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This is summary of the material from §1.5, §1.7 of [1] and §37-38 of [2] presented in lecture.

4.1 Cusps and stabilizers

Recall that the action of SL2(R) on the extended upper half plane H := H∪ P1(R) ⊆ P1(C) via
linear transformations stabilizes the boundary ∂H = P1(R) and is transitive on H and ∂H. We
classified nontrivial elements α ∈ SL2(R) according to disc(α) = tr(α)2 − 4 det(α) as

• elliptic if disc(α)< 0, equivalently, α ∈ SL2(R)z for exactly one z ∈ H and no z ∈ ∂H;

• parabolic if disc(α) = 0, equivalently, α ∈ SL2(R)z for no z ∈ H and exactly one z ∈ ∂H;

• hyperbolic if disc(α)> 0, equivalently, α ∈ SL2(R)z for no z ∈ H and exactly two z ∈ ∂H.

If α ∈ SL2(R) fixes more than two points in H then α= ±1 trivial.

Definition 4.1. For Γ ≤ SL2(R) we classify the z ∈ H= H∪ ∂H as follows:

• z ∈ H is ordinary if Γz ⊆ {±1} (in which case Γz is trivial);

• z ∈ H is an elliptic point of Γz contains an elliptic γ ∈ Γ ;

• z ∈ ∂H is a parabolic point or cusp if Γz contains a parabolic γ ∈ Γ ;

• z ∈ ∂H is a hyperbolic point if Γz contains a hyperbolic γ ∈ Γ (so Γz,z′ ⊆ Γz for some z′).

For Γ ∈ SL2(R) we let Z(Γ ) = Γ ∩{±1} denote its trivial subgroup, so that Γ/Z(Γ ) is isomorphic
to the image of Γ in PSL2(R).

Theorem 4.2. Let Γ ≤ SL2(R) be a Fuchsian group and let z ∈ H= H∪ ∂H. The following hold:

(i) If z is an elliptic point of Γ then Γz is a finite cyclic group that strictly contains Z(Γ );

(ii) If z is a cusp of Γ then Γz/Z(Γ )' Z and ±Γz is SL2(R)-conjugate to



±
�

1 h
0 1

��

with h> 0;

(iii) If z is a hyperbolic point of Γ then Γz ⊇ Γz,z′ ) Z(Γ ) (for some z′ 6= z) then Γz,z′/Z(Γ ) ' Z
and ±Γz,z′ is SL2(R)-conjugate to




±
� u 0

0 1/u

��

with u> 0.

Proof. (i) SL2(R)z is conjugate to SL2(R)i = SO2(R) ' S1, a compact abelian group. Since Γ is
discrete, Γz = Γ ∩ SL2(R)z is finite, hence cyclic, and it contains an elliptic γ 6∈ Z(Γ ).

(ii) WLOG z =∞ and Γz = Γ∞ is upper triangular and contains some γ =

�

1 h
0 1

��

with
h 6= 0 (we can conjugate Γz to achieve this). Up to ±1 every element of Γz must be of this form:
if α=

�

a b
0 1/a

�

∈ Γx with |a|< 1 then αnγα−n =
�

1 a2nh
0 1

�

∈ Γz for all n≥ 1, but Γz is discrete. Thus
Γx/Z(Γ ) is isomorphic to a nontrivial discrete subgroup of R, which implies Γx/Z(Γ )' Z.

(iii) WLOG z = 0 and ΓzΓ0 ⊇ Γ0,∞ ) Z(Γ ), so that Γz,z′ = Γ0,∞ is diagonal, consisting
of elements of the form

� u 0
0 1/u

�

with u ∈ R×. It follows that Γx/Z(Γ ) is a nontrivial discrete
subgroup of R×/±1, which implies Γx/Z(Γ )' Z.

Corollary 4.3. For any Fuchsian group Γ we may partition H= H∪∂H into elliptic points, cusps,
hyperbolic points, and ordinary points. In this partition, H consists of elliptic and ordinary points,
while ∂H consists of parabolic, hyperbolic and ordinary points.

Proof. The theorem implies that a cusp cannot also be a hyperbolic point.

Corollary 4.4. Let Γ be a Fuchsian group. Every finite index Γ ′ ≤ Γ has the same set of cusps as Γ .

Proof. Any cusp x of Γ ′ is a cusp of Γ , since Γ ′x ⊆ Γx . If x is a cusp of Γ then Γ ′x = Γx ∩Γ has finite
index in Γx , which is infinite, so Γ ′x cannot be trivial and x is also a cusp of Γ ′.
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Note that even when Γ ′ ≤ Γ has the same set of cusps as Γ it need not have the same cusp orbits
(the cusp orbits of Γ ′ will be a refinement of the partition of the cusps of Γ into cusp orbits).

Definition 4.5. For a Fuchsian group Γ and z ∈ H= H∪ ∂H, the order of z with respect to Γ is

ez := #Γz/Z(Γ ) ∈ Z>0 ∪ {∞}.

It follows from the theorem above that ez = 1 if z is ordinary, 1 < ez <∞ if z is elliptic, and
ez =∞ if z is a cusp or hyperbolic point.

Corollary 4.6. If −1 6∈ Γ then every elliptic point of Γ has odd order.

Proof. The group ±Γ is a finite cyclic group whose unique element of order 2 is −1.

Definition 4.7. Let Γ be a Fuchsian group, let x ∈ ∂H be a cusp of Γ , and choose σ ∈ SL2(R) so
σx =∞. Then ±σΓxσ−1 = ±


�

1 h
0 1

��

with h > 0. If
�

1 h
0 1

�

∈ σΓxσ−1 then x is a regular cusp,
and otherwise x is irregular. The latter can arise only when −1 6∈ Γ , and the regularity of x does
not depend on the choice of σ.

