisors form a subgroup $\operatorname{Prin}(X) \leq \operatorname{Div}^{0}(X) \leq \operatorname{Div}(X)$, where $\operatorname{Div}^{0}(X):=\operatorname{ker}(\operatorname{deg})$. We now define the divisor class group

$$
\operatorname{Pic}(X):=\operatorname{Div}(X) / \operatorname{Prin}(X) .
$$

We also define $\operatorname{Pic}^{0}(X):=\operatorname{ker}(\operatorname{deg}) / \operatorname{Prin}(X)$.
For each $\omega \in \Omega^{n}(X)$ and $P \in X(\mathbb{C})$ we define the order of vanishing of ω at $P \in U_{i}$ to be

$$
\operatorname{ord}_{p}(\omega)=\operatorname{ord}_{p}\left(\omega_{i} \circ \psi_{i}\right) .
$$

The transition maps $\psi_{i j}$ are holomorphic and nonzero, so $\operatorname{ord}_{p}\left(\omega_{i}\right)=\operatorname{ord}_{p}\left(\omega_{j}\right)$ for $U_{i} \cap U_{j} \neq \emptyset$. This implies that $\operatorname{ord}_{P}(\omega)$ does not depend on the choice of $U_{i} \ni P$. We now define the divisor

$$
\operatorname{div}(\omega)=\sum_{P \in X(\mathbb{C})} \operatorname{ord}_{P}(\omega) P,
$$

which for $\omega \in \Omega^{0}(X)$ coincides with our previous definition. For any $\omega \in \Omega^{m}(X)$ and $\omega^{\prime} \in \Omega^{n}(X)$ with $\omega, \omega^{\prime} \neq 0$ we have

$$
\operatorname{div}\left(\omega \omega^{\prime}\right)=\operatorname{div}(\omega)+\operatorname{div}\left(\omega^{\prime}\right)
$$

Recall that $\operatorname{dim}_{\mathbb{C}(X)} \Omega^{n}=1$. This implies that $\left\{\operatorname{div}(\omega): 0 \neq \omega \in \Omega^{n}(X)\right\}$ is a divisor class.
We call a divisor $D=\sum_{P \in X} n_{P} P \in \operatorname{Div}(X)$ positive, or effective, if $n_{P} \geq 0$ for all $P \in X(\mathbb{C})$, and write $D \geq 0$. For every divisor $D \in \operatorname{Div}(X)$ we have an associated Riemann-Roch space

$$
L(D):=\{f \in \mathbb{C}(X): f=0 \text { or } \operatorname{div}(f)+D \geq 0\}
$$

which is a finite-dimensional \mathbb{C}-vector space, with $L(0)=\mathbb{C}$ and $L(D)=\{0\}$ for $\operatorname{deg}(D)<0$. We denote its dimension by

$$
\ell(D):=\operatorname{dim}_{\mathbb{C}} L(D)
$$

Theorem 7.3 (Riemann-Roch). Let X be a compact Riemann surface of genus g and let $\omega \in \Omega^{1}(X)$ be a nonzero meromorphic differential. Then for every $D \in \operatorname{Div}(X)$ we have

$$
\ell(D)=\operatorname{deg}(D)-g+1+\ell(\operatorname{div}(\omega)-D) .
$$

Corollary 7.4. Let X be a compact Riemann surface of genus g. The following hold

- For each nonzero $\omega \in \Omega^{1}(X)$ we have $\operatorname{deg}(\operatorname{div}(\omega))=2 g-2$ and $\ell(\operatorname{div}(\omega))=g$.
- For each nonzero $\omega \in \Omega^{n}(X)$ we have $\operatorname{deg}(\operatorname{div}(\omega))=2 n(g-1)$.
- For each $D \in \operatorname{Div}(X)$ with $\operatorname{deg}(D)>2 g-2$ we have $\ell(D)=\operatorname{deg}(D)-g+1$.

