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These notes summarize the material in §2.2–2.3 of [1] presented in lecture.

7.1 Meromorphic differentials on compact Riemann surfaces

Let X be a (connected) Riemann surface with holomorphic atlas {ψi : Ui
∼−→ Vi ⊆ C} and transi-

tion maps ψi j :=ψ j ◦ψ−1
i : Vi j → Vj defined for all Ui ∩ U j 6= ;, where Vi j :=ψi(Ui ∩ U j).

Definition 7.1. Let n be an integer. A meromorphic differential ω of degree n on X is (the
equivalence class of) a collection of meromorphic functions {ωi : Vi → C} such that

ωi = (ω j ◦ψi j)(dψi/dψ j)
n

on Vi j whenever Ui∩U j 6= ;. Meromorphic differentials {ωi} and {θi} of degree n are equivalent
if {ωi} ∪ {θi} is also a meromorphic differential of degree n.

Remark 7.2. A meromorphic differential of degree 0 is a meromorphic function X → C, equiv-
alently, a holomorphic map X → P1(C) that is not identically ∞. Nonconstant meromorphic
functions X → C are the same thing as nonconstant holomorphic maps X → P1(C).

We note the following, all of which are compatible with equivalence:

• Taking allωi = 0 yields the zero differential, which is a meromorphic differential of degree
n for all n ∈ Z.

• If ω = {ωi} is a nonzero differential of degree n then ω−1 := {1/ωi} is a nonzero differ-
ential of degree −n.

• If ω is a meromorphic differential of degree n then so is cω := {cωi} for any c ∈ C.

• If ω and ω′ are meromorphic differentials of degree n then so is ω+ω′ := {ωi +ω′i}.
• If ω and ω′ are meromorphic differentials of degrees m and n then their product ωω′ :=
{ωiω

′
i} is a meromorphic differential of degree m+ n.

It follows that the set of meromorphic differentials of degree n on X forms a C-vector space
Ωn(X ), and we have a graded algebra of meromorphic differentials

Ω(X ) :=
⊕

n∈Z
Ωn(X ),

in which Ω0(X )' C(X ) is the field of meromorphic functions on X . In particular, each C-vector
space Ωn(X ) is also an Ω0(X )-vector space.

From now on we shall assume that X is compact. This implies that X is a smooth projective
curve over C with function field C(X ) ' Ω0(X ) Recall that the categories of Riemann surfaces
(with holomorphic maps), smooth projective curves over C (with dominant morphisms), and
function fields of transcendence degree 1 over C (with field homomorphisms) are equivalent
categories. The functor from Riemann surfaces to curves is covariant, while the functor from
curves to function fields is contravariant.

For each f ∈ C(X ) we define a differential d f := {d fi}, where fi := f ◦ψ−1
i , which is zero

if and only if f is constant, and (d f )n ∈ Ωn(X ) for all n ∈ Z. Note that C(X ) 6= C contains a
nonconstant f , thus there are nonzero differentials of every degree and dimC(X )Ω

n(X )> 0. On
the other hand, if we pick a nonzero ω ∈ Ωn, multiplication by ω−1 defines an isomorphism
Ωn(X ) ∼−→ Ω0(X ) of C(X )-vector spaces. Thus for every n ∈ Z we have

dimC(X )Ω
n(X ) = 1.
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7.2 Divisors

The divisor group Div(X ) :=
⊕

P∈X (C)Z of X is the free abelian group generated by X (C):

Div(X ) :=

(

∑

P∈X (C)

nP P : nP ∈ Z with nP = 0 for all but finitely many P

)

.

For D =
∑

nP P ∈ Div(X ), the degree of the divisor D is deg(D) :=
∑

P nP , and the map

deg: Div(X )→ Z
D 7→ deg(D)

is a group homomorphism. For each f ∈ C(X )× we have a divisor

div( f ) :=
∑

P∈X (C)

ordP( f )P,

where ordP( f ) is the order of vanishing of f at P. Divisors arising in this way are called principal.
For any f , g ∈ C(X )× we have div( f g) = div( f ) + div(g) and deg(div( f )) = 0. The set of

principal divisors form a subgroup Prin(X ) ≤ Div0(X ) ≤ Div(X ), where Div0(X ) := ker(deg).
We now define the divisor class group

Pic(X ) := Div(X )/Prin(X ).

We also define Pic0(X ) := ker(deg)/Prin(X ).
For each ω ∈ Ωn(X ) and P ∈ X (C) we define the order of vanishing of ω at P ∈ Ui to be

ordP(ω) = ordP(ωi ◦ψi).

