This is summary of the material from §1.5, §1.7 of [1] and §37-38 of [2] presented in lecture.

4.1 Cusps and stabilizers

Recall that the action of $\mathrm{SL}_{2}(\mathbb{R})$ on the extended upper half plane $\overline{\mathbf{H}}:=\mathbf{H} \cup \mathbb{P}^{1}(\mathbb{R}) \subseteq \mathbb{P}^{1}(\mathbb{C})$ via linear transformations stabilizes the boundary $\partial \mathbf{H}=\mathbb{P}^{1}(\mathbb{R})$ and is transitive on \mathbf{H} and $\partial \mathbf{H}$. We classified nontrivial elements $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ according to $\operatorname{disc}(\alpha)=\operatorname{tr}(\alpha)^{2}-4 \operatorname{det}(\alpha)$ as

- elliptic if $\operatorname{disc}(\alpha)<0$, equivalently, $\alpha \in \mathrm{SL}_{2}(\mathbb{R})_{z}$ for exactly one $z \in \mathrm{H}$ and no $z \in \partial \mathbf{H}$;
- parabolic if $\operatorname{disc}(\alpha)=0$, equivalently, $\alpha \in \mathrm{SL}_{2}(\mathbb{R})_{z}$ for no $z \in \mathbf{H}$ and exactly one $z \in \partial \mathbf{H}$;
- hyperbolic if $\operatorname{disc}(\alpha)>0$, equivalently, $\alpha \in \mathrm{SL}_{2}(\mathbb{R})_{z}$ for no $z \in \mathbf{H}$ and exactly two $z \in \partial \mathbf{H}$.

If $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ fixes more than two points in $\overline{\mathbf{H}}$ then $\alpha= \pm 1$ trivial.
Definition 4.1. For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ we classify the $z \in \overline{\mathbf{H}}=\mathbf{H} \cup \partial \mathbf{H}$ as follows:

- $z \in \overline{\mathbf{H}}$ is ordinary if $\Gamma_{z} \subseteq\{ \pm 1\}$ (in which case Γ_{z} is trivial);
- $z \in \mathbf{H}$ is an elliptic point of Γ_{z} contains an elliptic $\gamma \in \Gamma$;
- $z \in \partial \mathbf{H}$ is a parabolic point or cusp if Γ_{z} contains a parabolic $\gamma \in \Gamma$;
- $z \in \partial \mathbf{H}$ is a hyperbolic point if Γ_{z} contains a hyperbolic $\gamma \in \Gamma$ (so $\Gamma_{z, z^{\prime}} \subseteq \Gamma_{z}$ for some z^{\prime}).

For $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$ we let $Z(\Gamma)=\Gamma \cap\{ \pm 1\}$ denote its trivial subgroup, so that $\Gamma / Z(\Gamma)$ is isomorphic to the image of Γ in $\mathrm{PSL}_{2}(\mathbb{R})$.