Definition 7.5. A meromorphic differential $\omega \in \Omega^{n}(X)$ is holomorphic if $\omega=0$ or $\operatorname{div}(\omega) \geq 0$.
Corollary 7.6. Let X be a compact Riemann surface of genus g. Then $\operatorname{dim}_{\mathbb{C}} \Omega_{0}^{1}(X)=g$.
Proof. Let $\omega_{1} \in \Omega^{1}(X)$ be nonzero. Then $L\left(\operatorname{div}\left(\omega_{1}\right)\right)=\{f \in \mathbb{C}(X): f=0$ or $\operatorname{div}(f \omega) \geq 0\}$. The isomorphism $\mathbb{C}(X) \xrightarrow{\sim} \Omega^{1}(X)$ defined by $f \mapsto f \omega_{1}$ implies

$$
L\left(\operatorname{div}\left(\omega_{1}\right)\right) \simeq\left\{\omega \in \Omega^{1}(X): \omega=0 \text { or } \operatorname{div}(\omega) \geq 0\right\}=\Omega_{0}^{1}(X)
$$

and $\operatorname{dim}_{\mathbb{C}} \Omega_{0}^{1}(X)=\ell\left(\operatorname{div}\left(\omega_{1}\right)\right)=g$.

7.3 Automorphic forms and differentials

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice and consider the Riemann surface $X_{\Gamma}:=\Gamma \backslash \mathbf{H}_{\Gamma}^{*}$. Let $\pi:=\pi_{\Gamma}: \mathbf{H}_{\Gamma}^{*} \rightarrow X_{\Gamma}$ be the projection map. Assume $k=2 n$ is even and fix an automorphic form $f \in A_{k}(\Gamma)$. Then f is meromorphic on \mathbf{H}_{Γ}^{*} and $\left.f\right|_{k} \gamma=f$ for all $\gamma \in \Gamma$, If $k=0$ then f defines a meromorphic function $\alpha \in \Omega^{0}(X)$. Our goal is to define a meromorphic differential $\omega_{f} \in \Omega^{n}(X)$ for any $k=2 n$, which will coincide with f when $k=0$. Recall that for any $\gamma \in \Gamma$ and $z \in \mathrm{H}$ we have

$$
\left(\left.f\right|_{k} \gamma\right)(z)=(\operatorname{det} \gamma)^{k / 2} j(\gamma, z)^{-k} f(\gamma z)=j(\gamma, z)^{-k} f(\gamma z)=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)
$$

thus $f(\gamma z)=j(\gamma, z)^{k} f(z)$.
For each $P \in X_{\Gamma}(\mathbb{C})$, pick $z_{P} \in \pi^{-1}(P)$, and an open neighborhood $z_{P} \in U_{P} \subseteq \mathbf{H}_{\Gamma}^{*}$ for which $\gamma U_{P} \cap U_{P} \neq \emptyset$ if and only if $\gamma \in \Gamma_{P}:=\Gamma_{z_{P}}$ and $\gamma U_{P}=U_{P}$ for all $\gamma \in \Gamma_{P}$, and let $\psi_{P}: V_{P} \xrightarrow{\sim} W_{P} \subseteq \mathbb{C}$ be a chart for $V_{P}=\pi\left(U_{P}\right)$, with transition maps $\psi_{P Q}:=\psi_{Q} \circ \psi_{P}^{-1}: W_{P Q} \rightarrow W_{Q}$ defined on $W_{P Q}:=\psi_{P}\left(V_{P} \cap V_{Q}\right)$ whenever $V_{P} \cap V_{Q} \neq \emptyset$.

Let $\alpha=\left\{\alpha_{P}: W_{P} \rightarrow \mathbb{C}\right\}$, and define $f_{P}:=f_{\left.\right|_{U_{P}}}$ and $\pi_{P}:=\pi_{\left.\right|_{U_{P}}}$ so that $f_{P}=\alpha_{P} \circ \psi_{P} \circ \pi_{P}$. If $z_{P} \in \mathbf{H}$ is not a cusp, we define $g_{P}: U_{P} \rightarrow \mathbb{C}$ via

$$
g_{P}(z)=f_{P}(z)\left(d\left(\psi_{P} \circ \pi_{P}(z)\right) / d z\right)^{-n}
$$

so that $g_{P}=f_{P}$ when $n=0$, and we note that

$$
(\gamma z)^{\prime}=\left(\frac{a z+b}{c z+d}\right)^{\prime}=\frac{a(c z+d)-(a z+b) c}{(c z+d)^{2}}=\frac{1}{(c z+d)^{2}}=j(\gamma, z)^{-2}
$$

