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5.1 Lattices in locally compact groups

Let G be a locally compact (Hausdorff) group equipped with a left Haar measure µ. Then G
contains an open set U of finite measure: pick g ∈ U ⊆ C with C compact, finitely many G-
translates of U cover C , and if µ(U) = 0 then µ(C) = 0 (by additivity of µ); if µ(C) = 0 for
every C then µ= 0, a contradiction.

Definition 5.1. Let U be an open set with 0< µ(U)<∞. The Haar modulus for G (also called
modular function for G) is the continuous group homomorphism

∆G : G→ R×>0

g 7→
µ(U g)
µ(U)

which does not depend on the choice of U (since µ is unique up to scaling).

Note that G is unimodular (meaning µ is also a right Haar measure) precisely when∆G(G) =
{1}. The center of G necessarily lies in the kernel of ∆G , as does its commutator subgroup and
all torsion elements, sinceR×>0 is abelian and torsion free. This implies that all perfect groups are
unimodular (including SLn(R) for all n≥ 1), as are all compact groups, since ∆G is continuous
and the only compact subgroup of R×>0 is the trivial group. For n > 1 the subgroup of upper
triangular matrices in GLn(R) is an example of a locally compact group that is not unimodular.

Now let H be a closed subgroup of G. Then the (left) coset space G/H is a locally compact
Hausdorff space with a continuous (left) G-action.

Definition 5.2. A (left) Haar measure µ on G/H is a Radon measure with µ(gS) = µ(S) for
every S ∈ Σ(G/H). If µ(G/H) <∞ then µ is finite. When G/H admits a finite Haar measure
we say that H is cofinite.

Definition 5.3. A lattice in a locally compact group G is a discrete cofinite subgroup Γ .

As shown in Problem 3 of Problem Set 2, the lattices in SL2(R) are the finitely generated
Fuchsian groups of the first kind (they satisfy both Λ(Γ ) = P1(R) and XΓ := H∗Γ/Γ compact).

Lemma 5.4. Let Γ be a discrete subgroup of a second countable locally compact group G. Then Γ is
countable and G contains a measurable set of unique Γ -coset representatives with nonzero measure.

Proof. Let π: G → G/Γ be the projection map. Let U be an open neighborhood of the identity
1 ∈ G such that U ∩ Γ = {1}, let A× B be the inverse image of U under the multiplication
map G × G → G, with A, B ⊆ G open, and let V := (A∩ B)−1 ∩ (A∩ B). Then V is an open
neighborhood of the identity with V−1V ∩ Γ = {1}. For any g ∈ G the restriction of π to gV is
injective, since for v1, v2 ∈ V , if π(gv1) = π(gv2) then gv1γ1 = gv2γ2 for some γ1,γ2 ∈ Γ and
then γ2γ

−1
1 = v−1

2 v1 ∈ V−1V ∩ Γ = {1}.
Let {Un}n≥1 be a countable subcover of G = {gV : g ∈ G} (second countable implies Lindelöf)

with µ(U1)> 0; then π restricts to an injection on each Un and Γ is countable. Now let F1 := U1
and define

Fn := Un − Un ∩π−1(π(U1 ∪ · · · ∪ Un−1))

for n≥ 1. Then π restricts to an injection on each Fn ⊆ Un and the images π(Fm) and π(Fn) are
disjoint for m 6= n, since π(Fn) = π(Un)−π(Un)∩(π(F1)∪· · ·∪π(Fn−1)). Now let F :=

⋃

n≥1 Fn.
The restriction of π to F is injective, and also surjective, since π(F) = π(∪n≥1Un) = π(G). Thus
F is a set of unique Γ -coset representatives which is measurable, since each Fn is (note that
π−1(π(U)) = UΓ is open for any open U ⊆ G). The measure of F is nonzero, since it contains
the open set U1 with positive measure.
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A set of unique Γ -coset representatives in G is a strict fundamental domain for Γ .

Lemma 5.5. Let Γ be a discrete subgroup of a second countable locally compact group G. Then
G/Γ admits a Haar measure if and only if ∆G(Γ ) = {1}.

Proof. Let π: G→ G/Γ be the quotient map, let F be a measurable strict fundamental domain
for G/Γ as in Lemma 5.4, and let ν be a left Haar measure on G. For S ∈ Σ(G/Γ ) we define

µ(S) := ν(F ∩π−1(S)).