Theorem 4.2. Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a Fuchsian group and let $z \in \overline{\mathbf{H}}=\mathbf{H} \cup \partial \mathbf{H}$. The following hold:
(i) If z is an elliptic point of Γ then Γ_{z} is a finite cyclic group that strictly contains $Z(\Gamma)$;
(ii) If z is a cusp of Γ then $\Gamma_{z} / Z(\Gamma) \simeq \mathbb{Z}$ and $\pm \Gamma_{z}$ is $\mathrm{SL}_{2}(\mathbb{R})$-conjugate to $\left\langle \pm\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$ with $h>0$;
(iii) If z is a hyperbolic point of Γ then $\Gamma_{z} \supseteq \Gamma_{z, z^{\prime}} \supsetneq Z(\Gamma)$ (for some $z^{\prime} \neq z$) then $\Gamma_{z, z^{\prime}} / Z(\Gamma) \simeq \mathbb{Z}$ and $\pm \Gamma_{z, z^{\prime}}$ is $\mathrm{SL}_{2}(\mathbb{R})$-conjugate to $\left\langle \pm\left(\begin{array}{cc}u & 0 \\ 0 & 1 / u\end{array}\right)\right\rangle$ with $u>0$.
Proof. (i) $\mathrm{SL}_{2}(\mathbb{R})_{z}$ is conjugate to $\mathrm{SL}_{2}(\mathbb{R})_{i}=\mathrm{SO}_{2}(\mathbb{R}) \simeq S^{1}$, a compact abelian group. Since Γ is discrete, $\Gamma_{z}=\Gamma \cap \mathrm{SL}_{2}(\mathbb{R})_{z}$ is finite, hence cyclic, and it contains an elliptic $\gamma \notin Z(\Gamma)$.
(ii) WLOG $z=\infty$ and $\Gamma_{z}=\Gamma_{\infty}$ is upper triangular and contains some $\gamma=\left\langle\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$ with $h \neq 0$ (we can conjugate Γ_{z} to achieve this). Up to ± 1 every element of Γ_{z} must be of this form: if $\alpha=\left(\begin{array}{cc}a & b \\ 0 & 1 / a\end{array}\right) \in \Gamma_{x}$ with $|a|<1$ then $\alpha^{n} \gamma \alpha^{-n}=\left(\begin{array}{cc}1 & a^{2 n} h \\ 0 & 1\end{array}\right) \in \Gamma_{z}$ for all $n \geq 1$, but Γ_{z} is discrete. Thus $\Gamma_{x} / Z(\Gamma)$ is isomorphic to a nontrivial discrete subgroup of \mathbb{R}, which implies $\Gamma_{x} / Z(\Gamma) \simeq \mathbb{Z}$.
(iii) WLOG $z=0$ and $\Gamma_{z} \Gamma_{0} \supseteq \Gamma_{0, \infty} \supsetneq Z(\Gamma)$, so that $\Gamma_{z, z^{\prime}}=\Gamma_{0, \infty}$ is diagonal, consisting of elements of the form $\left(\begin{array}{cc}u & 0 \\ 0 & 1 / u\end{array}\right)$ with $u \in \mathbb{R}^{\times}$. It follows that $\Gamma_{x} / Z(\Gamma)$ is a nontrivial discrete subgroup of $\mathbb{R}^{\times} / \pm 1$, which implies $\Gamma_{x} / Z(\Gamma) \simeq \mathbb{Z}$.

Corollary 4.3. For any Fuchsian group Γ we may partition $\overline{\mathbf{H}}=\mathbf{H} \cup \partial \mathbf{H}$ into elliptic points, cusps, hyperbolic points, and ordinary points. In this partition, \mathbf{H} consists of elliptic and ordinary points, while $\partial \mathbf{H}$ consists of parabolic, hyperbolic and ordinary points.

Proof. The theorem implies that a cusp cannot also be a hyperbolic point.
Corollary 4.4. Let Γ be a Fuchsian group. Every finite index $\Gamma^{\prime} \leq \Gamma$ has the same set of cusps as Γ.
Proof. Any cusp x of Γ^{\prime} is a cusp of Γ, since $\Gamma_{x}^{\prime} \subseteq \Gamma_{x}$. If x is a cusp of Γ then $\Gamma_{x}^{\prime}=\Gamma_{x} \cap \Gamma$ has finite index in Γ_{x}, which is infinite, so Γ_{x}^{\prime} cannot be trivial and x is also a cusp of Γ^{\prime}.

Note that even when $\Gamma^{\prime} \leq \Gamma$ has the same set of cusps as Γ it need not have the same cusp orbits (the cusp orbits of Γ^{\prime} will be a refinement of the partition of the cusps of Γ into cusp orbits).

Definition 4.5. For a Fuchsian group Γ and $z \in \overline{\mathbf{H}}=\mathbf{H} \cup \partial \mathbf{H}$, the order of z with respect to Γ is

$$
e_{z}:=\# \Gamma_{z} / Z(\Gamma) \in \mathbb{Z}_{>0} \cup\{\infty\}
$$

It follows from the theorem above that $e_{z}=1$ if z is ordinary, $1<e_{z}<\infty$ if z is elliptic, and $e_{z}=\infty$ if z is a cusp or hyperbolic point.

