These notes summarize the material in §2.1 of [1] presented in lecture.

6.1 Automorphic forms

Definition 6.1. The automorphy factor $j: \operatorname{GL}_2^+(\mathbb{R}) \times \operatorname{H} \to \mathbb{C}$ is defined by

$$j(\gamma, z) \coloneqq cz + d$$
, where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,

in other words, the denominator of $\gamma z = \frac{az+b}{cz+d}$.

Lemma 6.2 (cocycle relation). For all $\gamma_1, \gamma_2 \in GL_2^+(\mathbb{R})$ and $z \in H$ we have

$$j(\gamma_1\gamma_2, z) = j(\gamma_1, \gamma_2 z)j(\gamma_2, z)$$

Proof. Check.

Definition 6.3. Let $k \in \mathbb{Z}_{\geq 0}$ and $\gamma \in GL_2^+(\mathbb{R})$. The weight-*k* slash operator for γ acts on functions $f : \mathbf{H} \to \mathbb{C}$ via

$$(f|_k\gamma)(z) \coloneqq (\det \gamma)^{k/2} j(\gamma, z)^{-k} f(\gamma z).$$

We have $(f + g)|_k \gamma = f|_k \gamma + g|_k \gamma$ and $(cf)|_k \gamma = c(f|_k \gamma)$ for all $\gamma \in GL_2^+(\mathbb{R})$, $f, g: \mathbf{H} \to \mathbb{C}$, and $a \in \mathbb{C}$, thus the map $f \mapsto f|_k \gamma$ is a linear operator on the vector space of functions $\mathbf{H} \to \mathbb{C}$.

Moreover, for every $\gamma_1, \gamma_2 \in GL_2^+(\mathbb{R})$ we have

$$f|_k(\gamma_1\gamma_2) = (f|_k\gamma_1)|_k\gamma_2.$$

In other words, for each $k \in \mathbb{Z}$ the weight-*k* slash operator defines a linear right group action of $GL_2^+(\mathbb{R})$ on the vector space of functions $f : \mathbf{H} \to \mathbb{C}$.

We can omit the factor $(\det \gamma)^{k/2}$ if we only care about $\gamma \in SL_2(\mathbb{R})$. For scalars $a \in \mathbb{R}^{\times}$ we have $f|_k a = \operatorname{sgn}(a)^k f$ (so scalars, including -1, act trivially only when k is even).

Definition 6.4. Let Γ be a lattice in $SL_2(\mathbb{R})$ (equivalently, a finitely generated Fuchsian group of the first kind), and let $k \in \mathbb{Z}$. We say that a meromorphic function $f : \mathbf{H} \to \mathbb{C}$ is an automorphic function of weight k with respect to Γ if for every $\gamma \in \Gamma$ we have

$$f|_k \gamma = f.$$

The \mathbb{C} -vector space of automorphic functions of weight *k* for Γ is denoted $\Omega_k(\Gamma)$.

We note the following (easily checked) facts:

- If k is odd and $-1 \in \Gamma$ then $\Omega_k(\Gamma) = \{0\}$, since $f_k | -1 = -f$ when k is odd.
- For lattices $\Gamma' \subseteq \Gamma$ we have $\Omega_k(\Gamma) \subseteq \Omega_k(\Gamma')$ (inclusions are reversed).
- If $f \in \Omega_k(\Gamma)$ and $g \in \Omega_l(\Gamma)$ then $fg \in \Omega_{k+\ell}(\Gamma)$.
- For $f \in \Omega_k(\Gamma)$ and $\alpha \in \operatorname{GL}_2^+(\mathbb{R})$ we have $f|_k \alpha \in \Omega_k(\alpha^{-1}\Gamma\alpha)$.

Recall that a graded ring is a ring R whose additive group is an internal direct sum

$$R = \bigoplus_{i=I} R_i$$

indexed by a monoid *I* (typically \mathbb{Z} or $\mathbb{Z}_{\geq 0}$) such that $R_i R_j \subseteq R_{i+j}$ for all $i, j \in I$. Note that this means each R_i is an R_0 -module.

Thus $\Omega(\Gamma) := \bigoplus_{k \in \mathbb{Z}} \Omega_k(\Gamma)$ is a graded ring and each $\Omega_k(\Gamma)$ is an $\Omega_0(\Gamma)$ -module (this generalizes the \mathbb{C} -vector space structure of $\Omega_k(\Gamma)$, which can be viewed as multiplication by constant functions $\mathbb{C} \subseteq \Omega_0(\Gamma)$).

