18.786 Number theory II Spring 2024
Lecture #7 2/26/2024

These notes summarize the material in §2.2-2.3 of [1] presented in lecture.

7.1 Meromorphic differentials on compact Riemann surfaces

Let X be a (connected) Riemann surface with holomorphic atlas {v;: U; = V; € C} and transi-
tion maps ;; == 0 1,bl._1: V;; — V; defined for all U; N U; # @, where V;; :==4;(U; N U;).

Definition 7.1. Let n be an integer. A meromorphic differential w of degree n on X is (the
equivalence class of) a collection of meromorphic functions {w,: V; — C} such that

w; = (wjovp;)(dip;/dy;)"

on V;; whenever U;NU; # §. Meromorphic differentials {c;} and {6;} of degree n are equivalent
if {w;} U {6;} is also a meromorphic differential of degree n.

Remark 7.2. A meromorphic differential of degree 0 is a meromorphic function X — C, equiv-
alently, a holomorphic map X — P!(C) that is not identically co. Nonconstant meromorphic
functions X — C are the same thing as nonconstant holomorphic maps X — P!(C).

We note the following, all of which are compatible with equivalence:

* Taking all w; = Oyields the zero differential, which is a meromorphic differential of degree
nforallneZ.

* If w = {w;} is a nonzero differential of degree n then w™! := {1/w;} is a nonzero differ-
ential of degree —n.

* If w is a meromorphic differential of degree n then so is cw = {cw;} for any c € C.
* If w and w’ are meromorphic differentials of degree n then so is w + w’ := {w; + w!}.

 If w and «’ are meromorphic differentials of degrees m and n then their product ww’ :=
{w;w!} is a meromorphic differential of degree m + n.

It follows that the set of meromorphic differentials of degree n on X forms a C-vector space
Q"(X), and we have a graded algebra of meromorphic differentials

Q@) = a"x),
nez
in which Q°(X) ~ C(X) is the field of meromorphic functions on X. In particular, each C-vector
space Q"(X) is also an Q°(X)-vector space.

From now on we shall assume that X is compact. This implies that X is a smooth projective
curve over C with function field C(X) ~ Q°(X) Recall that the categories of Riemann surfaces
(with holomorphic maps), smooth projective curves over C (with dominant morphisms), and
function fields of transcendence degree 1 over C (with field homomorphisms) are equivalent
categories. The functor from Riemann surfaces to curves is covariant, while the functor from
curves to function fields is contravariant.

For each f € C(X) we define a differential df := {df;}, where f; := f 017!, which is zero
if and only if f is constant, and (df)" € Q"(X) for all n € Z. Note that C(X) # C contains a
nonconstant f, thus there are nonzero differentials of every degree and dim¢x) 2"(X) > 0. On
the other hand, if we pick a nonzero w € Q", multiplication by w ™' defines an isomorphism
Q(X) = QO(X) of C(X)-vector spaces. Thus for every n € Z we have

dim(c(X) Qn(X) =1.
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7.2 Divisors

The divisor group Div(X) := @pex(c) Z of X is the free abelian group generated by X(C):

Div(X) := { Z npP : np € Z with np = 0 for all but finitely many P} .
PeX(C)

For D = > npP € Div(X), the degree of the divisor D is deg(D) := Y., np, and the map
deg: Div(X) > Z
D — deg(D)

is a group homomorphism. For each f € C(X)* we have a divisor
div(f):= Y. ordp(f)P
PeX(C)

where ordp(f) is the order of vanishing of f at P. Divisors arising in this way are called principal.

For any f, g € C(X)* we have div(f g) = div(f) + div(g) and deg(div(f)) = 0. The set of
principal divisors form a subgroup Prin(X) < Div?(X) < Div(X), where Div?(X) := ker(deg).
We now define the divisor class group

Pic(X) := Div(X)/ Prin(X).

We also define Pic®(X) := ker(deg)/ Prin(X).
For each w € Q"(X) and P € X(C) we define the order of vanishing of w at P € U; to be

ordp(w) = ordp(w; 0 ;).