Corollary 4.6. If $-1 \notin \Gamma$ then every elliptic point of Γ has odd order.
Proof. The group $\pm \Gamma$ is a finite cyclic group whose unique element of order 2 is -1 .
Definition 4.7. Let Γ be a Fuchsian group, let $x \in \partial \mathbf{H}$ be a cusp of Γ, and choose $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so $\sigma x=\infty$. Then $\pm \sigma \Gamma_{x} \sigma^{-1}= \pm\left\langle\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$ with $h>0$. If $\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \in \sigma \Gamma_{x} \sigma^{-1}$ then x is a regular cusp, and otherwise x is irregular. The latter can arise only when $-1 \notin \Gamma$, and the regularity of x does not depend on the choice of σ.

4.2 Adjoining cusps

For a Fuchsian group Γ we let P_{Γ} denote its set of cusps, and define $\mathbf{H}_{\Gamma}^{*}:=\mathbf{H} \cap P_{\Gamma}$. We extend the topology of \mathbf{H} to \mathbf{H}_{Γ}^{*} by taking defining open neighborhoods $U_{l}:=\{z \in \mathbf{H}: \operatorname{Im}(z)>x\} \cup\{\infty\}$ of ∞ for all $l>0$, and we take $\mathrm{SL}_{2}(\mathbb{R})$-translates σU_{l} as open neighborhoods of $\sigma \infty$ for each cusp $\sigma \infty$ of Γ. Then \mathbf{H}_{Γ}^{*} is a Hausdorff space, on which Γ acts.

This action is not proper, since cusps have infinite stabilizers, but the quotient $X_{\Gamma}:=\Gamma \backslash \mathbf{H}_{\Gamma}^{*}$ is Hausdorff (see [1, Lemma 1.7.7]), and we can give it the structure of a Riemann surface (see [1, §1.8]). If Γ is a Fuchsian group and X_{Γ} has finite volume (under the measure induced by the measure $d v$ on \mathbf{H}), then X_{Γ} is a compact Riemann surface, by Siegel's Theorem [1, Thm. 1.9.1], hence an algebraic curve of some genus $g \geq 0$. In this case the number of elliptic points and cusps is necessarily finite [1, Thm. 1.7.8].

4.3 The modular group

The modular group $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ is a Fuchsian group containing -1 , generated by the matrices

$$
S:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

A Dirichlet domain for Γ is given by

$$
D(2 i)=\{z \in \mathbf{H}:|z| \geq 1 \text { and } \operatorname{Re}(z) \in[-1 / 2,1 / 2]\}
$$

with elliptic points $i=\zeta_{4}$ of order 2 , with $\Gamma_{i}=\langle S\rangle$, and $\omega=\zeta_{3}$ of order 3 with $\Gamma_{\omega}=\langle S T\rangle$. The Dirichlet domain $D(2 i)$ also contains the elliptic point $T \omega$ on its boundary.

The closure of $D(2 i)$ in \mathbf{H}_{Γ}^{*} contains a single cusp ∞ with $\Gamma_{\infty}=\langle \pm T\rangle$ and $P_{\Gamma}=\Gamma \infty=\mathbb{P}^{1}(\mathbb{Q})$. Then $Y(1):=Y_{\Gamma}:=\Gamma \backslash \mathbf{H} \simeq \mathbb{C}$ and $X(1):=X_{\Gamma}:=\Gamma \backslash \mathbf{H}_{\Gamma}^{*} \simeq \mathbb{P}^{1}(\mathbb{C})$.

Every subgroup of $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ is also a Fuchsian group, but we will only be interested in those that have finite index. An important example of such groups is given by congruence subgroups, which are subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ that contain the group

$$
\Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv 1 \bmod N\right\}
$$

Two particularly important examples of congruence subgroups are

$$
\Gamma_{0}(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{cc}
* \\
0 & *
\end{array}\right) \bmod N\right\} \quad \text { and } \quad \Gamma_{1}(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod N\right\} .
$$

We note that not all finite index subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ are congruence subgroups.