Suppose Γ has a cusp x with stabilizer Γ_x , and pick $\sigma \in SL_2(\mathbb{R})$ so that $\sigma x = \infty$. Then

$$\pm \sigma \Gamma_x \sigma^{-1} = \pm \left\langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \right\rangle$$

for some h > 0. Recall that a cusp x with $\sigma x = \infty$ is regular if $\begin{pmatrix} 1 & \pm h \\ 0 & 1 \end{pmatrix} \in \sigma \Gamma_x \sigma^{-1}$ and irregular otherwise (in which case $\begin{pmatrix} -1 & \pm h \\ 0 & -1 \end{pmatrix} \in \sigma \Gamma_x \sigma^{-1}$). For $f \in \Omega_k(\Gamma)$ we have $f|_k \sigma^{-1} \in \Omega_k(\sigma \Gamma \sigma^{-1})$, and if x is regular this implies that

$$(f|_k \sigma^{-1})(z+h) = \left((f|_k \sigma^{-1})|_k \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \right)(z) = (f|_k \sigma^{-1})(z)$$

for all $z \in \mathbf{H}$; this also holds when x is irregular and k is even, since $f|_k \sigma^{-1}|_k - 1 = f|_k \sigma^{-1}$ for even k. There is then a function $g: \mathbb{D}_0 \to \mathbb{C}$ (where $\mathbb{D}_0 \coloneqq \{z \in \mathbb{C}^* : |z| < 1\}$) such that

$$(f|_k \sigma^{-1})(z) = g(e^{2\pi i z/h})$$

for all $z \in \mathbf{H}$. We say $f \in \Omega_k(\Gamma)$ is meromorphic/holomorphic/vanishing at x if g is meromorphic/holomorphic/vanishing at 0. For x irregular and k odd we adopt the same terminology, using the g for f^2 (which has even weight 2k). This definition does not depend on σ .

If $g(w) = \sum_{n \ge n_0} a_n w^n$ is the Laurent series expansion of g in a neighborhood about 0, then

$$(f|_k \sigma^{-1})(x) = \sum_{n \ge n_0} a_n e^{2\pi i z/h}$$

on some neighborhood $U_l := \{z \in \mathbf{H} : \text{Im}(z) > l\}$ of ∞ . We thus have

$$(f|_k \sigma^{-1})(z+h) = \begin{cases} (f|_k \sigma^{-1})(z) & \text{if } k \text{ is even or } x \text{ is regular,} \\ -(f|_k \sigma^{-1})(z) & \text{if } k \text{ is odd and } x \text{ is irregular,} \end{cases}$$

which yields the Fourier expansion of f at the cusp x:

$$(f|_k \sigma^{-1})(z) = \begin{cases} \sum_{\text{even } n \ge 0} a_n e^{\pi i n z/h} & \text{if } k \text{ is even or } x \text{ is regular,} \\ \sum_{\text{odd } n \ge 0} a_n e^{\pi i n z/h} & \text{if } k \text{ is odd and } x \text{ is irregular.} \end{cases}$$

Writing this in terms of $q \coloneqq e^{2\pi i n z}$ yields the *q*-expansion of *f* at the cusp *x*.

Definition 6.5. We call an automorphic function $f \in \Omega_k(\Gamma)$

- an automorphic form (of weight k for Γ) if f is meromorphic at every cusp of Γ ;
- a modular form (of weight k for Γ) if f is holomorphic on **H** and at every cusp of Γ ;
- a cusp form (of weight k for Γ) if f is holomorphic on **H** and vanishes at every cusp of Γ ;

The \mathbb{C} -vector spaces of automorphic/modular/cusp forms of weight k for Γ are denoted $A_k(\Gamma)$, $M_k(\Gamma)$, $S_k(\Gamma)$, respectively. For lattices $\Gamma' \subseteq \Gamma$ of finite index we get corresponding inclusions in the reverse directions (when Γ has cusps this is not immediate, see [1, Lemma 2.1.3] for a proof), and we always have the inclusions

$$S_k(\Gamma) \subseteq M_k(\Gamma) \subseteq A_k(\Gamma) \subseteq \Omega_k(\Gamma).$$