The transition maps v;; are holomorphic and nonzero, so ordp(w;) = ordp(w;) for U;NU; # 0.
This implies that ordp(w) does not depend on the choice of U; > P. We now define the divisor

div(w) = Z ordp(w)P,

Pex(C)

which for w € Q°(X) coincides with our previous definition. For any w € Q™(X) and w’ € Q"(X)
with w, w’ # 0 we have
div(wew”) = div(w) + div(w’).

Recall that dim¢(x) Q" = 1. This implies that {div(w) : 0 # w € Q"(X)} is a divisor class.
We call a divisor D = Y,y npP € Div(X) positive, or effective, if np > 0 for all P € X(C),
and write D > 0. For every divisor D € Div(X) we have an associated Riemann—Roch space

L(D)={f €C(X):f=0ordiv(f)+ D > 0},

which is a finite-dimensional C-vector space, with L(0) = C and L(D) = {0} for deg(D) < 0.
We denote its dimension by
{(D) :=dim¢ L(D).

Theorem 7.3 (Riemann-Roch). Let X be a compact Riemann surface of genus g and let w € Q*(X)
be a nongero meromorphic differential. Then for every D € Div(X) we have

(D) = deg(D) — g + 1+ £(div(w) — D).
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Corollary 7.4. Let X be a compact Riemann surface of genus g. The following hold

s For each nonzero w € Q'(X) we have deg(div(w)) = 2g — 2 and {(div(w)) = g.
* For each nonzero w € Q"(X) we have deg(div(w)) = 2n(g —1).
* For each D € Div(X) with deg(D) > 2g — 2 we have £(D) = deg(D)—g + 1.

Definition 7.5. A meromorphic differential w € Q"(X) is holomorphic if w = 0 or div(w) > 0.
Corollary 7.6. Let X be a compact Riemann surface of genus g. Then dimg¢ Q(l)(X )=g.

Proof. Let w; € Q(X) be nonzero. Then L(div(w;)) = {f € C(X) : f = 0 or div(f ) > 0}.
The isomorphism C(X) = Q!(X) defined by f — f w; implies

L(div(w;)) ~ {w € QY(X) : @ = 0 or div(w) > 0} = Qé(X),

and dime Q(X) = £(div(w;)) = g. O

7.3 Automorphic forms and differentials

LetT' < SL,(R) be a lattice and consider the Riemann surface X := I'\Hj.. Let 7t := 7ty Hf — X
be the projection map. Assume k = 2n is even and fix an automorphic form f € A;(T). Then f is
meromorphic on Hf and f |,y = f forall y € T, If k = 0 then f defines a meromorphic function
a € Q°(X). Our goal is to define a meromorphic differential ¢ € Q"(X) for any k = 2n, which
will coincide with f when k = 0. Recall that for any y € I and z € H we have

(Fler)(@) = (det ) 2j(y,2) ™ f (y2) = j(r,2) *F (y2) = (cz + ) *F(LLD),

thus £ (y2) = j(r,2)F ().

For each P € X(C), pick zp € n~1(P), and an open neighborhood zp € Up C H}. for which
yUpNUp #@if and only if y € Tp :=T,, and yUp = Up for all y € Tp, and let ypp: Vp = Wp € C
be a chart for Vp = n(Up), with transition maps vypqy = Yq © 1/);1: Wpq — W, defined on
Wpq =Y p(Vp N Vy) whenever Vp NV, # 0.

Let a = {ap: Wp — C}, and define fp = f|UP and mp == 7|, SO that fp = apoypomp. If
zp € H is not a cusp, we define gp: Up — C via

gp(z) = fp(2)(d(yp 0 mp(2))/dz)7",

so that gp = fp when n = 0, and we note that

=j(y,z) 2

az+b)’_a(cz+d)—(az+b)c_ 1

(YZ)/:(cz+d N (cz+d)>2 "~ (cz+d)?

