This is summary of the material from §1.5, §1.7 of [1] and §37-38 of [2] presented in lecture.

4.1 Cusps and stabilizers

Recall that the action of $SL_2(\mathbb{R})$ on the extended upper half plane $\overline{\mathbf{H}} := \mathbf{H} \cup \mathbb{P}^1(\mathbb{R}) \subseteq \mathbb{P}^1(\mathbb{C})$ via linear transformations stabilizes the boundary $\partial \mathbf{H} = \mathbb{P}^1(\mathbb{R})$ and is transitive on \mathbf{H} and $\partial \mathbf{H}$. We classified nontrivial elements $\alpha \in SL_2(\mathbb{R})$ according to disc $(\alpha) = tr(\alpha)^2 - 4 \det(\alpha)$ as

- elliptic if disc(α) < 0, equivalently, $\alpha \in SL_2(\mathbb{R})_z$ for exactly one $z \in H$ and no $z \in \partial H$;
- parabolic if disc(α) = 0, equivalently, $\alpha \in SL_2(\mathbb{R})_z$ for no $z \in H$ and exactly one $z \in \partial H$;
- hyperbolic if disc(α) > 0, equivalently, $\alpha \in SL_2(\mathbb{R})_z$ for no $z \in H$ and exactly two $z \in \partial H$.

If $\alpha \in SL_2(\mathbb{R})$ fixes more than two points in \overline{H} then $\alpha = \pm 1$ trivial.

Definition 4.1. For $\Gamma \leq SL_2(\mathbb{R})$ we classify the $z \in \overline{H} = H \cup \partial H$ as follows:

- $z \in \overline{\mathbf{H}}$ is ordinary if $\Gamma_z \subseteq \{\pm 1\}$ (in which case Γ_z is trivial);
- $z \in \mathbf{H}$ is an elliptic point of Γ_z contains an elliptic $\gamma \in \Gamma$;
- $z \in \partial \mathbf{H}$ is a parabolic point or cusp if Γ_z contains a parabolic $\gamma \in \Gamma$;
- $z \in \partial H$ is a hyperbolic point if Γ_z contains a hyperbolic $\gamma \in \Gamma$ (so $\Gamma_{z,z'} \subseteq \Gamma_z$ for some z').

For $\Gamma \in SL_2(\mathbb{R})$ we let $Z(\Gamma) = \Gamma \cap \{\pm 1\}$ denote its trivial subgroup, so that $\Gamma/Z(\Gamma)$ is isomorphic to the image of Γ in $PSL_2(\mathbb{R})$.

Theorem 4.2. Let $\Gamma \leq SL_2(\mathbb{R})$ be a Fuchsian group and let $z \in \overline{H} = H \cup \partial H$. The following hold:

- (i) If z is an elliptic point of Γ then Γ_z is a finite cyclic group that strictly contains $Z(\Gamma)$;
- (ii) If z is a cusp of Γ then $\Gamma_z/Z(\Gamma) \simeq \mathbb{Z}$ and $\pm \Gamma_z$ is $SL_2(\mathbb{R})$ -conjugate to $\left\langle \pm \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \right\rangle$ with h > 0;
- (iii) If z is a hyperbolic point of Γ then $\Gamma_z \supseteq \Gamma_{z,z'} \supseteq Z(\Gamma)$ (for some $z' \neq z$) then $\Gamma_{z,z'}/Z(\Gamma) \simeq \mathbb{Z}$ and $\pm \Gamma_{z,z'}$ is $SL_2(\mathbb{R})$ -conjugate to $\left\langle \pm \begin{pmatrix} u & 0 \\ 0 & 1/u \end{pmatrix} \right\rangle$ with u > 0.

Proof. (i) SL₂(ℝ)_{*z*} is conjugate to SL₂(ℝ)_{*i*} = SO₂(ℝ) \simeq S¹, a compact abelian group. Since Γ is discrete, Γ_{*z*} = Γ ∩ SL₂(ℝ)_{*z*} is finite, hence cyclic, and it contains an elliptic γ ∉ Z(Γ).