For $\gamma \in \Gamma_{P}$ and $z \in U_{P}$ we have $\psi_{P} \circ \pi_{P}(\gamma z)=\psi_{P} \circ \pi_{P}(z)$ thus

$$
\begin{aligned}
g_{p}(\gamma z) & =f_{P}(\gamma z)\left(d\left(\psi_{p} \circ \pi_{P}(\gamma z)\right) / d(\gamma z)\right)^{-n} \\
& =j(\gamma, z)^{k} f_{P}(z)\left(d\left(\psi_{P} \circ \pi_{P}(z)\right) /\left(j(\gamma, z)^{-2} d z\right)\right)^{-n} \\
& =f_{P}(z)\left(d\left(\psi_{P} \circ \pi_{P}(z)\right) / d z\right)^{-n}=g_{P}(z)
\end{aligned}
$$

for all $\gamma \in \Gamma_{P}$. There is thus a meromorphic function $\omega_{P}: W_{P} \rightarrow \mathbb{C}$ for which $g_{P}=\omega_{P} \circ \psi_{P} \circ \pi_{P}$, and $\omega_{P} \circ \psi_{P} \circ \pi_{P}(z)=f_{P}(z)\left(d\left(\psi_{P} \circ \pi_{P}(z)\right) / d z\right)^{-n}$.

If $Q \in X_{\Gamma}(\mathbb{C})$ is not a cusp then $\left.\omega_{Q} \circ \psi_{Q} \circ \pi_{Q}(z)=f_{Q}(z) d\left(\psi_{Q} \circ \pi_{Q}(z)\right) / d z\right)^{-n}$ and if $V_{P} \cap V_{Q} \neq \emptyset$ then the compatibility of $\alpha_{P}=\alpha_{Q} \circ \psi_{P Q}$ implies

$$
\begin{equation*}
\omega_{P}=\left(\omega_{Q} \circ \psi_{P Q}\right)\left(d \psi_{P} / d \psi_{Q}\right)^{n} . \tag{1}
\end{equation*}
$$

If $z_{P} \in \mathbf{H}_{\Gamma}^{*}-\mathbf{H}$ is a cusp, we let $U_{P}^{0}:=U_{P}-\left\{z_{P}\right\}$ and proceed as above to obtain meromorphic functions g_{P} on $U_{P}-\left\{z_{P}\right\}$ and ω_{P} on $W_{P}-\left\{\psi_{P}(P)\right\}$ with $g_{P}=\omega_{P} \circ \psi_{P} \circ \pi_{P}$. Now choose $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so $\sigma z_{P}=\infty$ so that $\pm \sigma \Gamma_{P} \sigma^{-1}= \pm\left\langle\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$ for some $h>0$, and define $\varphi_{P}: V_{P} \rightarrow W_{P}$ via

$$
\varphi_{P} \circ \pi(z)=e^{2 \pi i \sigma z / h}
$$

If we put $c:=(2 \pi i / h)^{-n}$ then

$$
\begin{aligned}
g_{P}(z) & =c f(z)(d(\sigma z) / d z)^{-n}\left(\varphi_{P} \circ \pi(z)\right)^{-n} \\
& =c f(z) j(\sigma, z)^{2 n}\left(\varphi_{P} \circ \pi(z)\right)^{-n} \\
& =c\left(\left.f\right|_{k} \sigma^{-1}\right)(\sigma z)\left(\varphi_{P} \circ \pi(z)\right)^{-n}
\end{aligned}
$$

is meromorphic at z_{P}, and ω_{P} is meromorphic at $\psi_{P}(P)$. Moreover if $Q \in X_{\Gamma}(\mathbb{C})$ with $V_{P} \cap V_{Q} \neq \emptyset$ then (1) holds as above.

It follows that $\left\{\omega_{P}\right\}$ is a differential $\omega_{f} \in \Omega^{n}\left(X_{\Gamma}\right)$, and we have

- $\omega_{f g}=\omega_{f} \omega_{g}$ for all $f \in A_{2 m}(\Gamma)$ and $g \in A_{2 n}(\Gamma) ;$
- $\omega_{f+g}=\omega_{f}+\omega_{g}$ for all $f, g \in A_{2 m}(\Gamma)$.

Conversely, for each $\omega=\left\{\omega_{i}\right\} \in \Omega^{n}\left(X_{\Gamma}\right)$ we can define an automorphic form

$$
f(z)=\psi_{i}(\pi(z))\left(d\left(\psi_{i} \circ \pi(z)\right) / d z\right)^{n} \in A_{2 n}(\Gamma)
$$

for which $\omega=\omega_{f}$. This yields the following theorem.
Theorem 7.7. Let $A(\Gamma)_{\text {even }}=\bigoplus_{n \in \mathbb{Z}} A_{2 n}(\Gamma)$. Then $A(\Gamma)_{\text {even }}$ is isomorphic to $\Omega\left(X_{\Gamma}\right)$ as a graded \mathbb{C}-algebra via the isomorphism $f \mapsto \omega_{f}$. In particular, $A_{2 n}(\Gamma) \neq\{0\}$.