The transition maps ψi j are holomorphic and nonzero, so ordP(ωi) = ordP(ω j) for Ui ∩U j 6= ;.
This implies that ordP(ω) does not depend on the choice of Ui 3 P. We now define the divisor

div(ω) =
∑

P∈X (C)

ordP(ω)P,

which forω ∈ Ω0(X ) coincides with our previous definition. For anyω ∈ Ωm(X ) andω′ ∈ Ωn(X )
with ω,ω′ 6= 0 we have

div(ωω′) = div(ω) + div(ω′).

Recall that dimC(X )Ω
n = 1. This implies that {div(ω) : 0 6=ω ∈ Ωn(X )} is a divisor class.

We call a divisor D =
∑

P∈X nP P ∈ Div(X ) positive, or effective, if nP ≥ 0 for all P ∈ X (C),
and write D ≥ 0. For every divisor D ∈ Div(X ) we have an associated Riemann–Roch space

L(D) := { f ∈ C(X ) : f = 0 or div( f ) + D ≥ 0},

which is a finite-dimensional C-vector space, with L(0) = C and L(D) = {0} for deg(D) < 0.
We denote its dimension by

`(D) := dimC L(D).

Theorem 7.3 (Riemann-Roch). Let X be a compact Riemann surface of genus g and letω ∈ Ω1(X )
be a nonzero meromorphic differential. Then for every D ∈ Div(X ) we have

`(D) = deg(D)− g + 1+ `(div(ω)− D).
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Corollary 7.4. Let X be a compact Riemann surface of genus g. The following hold

• For each nonzero ω ∈ Ω1(X ) we have deg(div(ω)) = 2g − 2 and `(div(ω)) = g.

• For each nonzero ω ∈ Ωn(X ) we have deg(div(ω)) = 2n(g − 1).

• For each D ∈ Div(X ) with deg(D)> 2g − 2 we have `(D) = deg(D)− g + 1.

Definition 7.5. A meromorphic differential ω ∈ Ωn(X ) is holomorphic if ω= 0 or div(ω)≥ 0.

Corollary 7.6. Let X be a compact Riemann surface of genus g. Then dimCΩ
1
0(X ) = g.

Proof. Let ω1 ∈ Ω1(X ) be nonzero. Then L(div(ω1)) = { f ∈ C(X ) : f = 0 or div( fω) ≥ 0}.
The isomorphism C(X ) ∼−→ Ω1(X ) defined by f 7→ fω1 implies

L(div(ω1))' {ω ∈ Ω1(X ) :ω= 0 or div(ω)≥ 0}= Ω1
0(X ),

and dimCΩ
1
0(X ) = `(div(ω1)) = g.

7.3 Automorphic forms and differentials

Let Γ ≤ SL2(R) be a lattice and consider the Riemann surface XΓ := Γ\H∗Γ . Letπ := πΓ : H∗Γ → XΓ
be the projection map. Assume k = 2n is even and fix an automorphic form f ∈ Ak(Γ ). Then f is
meromorphic on H∗Γ and f |kγ= f for all γ ∈ Γ , If k = 0 then f defines a meromorphic function
α ∈ Ω0(X ). Our goal is to define a meromorphic differential ω f ∈ Ωn(X ) for any k = 2n, which
will coincide with f when k = 0. Recall that for any γ ∈ Γ and z ∈ H we have

( f |kγ)(z) = (detγ)k/2 j(γ, z)−k f (γz) = j(γ, z)−k f (γz) = (cz + d)−k f
� az+b

cz+d

�

,

thus f (γz) = j(γ, z)k f (z).
For each P ∈ XΓ (C), pick zP ∈ π−1(P), and an open neighborhood zP ∈ UP ⊆ H∗Γ for which

γUP ∩UP 6= ; if and only if γ ∈ ΓP := ΓzP
and γUP = UP for all γ ∈ ΓP , and let ψP : VP

∼−→WP ⊆ C
be a chart for VP = π(UP), with transition maps ψPQ := ψQ ◦ ψ−1

P : WPQ → WQ defined on
WPQ :=ψP(VP ∩ VQ) whenever VP ∩ VQ 6= ;.

Let α = {αP : WP → C}, and define fP := f|UP
and πP := π|UP

so that fP = αP ◦ψP ◦πP . If
zP ∈ H is not a cusp, we define gP : UP → C via

gP(z) = fP(z)(d(ψP ◦πP(z))/dz)−n,

so that gP = fP when n= 0, and we note that

(γz)′ =
�

az + b
cz + d

�′
=

a(cz + d)− (az + b)c
(cz + d)2

=
1

(cz + d)2
= j(γ, z)−2.