(ii) WLOG $z = \infty$ and $\Gamma_z = \Gamma_\infty$ is upper triangular and contains some $\gamma = \langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \rangle$ with $h \neq 0$ (we can conjugate Γ_z to achieve this). Up to ± 1 every element of Γ_z must be of this form: if $\alpha = \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} \in \Gamma_x$ with |a| < 1 then $\alpha^n \gamma \alpha^{-n} = \begin{pmatrix} 1 & a^{2n}h \\ 0 & 1 \end{pmatrix} \in \Gamma_z$ for all $n \ge 1$, but Γ_z is discrete. Thus $\Gamma_x/Z(\Gamma)$ is isomorphic to a nontrivial discrete subgroup of \mathbb{R} , which implies $\Gamma_x/Z(\Gamma) \simeq \mathbb{Z}$.

(iii) WLOG z = 0 and $\Gamma_z \Gamma_0 \supseteq \Gamma_{0,\infty} \supseteq Z(\Gamma)$, so that $\Gamma_{z,z'} = \Gamma_{0,\infty}$ is diagonal, consisting of elements of the form $\begin{pmatrix} u & 0 \\ 0 & 1/u \end{pmatrix}$ with $u \in \mathbb{R}^{\times}$. It follows that $\Gamma_x/Z(\Gamma)$ is a nontrivial discrete subgroup of $\mathbb{R}^{\times}/\pm 1$, which implies $\Gamma_x/Z(\Gamma) \simeq \mathbb{Z}$.

Corollary 4.3. For any Fuchsian group Γ we may partition $\overline{\mathbf{H}} = \mathbf{H} \cup \partial \mathbf{H}$ into elliptic points, cusps, hyperbolic points, and ordinary points. In this partition, \mathbf{H} consists of elliptic and ordinary points, while $\partial \mathbf{H}$ consists of parabolic, hyperbolic and ordinary points.

Proof. The theorem implies that a cusp cannot also be a hyperbolic point.

Corollary 4.4. Let Γ be a Fuchsian group. Every finite index $\Gamma' \leq \Gamma$ has the same set of cusps as Γ .

Proof. Any cusp x of Γ' is a cusp of Γ , since $\Gamma'_x \subseteq \Gamma_x$. If x is a cusp of Γ then $\Gamma'_x = \Gamma_x \cap \Gamma$ has finite index in Γ_x , which is infinite, so Γ'_x cannot be trivial and x is also a cusp of Γ' .

Note that even when $\Gamma' \leq \Gamma$ has the same set of cusps as Γ it need not have the same cusp orbits (the cusp orbits of Γ' will be a refinement of the partition of the cusps of Γ into cusp orbits).

Definition 4.5. For a Fuchsian group Γ and $z \in \overline{\mathbf{H}} = \mathbf{H} \cup \partial \mathbf{H}$, the order of z with respect to Γ is

$$e_z := \# \Gamma_z / Z(\Gamma) \in \mathbb{Z}_{>0} \cup \{\infty\}$$

It follows from the theorem above that $e_z = 1$ if z is ordinary, $1 < e_z < \infty$ if z is elliptic, and $e_z = \infty$ if z is a cusp or hyperbolic point.

Corollary 4.6. *If* $-1 \notin \Gamma$ *then every elliptic point of* Γ *has odd order.*

Proof. The group $\pm \Gamma$ is a finite cyclic group whose unique element of order 2 is -1.

Definition 4.7. Let Γ be a Fuchsian group, let $x \in \partial \mathbf{H}$ be a cusp of Γ , and choose $\sigma \in \mathrm{SL}_2(\mathbb{R})$ so $\sigma x = \infty$. Then $\pm \sigma \Gamma_x \sigma^{-1} = \pm \langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \rangle$ with h > 0. If $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \in \sigma \Gamma_x \sigma^{-1}$ then x is a regular cusp, and otherwise x is irregular. The latter can arise only when $-1 \notin \Gamma$, and the regularity of x does not depend on the choice of σ .