For any g ∈ G, the left G-invariance of ν implies

µ(gS) = ν(F ∩π−1(gS)) = ν(F ∩ gπ−1(S)) = ν(g−1F ∩π−1(S)) = ν(F ′ ∩ T ),

where F ′ := g−1F and T := π−1(S). Now F ′ is also a measurable strict fundamental domain for
G/Γ , thus G = F ′Γ = FΓ , and TΓ = T . If ∆G(Γ ) = {1} then ν is Γ -right invariant and

µ(gS) = ν(G ∩ F ′ ∩ T ) =
∑

γ∈Γ
ν(Fγ∩ F ′ ∩ T ) =

∑

γ∈Γ
ν(F ∩ F ′γ−1 ∩ T ) = ν(F ∩ G ∩ T ) = µ(S),

implying that µ is a left G-invariant. The function µ is a nonzero Radon measure on G/Γ , since ν
restricts to a nonzero Radon measure on F (because F is measurable and G is second countable,
hence σ-compact). It follows that µ is a left Haar measure on G/Γ .

Conversely, given a left Haar measure µ on G/Γ , for any S ∈ Σ(G) we may define

ν(S) :=
∑

γ∈Γ
µ(π(Fγ∩ S)).

The Haar measure µ on G/Γ lifts to a nonzero Radon measure on each of the measurable strict
fundamental domains Fγ, which form a countable partition of G. It follows that ν is a nonzero
Radon measure on G. The G-invariance of µ implies that ν is a Haar measure, and we note
that ν is right Γ -invariant, since π is; it follows that ∆G(Γ ) = {1}.

Corollary 5.6. Let Γ be a lattice in a second countable locally compact group G. Then G is uni-
modular.

Proof. Γ ∈ ker∆G , so ∆G factors through the map G/Γ → R×>0 induced by µ, and ∆G(G) must
be bounded, since µ is finite. But the only bounded subgroup of R×>0 is the trivial group.

Lemma 5.7. Let G be a second countable locally compact group with a discrete cocompact sub-
group Γ . Then Γ is a lattice.

In other words, for discrete subgroups of second countable locally compact groups, cocom-
pact implies cofinite. The converse does not hold: SL2(Z) ⊆ SL2(R) is discrete and SL2(R)
is unimodular, so SL2(Z) is a lattice in SL2(R), but it is not cocompact because the diagonal
subgroup of SL2(R) has unbounded image in SL2(R)/SL2(Z). Cocompact lattices are uniform
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5.2 Arithmetic groups

Recall that a Lie group is a smooth (second countable) manifold with a compatible group struc-
ture (so group operations are smooth maps). An algebraic group is an algebraic variety with a
compatible group structure (so group operations are rational maps). Projective algebraic groups
are abelian varieties (being projective forces the group to be abelian). Affine algebraic groups
are linear algebraic groups, and include GLn, which can be defined as an affine varieties inAn2+1

over any field k, using variables t and Ai j for 1 ≤ i, j ≤ n and the equation t det A= 1 (where
det A is the polynomial in the ai j corresponding to the determinant), along with polynomial
maps corresponding to matrix multiplication and inversion (using t as the inverse of det A).
The classical groups SLn, Sp2n, Un, SUn, On, and SOn are all examples of linear algebraic groups
(assume char(k) 6= 2 for On and SOn).

If G is an algebraic group overQ (aQ-algebraic group), then G(R) and G(C) are Lie groups.

Definition 5.8. Subgroups H1 and H2 of a group G are commensurable if H1 ∩ H2 has finite
index in both H1 and H2.

Definition 5.9. Let G be a Lie group. A subgroup Γ ≤ G is arithmetic if there is a Q-algebraic
linear group H and a morphism of Lie groups φ : H(R) → G with compact kernel and finite
cokernel for which φ(H(Z) is commensurable to Γ .

Arithmetic groups are discrete (since Z is discrete in R) and cofinite, which implies they
are lattices (which may be uniform or non-uniform). Not all lattices are arithmetic (not even
all uniform lattices); triangle groups in SL2(R) provide many examples (see the next section).
But in a semisimple Lie group G (no nontrivial connected normal abelian subgroup) of real
rank at least 2, every irreducible lattice Γ (infinite lattices for which ΓN is dense in G for every
noncompact closed N Å G0) is arithmetic, by a theorem of Margulis [1].

The arithmetic lattices in SL2(R) arise from orders O in quaternion algebras B over a totally
real field F in which exactly one of the real places splits (this includes both uniform and non-
uniform lattices). As in the previous lecture, we embed F in R via the unique real place that
splits and use this to embed B in M2(R), then take the image of the norm-1 elements of O under
this embedding to get a discrete cofinite subgroup Γ (O1)≤ SL2(R).