If Γ has no cusps then $\Omega_k(\Gamma) = A_k(\Gamma)$ and $M_k(\Gamma) = S_k(\Gamma)$, and for any $\alpha \in \operatorname{GL}_2^+(\mathbb{R})$ the map $f \mapsto f|_k \alpha$ induces isomorphisms

$$A_k(\Gamma) \simeq A_k(\Gamma^{\alpha}), \qquad M_k(\Gamma) \simeq M_k(\Gamma^{\alpha}), \qquad S_k(\Gamma) \simeq S_k(\Gamma^{\alpha}),$$

where $\Gamma^{\alpha} \coloneqq \alpha^{-1}\Gamma\alpha$. The product of two automorphic/modular/cusp forms of weights *k* and *l* is an automorphic/modular/cusp of weight *k* + *l* and we thus have graded rings

$$A(\Gamma) = \bigoplus_{k \in \mathbb{Z}} A_k(\Gamma), \qquad M(\Gamma) = \bigoplus_{k \in \mathbb{Z}} M_k(\Gamma), \qquad S(\Gamma) = \bigoplus_{k \in \mathbb{Z}} S_k(\Gamma).$$

The ratio of automorphic forms of weight k and l is an automorphic form of weight k - l, thus $A(\Gamma)$ is a field, as is its subspace $A_0(\Gamma)$, and all the $A_k(\Gamma)$ are $A_0(\Gamma)$ -vector spaces. The field $A_0(\Gamma)$ is isomorphic to the field of meromorphic functions on the Riemann surface $X_{\Gamma} := \Gamma \setminus \mathbf{H}_{\Gamma}^*$.

Theorem 6.6. Let $f \in \Omega_k(\Gamma)$ be holomorphic on **H**. If $f(z) = O(\operatorname{Im}(z)^{-\nu})$ as $\operatorname{Im}(z) \to 0$, uniformly with respect to $\operatorname{Re}(z)$, for some $\nu > 0$ then $f \in M_k(\Gamma)$, and if this holds with $\nu < k$ then $f \in S_k(\Gamma)$.

Proof. This is [1, Thm. 2.1.4].

Theorem 6.7. Let $f \in \Omega_k(\Gamma)$. Then $f \in S_k(\Gamma)$ if and only if $f(z) \operatorname{Im}(z)^{k/2}$ is bounded on **H**.

Proof. This is [1, Thm. 2.1.5].

Corollary 6.8. Let $\sum_{n\geq 1} a_n e^{\pi i n z/h}$ be the Fourier expansion of a cusp form $f \in S_k(\Gamma)$ at a cusp of Γ . Then $a_n = O(n^{k/2})$.

Remark 6.9. The bound in Corollary 6.8 can be improved to $a_n = O(n^{(k-1)/2})$ when Γ is a congruence subgroup [1, Thm. 4.5.17].

6.2 Automorphic forms with character

Definition 6.10. Let $\Gamma \leq SL_2(\mathbb{R})$ be a lattice. A character of Γ is a group homomorphism $\chi: \Gamma \to \mathbb{C}^{\times}$ with finite image. This implies $\chi(\Gamma) = \langle \zeta_n \rangle$, where $\zeta_n = e^{2\pi i/n}$; *n* is the order of χ .

Definition 6.11. a Dirichlet character ε is a periodic totally multiplicative function $\mathbb{Z} \to \mathbb{C}$, equivalently, the extension by zero of a character of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ for some modulus *N*.

Dirichlet characters ε are commonly used to define characters of $\Gamma_0(N)$ via

$$\chi\left(\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\right)\coloneqq\varepsilon(d).$$

Definition 6.12. Let χ be a character of a lattice $\Gamma \in SL_2(\mathbb{R})$. An automorphic function $f \in \Omega_k(\Gamma_{\chi})$ which satisfies

$$f|_k \gamma = \chi(\gamma) f$$

for all $\gamma \in \Gamma$ is an automorphic function for Γ with character χ , and we use $\Omega_k(\Gamma, chi)$ to denote the \mathbb{C} -vector space of all such functions. We similarly define the \mathbb{C} -vector spaces

$$A(\Gamma,\chi) \coloneqq A(\Gamma_{\chi}) \cap \Omega_{k}(\Gamma,\chi), \qquad M(\Gamma,\chi) \coloneqq M(\Gamma_{\chi}) \cap \Omega_{k}(\Gamma,\chi), \qquad S(\Gamma,\chi) \coloneqq S(\Gamma_{\chi}) \cap \Omega_{k}(\Gamma,\chi),$$

of automorphic/modular/cusp forms for Γ with character χ .