4.3.1 Triangle groups

Definition 4.8. Let k be a field whose characteristic is not 2 . A quaternion algebra $B:=\left(\frac{a, b}{k}\right)$ over a field k is a (unital associative) k-algebra that has a k-basis of the form $\{1, i, j, i j\}$ with

$$
i^{2}=a, \quad j^{2}=b, \quad i j=-j i .
$$

A quaternion algebra is either a division ring (nonsplit) or isomorphic to $\mathrm{M}_{2}(k)$ (split). The standard involution on B is the map $\alpha \mapsto \bar{\alpha}$ that sends $\alpha=t+x i+y j-z i j$ to $\bar{\alpha}=t-x i-y j-z i j$. The (reduced) norm of $\alpha \in B$ is $N(\alpha)=\alpha \bar{\alpha}=t^{2}=a x^{2}-b y^{2}+a b z^{2} \in k$, which is multiplicative and nonzero precisely when α is a unit in B. The set of norm- 1 elements B^{1} form a subgroup of the unit group B^{\times}.

Let $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ be a quaternion algebra over \mathbb{Q}. We say that a place p of \mathbb{Q} is ramified if B if $B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ is a division ring, and unramified if $B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ is split. We call B definite if it is ramified at the archimedean place of \mathbb{Q}, equivalently, $B_{\infty}:=B \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{H}=\left(\frac{-1,-1}{\mathbb{R}}\right)$ and indefinite otherwise. The quaternion algebra $\left(\frac{a, b}{\mathbb{Q}}\right)$ is definite if and only if $a, b<0$.

The set of ramified places of B is finite of even cardinality; conversely, for every finite set Σ of places of \mathbb{Q} of even cardinality, there is a quaternion algebra with ramified exactly at the places in Σ, which is unique up to isomorphism (this is true more generally for quaternion algebras over any global field, see [2, Theorem 14.6.1]). The discriminant of B is the product of the primes that ramify in B, which we negate when ∞ is ramified; the discriminant uniquely determines the isomorphism class of a quaternion algebra over \mathbb{Q} (and in fact $|B|$ does).

If B is an indefinite quaternion algebra over \mathbb{Q}, equivalently $\operatorname{disc}(B)>0$ we can embed B in $\mathrm{M}_{2}(\mathbb{R})$ via $B \hookrightarrow B_{\infty} \simeq \mathrm{M}_{2}(\mathbb{R})$ by writing $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ with $a>0$ and defining

$$
\begin{gathered}
\iota_{\infty}: B \hookrightarrow \mathrm{M}_{2}(\mathbb{Q}(\sqrt{a})) \subseteq \mathrm{M}_{2}(\mathbb{R}) \\
t+x i+y j+z i j \mapsto\left(\begin{array}{cc}
t+x \sqrt{a} & y+z \sqrt{a} \\
b(y-z \sqrt{a}) & t-x \sqrt{a}
\end{array}\right)
\end{gathered}
$$

For any $\alpha=t+x i+y j+z i j \in B$ we then have

$$
\operatorname{det} \iota_{\infty}(\alpha)=t^{2}-a x^{2}-b y^{2}+a b z^{2}=N(\alpha)
$$

thus ι_{∞} restricts to group homomorphisms $B^{\times} \hookrightarrow \mathrm{GL}_{2}(\mathbb{R})$ and $B^{1} \hookrightarrow \mathrm{SL}_{2}(\mathbb{R})$.
An order O in a quaternion algebra B over \mathbb{Q} is a subring that is finitely generated as a \mathbb{Z} module with $O \otimes_{\mathbb{Z}} \mathbb{Q}=B$. It's norm-1 unit group $O^{1}:=O \cap B^{1}$ is a discrete subgroup of $S L_{2}(\mathbb{R})$, hence a Fucshian group.

Consider the indefinite quaternion algebra $B=\left(\frac{-1,3}{\mathbb{Q}}\right)$ of discriminant 6. It's unit group is

$$
O:=\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k, \quad k=\frac{1+i+j+i j}{2}
$$

The Fuchsian group $\Gamma:=\iota_{\infty}\left(O^{1}\right)$ has no cusps, and $X_{\Gamma}=Y_{\Gamma}=\Gamma \backslash \mathbf{H}=X(\Gamma)$ is a good compact complex 1-orbifold.

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.
[2] John Voight, Quaternion algebras, Springer, 2021.