When B is a division algebra, the arithmetic lattice Γ (O1) is uniform (cocompact) and has
no cusps, otherwise B is a matrix algebra and Γ (O1) is non-uniform and has at least one cusp.

5.2.1 Triangle groups

Let Γ be a lattice in SL2(R), equivalently, a finitely generated Fuchsian group of the first kind
with Z(Γ ) := Γ∩{±1}. Then Γ/Z(Γ ) is generated by hyperbolic elements {α1, . . . ,αg ,β1, . . . ,βg},
elliptic elements {γ1, . . . ,γs}, and parabolic elements {γs+1, . . . ,γs+t}, which satisfy

α1β1α
−1
1 β

−1
1 · · ·αgβgα

−1
g β

−1
g γ1 · · ·γs+t = 1

γ
ei
i = 1 (1≤ i ≤ s),

where 1< e1 ≤ · · · ≤ es <∞ are the orders of the elliptic elements.

Definition 5.10. The signature of Γ is the tuple (g; e1, . . . , es+t), with es+1 = · · · = es+t . It
satisfies the inequality

2g − 2+
s+t
∑

j=1

�

1−
1
ei

�

> 0.
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When g = 0 and s+ t = 3 we call Γ a triangle group of type (e1, e2, e3). For triangle groups
of type (e1, e2, e3) we necessarily have

1
e1
+

1
e2
+

1
e3
< 1.

Proposition 5.11. Let (e1, e2, e3) and s be as above. Up to conjugacy in SL2(R), the following
hold:

• If s ≥ 1 and ei is even for some i ≤ s then there is a unique triangle group of type (e1, e2, e3)
and it contains −1.

• If g ≥ 2 and ei is odd for all i ≤ s then there are exactly two triangle groups of type (e1, e2, e3).
One contains −1 and the other of does not.

• If s = 0 or s = 1 and e1 is odd then there are exactly three triangle groups of type (e1, e2, e3).
One contains −1 and the other two do not and have index 2 in the one that does.

Proof. This is [4, Prop. 1].

This implies that there are infinitely many triangle groups.

Theorem 5.12. Let Γ be a triangle group of type (e1, e2, e3) and let

k :=Q
�

cos(π/e1)
2, cos(π/e2)

2, cos(π/e3)
2, cos(π/e1) cos(π/e2) cos(π/e3)

�

.

If t > 0 then Γ is arithmetic if and only if k =Q. If t = 0 then Γ is arithemtic if and only if k =Q
or k )Q and under every embedding of k into R we have

cos(π/e1)
2 + cos(π/e2)

2 + cos(π/e3)
2 + 2 cos(π/e1) cos(π/e2) cos(π/e3)< 1

Proof. This is [4, Thm. 1].

Theorem 5.13. Let Γ be an arithmetic triangle group. If t > 0 there are 9 possible types for Γ :

(2,3,∞), (2,4,∞), (2,6,∞), (2,∞,∞), (3, 3,∞), (3,∞,∞), (4,4,∞), (6,6,∞), (∞,∞,∞)

and otherwise there are 76 possible types:

• (2, 3, n) with n ∈ {7, . . . , 14,16,18, 24,30} or (2,4, n) with n ∈ {5, . . . , 8, 10,12, 18};

• (2,5, n) with n ∈ {5, 6,8, 10,20, 30} or (2,6, n) with n ∈ {6, 8,12};

• one of (2, 7,7), (2,7, 14), (2,8, 8), (2, 8,16), (2, 9,18), (2,10, 10), (2,12, 12), (2,12, 24),
(2,15, 30), (2,18, 18);

• (3,3, n) with n ∈ {4, . . . , 9, 12,15} or (3,4, n) with n ∈ {4,6, 12};

• one of (3,5, 5), (3,6, 6), (3, 6,18), (3, 8,8), (3, 8,24), (3, 10,30), (3, 12,12);

• (4,4, n) with n ∈ {4, 5,6, 9} or one of (4,5, 5), (4,6, 6), (4, 8,8), (4, 16,16);

• one of (5,5, 5), (5, 5,10), (5,5, 15), (5,10, 10), (6,6, 6), (6, 12,12), (6,24, 24), (7,7, 7),
(8,8, 8), (9,9, 9), (9, 18,18), (12, 12,12), (15,15, 15).

Proof. This is [4, Thm. 3].
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