Note that Γ_{χ} has finite index in Γ , hence the same cusps as Γ (see [1, Cor. 1.5.5]), so automorphic forms in $A(\Gamma, \chi)$ are meromorphic at the cusps of Γ , modular forms in $M(\Gamma, \chi)$ are holomorphic at the cusps of Γ , and cusp forms in $S(\Gamma, \chi)$ vanish at the cusps of Γ .

For any finite index $\Gamma' \leq \Gamma$ we have corresponding inclusions

$$A(\Gamma,\chi) \subseteq A(\Gamma',\chi'), \qquad M(\Gamma,\chi) \subseteq M(\Gamma',\chi'), \qquad S(\Gamma,\chi) \subseteq S(\Gamma',\chi')$$

where χ' is the restriction of χ to Γ' . If $f \in A_k(\Gamma, \chi)$ and $g \in A_l(\Gamma, \psi)$ then $fg \in A_{k+l}(\Gamma, \chi\psi)$, and similarly for M_k and S_k . The product of a modular form and a cusp form is a cusp form, so we also have

$$M_k(\Gamma, \chi)S_l(\Gamma, \psi) \subseteq S_{k+l}(\Gamma, \chi\psi)$$

for any lattice $\Gamma \in SL_2(\mathbb{R})$ with characters χ, ψ .

Example 6.13. Let $N \in \mathbb{Z}_{>0}$. As we will prove in a later lecture, for the congruence subgroups $\Gamma_0(N), \Gamma_1(N) \leq SL_2(\mathbb{Z})$, we have the decompositions

$$M_k(\Gamma_1(N)) = \bigoplus_{\chi} M_k(\Gamma_0(N), \chi)$$
 and $S_k(\Gamma_1(N)) = \bigoplus_{\chi} S_k(\Gamma_0(N), \chi)$

where the direct sums range over Dirichlet characters of modulus N.

6.3 The Petersson inner product

Let χ be a character for a lattice $\Gamma \leq SL_2(\mathbb{R})$ and let $f, g \in M_k(\Gamma, \chi)$ with at least one in $S_k(\Gamma, \chi)$. Then $fg \in S_{2k}(\Gamma, \chi^2)$ and for any $\gamma \in \Gamma$ we have

$$f(\gamma z)\overline{g}(\gamma z)\operatorname{Im}(\gamma z)^{k} = f(z)\overline{g}(z)\operatorname{Im}(z)^{k},$$

where $\overline{g}(z) := \overline{g(z)}$ denotes complex conjugation. By Theorem 6.7, $|f(z)g(z)| \operatorname{Im}(z)^k$ is bounded on **H**, thus the integral

$$\int_{\Gamma \setminus \mathbf{H}} f(z) \overline{g}(z) \operatorname{Im}(z)^k d\nu(z)$$

is converges. Here $dv(z) := \frac{dxdy}{y^2}$ is the hyperbolic measure on **H** (with z = x + iy). We define

$$\nu(\Gamma \backslash \mathbf{H}^*_{\Gamma}) \coloneqq \nu(\Gamma \backslash \mathbf{H}) \coloneqq \nu(F)$$

where *F* is any measurable fundamental domain for Γ . The fact that Γ is a lattice (a finitely generated Fuchsian group of the first kind) implies that such an *F* exists (indeed, we can use any Dirichlet domain for Γ), and that $v(F) \in \mathbb{R}_{>0}$ is finite and independent of the choice of *F*.

We now define the Petersson inner product of f and g via

$$\langle f,g\rangle := \frac{1}{\nu(\Gamma \setminus \mathbf{H})} \int_{\Gamma \setminus \mathbf{H}} f(z)\overline{g}(z)^k d\nu(z) \in \mathbb{C},$$

which induces a positive definite Hermitian inner product on the \mathbb{C} -vector space $S_k(\Gamma, \chi)$, making $S_k(\Gamma, \chi)$ into a Hermitian space.

References

[1] Toshitsune Miyake, *Modular forms*, Springer, 2006.

- [2] Fred Diamond and Jerry Shurman, A first course in modular forms, Springer, 2005.
- [3] John Voight, *Quaternion algebras*, Springer, 2021.