Let $f \in A_{2 n}(\Gamma)$ be nonzero and choose $P \in X_{\Gamma}(\mathbb{Z}), z_{P} \in \pi^{-1}(P)$, and $z_{P} \in U_{P} \subseteq \mathbf{H}_{\Gamma}^{*}$ as above. For $z_{P} \in \mathbf{H}$ choose $\rho \in \mathrm{SL}_{2}(\mathbb{C})$ so that $\rho \mathbf{H}=\mathbf{D}$ and $\rho z_{P}=0$. Choose $\psi_{P}: V_{P} \xrightarrow{\sim} W_{P} \subseteq \mathbb{D}$ so that $\psi_{P} \circ \pi(z)=(\rho z)^{e}$ for all $z \in U_{P}$, where e is the ramification index at P. Then

$$
g_{P}=f(z)(d(\rho z) / d z)^{-n}\left(e(\rho z)^{e-1}\right)^{-n}
$$

and if we put $w=\rho z$ we have

$$
g_{P} \circ \rho^{-1}(w)=e^{-m} f\left(\rho^{-1} w\right)\left(d\left(\rho^{-1} w\right) / d w\right)^{n} w^{-n(e-1)}
$$

which implies that

$$
\operatorname{ord}_{w}\left(g_{P} \circ \rho^{-1}\right)=\operatorname{ord}_{w}\left(f\left(\rho^{-1} w\right)\left(d\left(\rho^{-1} w\right) / d w\right)^{n}\right)-n(e-1) .
$$

Now $g_{P} \circ \rho^{-1}(w)=w^{e}$, so

$$
\operatorname{ord}_{w}\left(g_{P} \circ \rho^{-1}\right)=e \operatorname{ord}_{P}\left(g_{P}\right)=e \operatorname{ord}_{P}\left(\omega_{f}\right)
$$

We also have

$$
\operatorname{ord}_{w}\left(f\left(\rho^{-1} w\right)\left(d\left(\rho^{-1} w\right) / d w\right)^{n}\right)=\operatorname{ord}_{z_{0}}(f)
$$

since $d(\rho z) / d z$ has neither a zero or pole at z_{0}. We thus define

$$
\operatorname{ord}_{P}(f):=\frac{1}{e} \operatorname{ord}_{z_{0}}(f),
$$

and we then have

$$
\operatorname{ord}_{p}\left(\omega_{f}\right)=\operatorname{ord}_{p}(f)-n(1-1 / e) .
$$

which shows that the definition of $\operatorname{ord}_{p}(f)$ does not depend on the choice of z_{0} or ρ. When $n=1$ and $z_{0} \in \mathrm{H}$ we have
ω_{f} is holomorphic at $P \Leftrightarrow \operatorname{ord}_{P}\left(\omega_{F}\right) \geq 0 \Leftrightarrow \operatorname{ord}_{P}(f) \geq 0 \Leftrightarrow f$ is holomorphic at z_{0}.
For z_{0} a cusp of Γ we choose $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so $\sigma z_{0}=\infty$ and define $h>0$ as above so that

$$
\left(\left.f\right|_{2 n} \sigma^{-1}\right)(\sigma z)=\sum_{m \geq m_{0}} a_{m}\left(g_{P}(z)\right)^{m}
$$

with m_{0} maximal. We have $\operatorname{ord}_{P}\left(g_{P}\right)=m_{0}-n$ and define $\operatorname{ord}_{p}(f):=m_{0}$ so that we have $\operatorname{ord}_{P}\left(\omega_{f}\right)=\operatorname{ord}_{P}(f)-n$. When $P=\pi\left(z_{0}\right)$ is a cusp and $n=1$ we have
ω_{f} is holomorphic at $P \Leftrightarrow \operatorname{ord}_{P}\left(\omega_{F}\right) \geq 0 \Leftrightarrow \operatorname{ord}_{P}(f) \geq 1 \Leftrightarrow f$ vanishes at z_{0}.
Theorem 7.8. The correspondence $f \mapsto \omega_{f}$ induces an isomorphism $S_{2}(\Gamma) \simeq \Omega_{0}^{1}\left(X_{\Gamma}\right)$.

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.
[2] Fred Diamond and Jerry Shurman, A first course in modular forms, Springer, 2005.
[3] John Voight, Quaternion algebras, Springer, 2021.