For γ ∈ ΓP and z ∈ UP we have ψP ◦πP(γz) =ψP ◦πP(z) thus

gp(γz) = fP(γz)(d(ψp ◦πP(γz))/d(γz))−n

= j(γ, z)k fP(z)(d(ψP ◦πP(z))/( j(γ, z)−2dz))−n

= fP(z)(d(ψP ◦πP(z))/dz)−n = gP(z)

for all γ ∈ ΓP . There is thus a meromorphic function ωP : WP → C for which gP =ωP ◦ψP ◦πP ,
and ωP ◦ψP ◦πP(z) = fP(z)(d(ψP ◦πP(z))/dz)−n.
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If Q ∈ XΓ (C) is not a cusp thenωQ◦ψQ◦πQ(z) = fQ(z)d(ψQ◦πQ(z))/dz)−n and if VP∩VQ 6= ;
then the compatibility of αP = αQ ◦ψPQ implies

ωP = (ωQ ◦ψPQ)(dψP/dψQ)
n. (1)

If zP ∈ H∗Γ −H is a cusp, we let U0
P := UP−{zP} and proceed as above to obtain meromorphic

functions gP on UP − {zP} and ωP on WP − {ψP(P)} with gP = ωP ◦ψP ◦ πP . Now choose
σ ∈ SL2(R) so σzP =∞ so that ±σΓPσ−1 = ±


�

1 h
0 1

��

for some h> 0, and define ϕP : VP →WP
via

ϕP ◦π(z) = e2πiσz/h

If we put c := (2πi/h)−n then

gP(z) = c f (z)(d(σz)/dz)−n(ϕP ◦π(z))−n

= c f (z) j(σ, z)2n(ϕP ◦π(z))−n

= c( f |kσ−1)(σz)(ϕP ◦π(z))−n

is meromorphic at zP , andωP is meromorphic atψP(P). Moreover if Q ∈ XΓ (C)with VP∩VQ 6= ;
then (1) holds as above.

It follows that {ωP} is a differential ω f ∈ Ωn(XΓ ), and we have

• ω f g =ω fωg for all f ∈ A2m(Γ ) and g ∈ A2n(Γ );

• ω f +g =ω f +ωg for all f , g ∈ A2m(Γ ).

Conversely, for each ω= {ωi} ∈ Ωn(XΓ ) we can define an automorphic form

f (z) =ψi(π(z))(d(ψi ◦π(z))/dz)n ∈ A2n(Γ )

for which ω=ω f . This yields the following theorem.

Theorem 7.7. Let A(Γ )even =
⊕

n∈Z A2n(Γ ). Then A(Γ )even is isomorphic to Ω(XΓ ) as a graded
C-algebra via the isomorphism f 7→ω f . In particular, A2n(Γ ) 6= {0}.

Let f ∈ A2n(Γ ) be nonzero and choose P ∈ XΓ (Z), zP ∈ π−1(P), and zP ∈ UP ⊆ H∗Γ as above.
For zP ∈ H choose ρ ∈ SL2(C) so that ρH = D and ρzP = 0. Choose ψP : VP

∼−→WP ⊆ D so that
ψP ◦π(z) = (ρz)e for all z ∈ UP , where e is the ramification index at P. Then

gP = f (z)(d(ρz)/dz)−n(e(ρz)e−1)−n

and if we put w= ρz we have

gP ◦ρ−1(w) = e−m f (ρ−1w)(d(ρ−1w)/dw)nw−n(e−1)

which implies that

ordw(gP ◦ρ−1) = ordw( f (ρ
−1w)(d(ρ−1w)/dw)n)− n(e− 1).

Now gP ◦ρ−1(w) = we, so

ordw(gP ◦ρ−1) = eordP(gP) = eordP(ω f ).

We also have
ordw( f (ρ

−1w)(d(ρ−1w)/dw)n) = ordz0
( f ),
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since d(ρz)/dz has neither a zero or pole at z0. We thus define

ordP( f ) :=
1
e

ordz0
( f ),

and we then have
ordP(ω f ) = ordP( f )− n(1− 1/e).

which shows that the definition of ordP( f ) does not depend on the choice of z0 or ρ. When
n= 1 and z0 ∈ H we have

ω f is holomorphic at P⇔ ordP(ωF )≥ 0⇔ ordP( f )≥ 0⇔ f is holomorphic at z0.

For z0 a cusp of Γ we choose σ ∈ SL2(R) so σz0 =∞ and define h> 0 as above so that

( f |2nσ
−1)(σz) =

∑

m≥m0

am(gP(z))
m,

with m0 maximal. We have ordP(gP) = m0 − n and define ordP( f ) := m0 so that we have
ordP(ω f ) = ordP( f )− n. When P = π(z0) is a cusp and n= 1 we have

ω f is holomorphic at P⇔ ordP(ωF )≥ 0⇔ ordP( f )≥ 1⇔ f vanishes at z0.

Theorem 7.8. The correspondence f 7→ω f induces an isomorphism S2(Γ )' Ω1
0(XΓ ).
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