4.2 Adjoining cusps

For a Fuchsian group Γ we let P_{Γ} denote its set of cusps, and define $\mathbf{H}_{\Gamma}^* := \mathbf{H} \cap P_{\Gamma}$. We extend the topology of \mathbf{H} to \mathbf{H}_{Γ}^* by taking defining open neighborhoods $U_l := \{z \in \mathbf{H} : \operatorname{Im}(z) > x\} \cup \{\infty\}$ of ∞ for all l > 0, and we take $\operatorname{SL}_2(\mathbb{R})$ -translates σU_l as open neighborhoods of $\sigma \infty$ for each cusp $\sigma \infty$ of Γ . Then \mathbf{H}_{Γ}^* is a Hausdorff space, on which Γ acts.

This action is not proper, since cusps have infinite stabilizers, but the quotient $X_{\Gamma} := \Gamma \setminus \mathbf{H}_{\Gamma}^*$ is Hausdorff (see [1, Lemma 1.7.7]), and we can give it the structure of a Riemann surface (see [1, §1.8]). If Γ is a Fuchsian group and X_{Γ} has finite volume (under the measure induced by the measure dv on **H**), then X_{Γ} is a compact Riemann surface, by Siegel's Theorem [1, Thm. 1.9.1], hence an algebraic curve of some genus $g \ge 0$. In this case the number of elliptic points and cusps is necessarily finite [1, Thm. 1.7.8].

4.3 The modular group

The modular group $\Gamma = SL_2(\mathbb{Z})$ is a Fuchsian group containing -1, generated by the matrices

$$S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

A Dirichlet domain for Γ is given by

$$D(2i) = \{z \in \mathbf{H} : |z| \ge 1 \text{ and } \operatorname{Re}(z) \in [-1/2, 1/2]\},\$$

with elliptic points $i = \zeta_4$ of order 2, with $\Gamma_i = \langle S \rangle$, and $\omega = \zeta_3$ of order 3 with $\Gamma_\omega = \langle ST \rangle$. The Dirichlet domain D(2i) also contains the elliptic point $T\omega$ on its boundary.

The closure of D(2i) in \mathbf{H}^*_{Γ} contains a single cusp ∞ with $\Gamma_{\infty} = \langle \pm T \rangle$ and $P_{\Gamma} = \Gamma \infty = \mathbb{P}^1(\mathbb{Q})$. Then $Y(1) \coloneqq Y_{\Gamma} \coloneqq \Gamma \setminus \mathbf{H} \simeq \mathbb{C}$ and $X(1) \coloneqq X_{\Gamma} \coloneqq \Gamma \setminus \mathbf{H}^*_{\Gamma} \simeq \mathbb{P}^1(\mathbb{C})$.

Every subgroup of $\Gamma = SL_2(\mathbb{Z})$ is also a Fuchsian group, but we will only be interested in those that have finite index. An important example of such groups is given by congruence subgroups, which are subgroups of $SL_2(\mathbb{Z})$ that contain the group

$$\Gamma(N) := \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv 1 \bmod N \}.$$

Two particularly important examples of congruence subgroups are

$$\Gamma_0(N) \coloneqq \left\{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right) \mod N \right\} \quad \text{and} \quad \Gamma_1(N) \coloneqq \left\{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix}\right) \mod N \right\}.$$

We note that not all finite index subgroups of $SL_2(\mathbb{Z})$ are congruence subgroups.

4.3.1 Triangle groups

Definition 4.8. Let *k* be a field whose characteristic is not 2. A quaternion algebra $B := \left(\frac{a,b}{k}\right)$ over a field *k* is a (unital associative) *k*-algebra that has a *k*-basis of the form $\{1, i, j, ij\}$ with

$$i^2 = a, \qquad j^2 = b, \qquad ij = -ji.$$

A quaternion algebra is either a division ring (nonsplit) or isomorphic to $M_2(k)$ (split). The standard involution on *B* is the map $\alpha \mapsto \bar{\alpha}$ that sends $\alpha = t + xi + yj - zij$ to $\bar{\alpha} = t - xi - yj - zij$. The (reduced) norm of $\alpha \in B$ is $N(\alpha) = \alpha \bar{\alpha} = t^2 = \alpha x^2 - by^2 + abz^2 \in k$, which is multiplicative and nonzero precisely when α is a unit in *B*. The set of norm-1 elements B^1 form a subgroup of the unit group B^{\times} .