For y € Ip and g € Up we have Yp o p(yz) = p o mp(z) thus

&p(rz) = fp(rz)(d(p o mp(yz))/d(y2))™
= j(r, 2 fp(@)(d(Wp 0 mp(2))/ (i y,2) 2dz)) ™"
= fp(2)(d(Yp o mp(2))/dz)™" = gp(2)

for all y € Tp. There is thus a meromorphic function wp: Wp — C for which gp = wpoppomp,
and wp o Pp o 7p(z) = fp(2)(d(Yp o mp(2))/dz)™".
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If Q € X (C) is nota cusp then wqpoygomy(z) = fo(2)d(yPgomg(2))/dz) ™" and if VpNV, # 0
then the compatibility of ap = ag o Y pq implies

wp = (wq 0P pe)(dyp/dipg)". €]

If zp € Hi—H s a cusp, we let U g := Up—{2p} and proceed as above to obtain meromorphic
functions gp on Up — {2p} and wp on Wp — {3y p(P)} with gp = wp oPp o mp. Now choose
0 € SLy(R) so 0zp = 00 so that £oTpo ™' =+ <((1) h ) for some h > 0, and define ¢p: Vp —» Wp

via

¢po TE(Z) — eZv‘ciaz/h

If we put ¢ := (27i/h)™" then

gp(z) = cf(2)(d(oz)/dz)"(ppom(z))™"
= cf(2)j(0,2)*"(¢p o m(2)) ™"
=c(f o D(o2)(pp o m(2))™

is meromorphic at zp, and wp is meromorphic at 1 p(P). Moreover if Q € X (C) with Vp NV, # 0
then (1) holds as above.
It follows that {wp} is a differential w; € Q"(Xr), and we have

* wrg = wsw, forall f €Ay, (T) and g € Ay,(T);
* Wi =wstwgforall f,g €Ay, (T).

Conversely, for each w = {w;} € Q"(X) we can define an automorphic form

f(2) =9;(n(2))(d(; 0 m(2))/dz)" € Ayp(T)
for which w = w¢. This yields the following theorem.

Theorem 7.7. Let A(T)eyen = PrnezAzn(T). Then A(T)eyen is isomorphic to Q(Xr) as a graded
C-algebra via the isomorphism f +— w;. In particular, Ay, (T) # {0}.

Let f € A,,(T') be nonzero and choose P € X(Z), zp € n~'(P), and zp € Up C H;. as above.
For zp € H choose p € SL,(C) so that pH =D and pzp = 0. Choose ¢ p: Vp = W, C D so that
Yp o m(z) = (pz)° for all z € Up, where e is the ramification index at P. Then

gp = f(2)(d(pz)/dz)"(e(pz) )"
and if we put w = pz we have
gp 0 p W) = e (p~ w)(d(p " w)/dw)tw D
which implies that
ord,,(gp o p™1) = ord,,(f (p ' w)(d(p " w)/dw)") — n(e — 1).
Now gp o p~'(w) =w*, so
ord,,(gp © P_l) = eordp(gp) = eordp(wf).

We also have
ord,,(f (p~'w)(d(p~'w)/dw)") = ord, (f),
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since d(pz)/dz has neither a zero or pole at z,. We thus define

ordp(f) := %ordzo(f),

and we then have
ordp(ws) = ordp(f)—n(1—1/e).

which shows that the definition of ordp(f) does not depend on the choice of z, or p. When
n =1 and z, € H we have

wy is holomorphic at P < ordp(wp) = 0 < ordp(f) = 0 < f is holomorphic at z,.

For z, a cusp of I' we choose o € SLy(R) so 0z, = 0o and define h > 0 as above so that

Flano™No2) = D an(gr@)™,

m=m

with my maximal. We have ordp(gp) = my— n and define ordp(f) := m, so that we have
ordp(ws) = ordp(f) —n. When P = 71t(z,) is a cusp and n = 1 we have

wy is holomorphic at P < ordp(wp) = 0 < ordp(f) = 1 < f vanishes at 2.

Theorem 7.8. The correspondence f +— w; induces an isomorphism Sy(T') =~ Q(l)(Xr).
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