4.2 Adjoining cusps

For a Fuchsian group Γ we let PΓ denote its set of cusps, and define H∗Γ := H∩ PΓ . We extend the
topology of H to H∗Γ by taking defining open neighborhoods Ul := {z ∈ H : Im(z) > x} ∪ {∞}
of∞ for all l > 0, and we take SL2(R)-translates σUl as open neighborhoods of σ∞ for each
cusp σ∞ of Γ . Then H∗Γ is a Hausdorff space, on which Γ acts.

This action is not proper, since cusps have infinite stabilizers, but the quotient XΓ := Γ\H∗Γ
is Hausdorff (see [1, Lemma 1.7.7]), and we can give it the structure of a Riemann surface (see
[1, §1.8]). If Γ is a Fuchsian group and XΓ has finite volume (under the measure induced by the
measure dv on H), then XΓ is a compact Riemann surface, by Siegel’s Theorem [1, Thm. 1.9.1],
hence an algebraic curve of some genus g ≥ 0. In this case the number of elliptic points and
cusps is necessarily finite [1, Thm. 1.7.8].

4.3 The modular group

The modular group Γ = SL2(Z) is a Fuchsian group containing −1, generated by the matrices

S :=

�

0 −1
1 0

�

and T :=

�

1 1
0 1

�

.

A Dirichlet domain for Γ is given by

D(2i) =
�

z ∈ H : |z| ≥ 1 and Re(z) ∈ [−1/2, 1/2]
	

,

with elliptic points i = ζ4 of order 2, with Γi = 〈S〉, and ω= ζ3 of order 3 with Γω = 〈ST 〉. The
Dirichlet domain D(2i) also contains the elliptic point Tω on its boundary.

The closure of D(2i) in H∗Γ contains a single cusp∞with Γ∞ = 〈±T 〉 and PΓ = Γ∞= P1(Q).
Then Y (1) := YΓ := Γ\H' C and X (1) := XΓ := Γ\H∗Γ ' P

1(C).
Every subgroup of Γ = SL2(Z) is also a Fuchsian group, but we will only be interested in those

that have finite index. An important example of such groups is given by congruence subgroups,
which are subgroups of SL2(Z) that contain the group

Γ (N) :=
�

γ ∈ SL2(Z) : γ≡ 1 mod N
	

.
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Two particularly important examples of congruence subgroups are

Γ0(N) :=
¦

γ ∈ SL2(Z) : γ≡
� ∗ ∗

0 ∗
�

mod N
©

and Γ1(N) :=
¦

γ ∈ SL2(Z) : γ≡
�

1 ∗
0 1

�

mod N
©

.

We note that not all finite index subgroups of SL2(Z) are congruence subgroups.

4.3.1 Triangle groups

Definition 4.8. Let k be a field whose characteristic is not 2. A quaternion algebra B :=
�

a,b
k

�

over a field k is a (unital associative) k-algebra that has a k-basis of the form {1, i, j, i j} with

i2 = a, j2 = b, i j = − ji.

A quaternion algebra is either a division ring (nonsplit) or isomorphic to M2(k) (split). The
standard involution on B is the map α 7→ ᾱ that sends α= t+x i+ y j−zi j to ᾱ= t−x i− y j−zi j.
The (reduced) norm of α ∈ B is N(α) = αᾱ= t2 = ax2− b y2+abz2 ∈ k, which is multiplicative
and nonzero precisely when α is a unit in B. The set of norm-1 elements B1 form a subgroup of
the unit group B×.

Let B =
� a,b
Q

�

be a quaternion algebra over Q. We say that a place p of Q is ramified if B if
B⊗QQp is a division ring, and unramified if B⊗QQp is split. We call B definite if it is ramified at
the archimedean place ofQ, equivalently, B∞ := B⊗QR'H=

�−1,−1
R

�

and indefinite otherwise.

The quaternion algebra
� a,b
Q

�

is definite if and only if a, b < 0.
The set of ramified places of B is finite of even cardinality; conversely, for every finite set

Σ of places of Q of even cardinality, there is a quaternion algebra with ramified exactly at the
places in Σ, which is unique up to isomorphism (this is true more generally for quaternion
algebras over any global field, see [2, Theorem 14.6.1]). The discriminant of B is the product
of the primes that ramify in B, which we negate when∞ is ramified; the discriminant uniquely
determines the isomorphism class of a quaternion algebra over Q (and in fact |B| does).

If B is an indefinite quaternion algebra over Q, equivalently disc(B)> 0 we can embed B in
M2(R) via B ,→ B∞ 'M2(R) by writing B =

� a,b
Q

�

with a > 0 and defining

ι∞ : B ,→M2(Q(
p

a)) ⊆M2(R)

t + x i + y j + zi j 7→
�

t + x
p

a y + z
p

a
b(y − z

p
a) t − x

p
a

�

.

For any α= t + x i + y j + zi j ∈ B we then have

det ι∞(α) = t2 − ax2 − b y2 + abz2 = N(α),

thus ι∞ restricts to group homomorphisms B× ,→ GL2(R) and B1 ,→ SL2(R).
An order O in a quaternion algebra B over Q is a subring that is finitely generated as a Z-

module with O⊗ZQ= B. It’s norm-1 unit group O1 := O∩ B1 is a discrete subgroup of SL2(R),
hence a Fucshian group.

Consider the indefinite quaternion algebra B =
�−1,3
Q

�

of discriminant 6. It’s unit group is

O := Z⊕Zi ⊕Z j ⊕Zk, k =
1+ i + j + i j

2
.

The Fuchsian group Γ := ι∞(O1) has no cusps, and XΓ = YΓ = Γ\H = X (Γ ) is a good compact
complex 1-orbifold.
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