Let $B = \begin{pmatrix} a, b \\ \mathbb{Q} \end{pmatrix}$ be a quaternion algebra over \mathbb{Q} . We say that a place p of \mathbb{Q} is ramified if B if $B \otimes_{\mathbb{Q}} \mathbb{Q}_p$ is a division ring, and unramified if $B \otimes_{\mathbb{Q}} \mathbb{Q}_p$ is split. We call B definite if it is ramified at the archimedean place of \mathbb{Q} , equivalently, $B_{\infty} := B \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{H} = \begin{pmatrix} -1, -1 \\ \mathbb{R} \end{pmatrix}$ and indefinite otherwise. The quaternion algebra $\begin{pmatrix} a, b \\ \mathbb{Q} \end{pmatrix}$ is definite if and only if a, b < 0.

The set of ramified places of *B* is finite of even cardinality; conversely, for every finite set Σ of places of \mathbb{Q} of even cardinality, there is a quaternion algebra with ramified exactly at the places in Σ , which is unique up to isomorphism (this is true more generally for quaternion algebras over any global field, see [2, Theorem 14.6.1]). The discriminant of *B* is the product of the primes that ramify in *B*, which we negate when ∞ is ramified; the discriminant uniquely determines the isomorphism class of a quaternion algebra over \mathbb{Q} (and in fact |B| does).

If *B* is an indefinite quaternion algebra over \mathbb{Q} , equivalently disc(*B*) > 0 we can embed *B* in $M_2(\mathbb{R})$ via $B \hookrightarrow B_{\infty} \simeq M_2(\mathbb{R})$ by writing $B = \left(\frac{a,b}{\mathbb{Q}}\right)$ with a > 0 and defining

$$\iota_{\infty} : B \hookrightarrow M_{2}(\mathbb{Q}(\sqrt{a})) \subseteq M_{2}(\mathbb{R})$$
$$t + xi + yj + zij \mapsto \begin{pmatrix} t + x\sqrt{a} & y + z\sqrt{a} \\ b(y - z\sqrt{a}) & t - x\sqrt{a} \end{pmatrix}$$

For any $\alpha = t + xi + yj + zij \in B$ we then have

$$\det \iota_{\infty}(\alpha) = t^2 - ax^2 - by^2 + abz^2 = N(\alpha),$$

thus ι_{∞} restricts to group homomorphisms $B^{\times} \hookrightarrow \mathrm{GL}_2(\mathbb{R})$ and $B^1 \hookrightarrow \mathrm{SL}_2(\mathbb{R})$.

An order *O* in a quaternion algebra *B* over \mathbb{Q} is a subring that is finitely generated as a \mathbb{Z} -module with $O \otimes_{\mathbb{Z}} \mathbb{Q} = B$. It's norm-1 unit group $O^1 := O \cap B^1$ is a discrete subgroup of $SL_2(\mathbb{R})$, hence a Fucshian group.

Consider the indefinite quaternion algebra $B = \left(\frac{-1,3}{\mathbb{Q}}\right)$ of discriminant 6. It's unit group is

$$O := \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k, \qquad k = \frac{1+i+j+ij}{2}.$$

The Fuchsian group $\Gamma := \iota_{\infty}(O^1)$ has no cusps, and $X_{\Gamma} = Y_{\Gamma} = \Gamma \setminus \mathbf{H} = X(\Gamma)$ is a good compact complex 1-orbifold.

References

- [1] Toshitsune Miyake, *Modular forms*, Springer, 2006.
- [2] John Voight, *Quaternion algebras*, Springer, 2021.