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3 Fuchsian groups and Dirichlet domains

This is summary of the material from §34,§36-37 of [2] presented in lecture.

3.1 Manifolds and orbifolds

Recall that a (topological)manifold is a second countable Hausdorff space X that is locally home-
omorphic to Rn, for some fixed n ≥ 1 (the dimension of the manifold). This that means every
x ∈ X has an open neighborhood U equipped with a homeomorphism φ : U ∼−→ φ(U) ⊆ Rn.
The map φ is a chart, and and an open cover of charts is an atlas. For every pair of overlap-
ping charts φ1 : U1 → Rn and φ2 : U2 → Rn, meaning U1 ∩ U2 6= ;, we have a homeomorphic
transition map

φ12 = φ2φ
−1
1 : φ1(U1 ∩ U2) ∼−→ φ2(U1 ∩ U2)

between two open subsets of Rn. If X has an atlas for which all the transition maps are smooth
(continuous partial derivatives of all orders), then X is a smooth manifold. ReplacingRn withCn

and “smooth” with “holomorphic” yields a complex manifold. A Riemann surface is a complex
manifold of dimension one. Every compact Riemann surface can be realized as an algebraic
curve.

A real Lie group is a topological group G that is also a smooth manifold for which the maps
(g, h) 7→ gh and g 7→ g−1 are smooth; a complex Lie group is defined similarly.

Theorem 3.1 (Riemann uniformization theorem). Every simply connected Riemann surface is
isomorphic to either the Riemann sphere P1(C), the complex plane C, or the upper half-plane H.

The universal cover X̃ of a compact Riemann surface X is simply connected, which means
that X ' G\X̃ , where G = π1(X , x0) is the fundamental group of X acting on X̃ as a covering
space action. This leads to the following possibilities:

• X̃ = P1(C) and X ' P1(C) (elliptic);
• X̃ = C and X ' C or X ' C/Z or X ' C/(Z+τZ) with τ ∈ H (parabolic).
• X̃ = H and X ' Γ\H with Γ a torsion-free Fuchsian group (hyperbolic).

Recall that a Fuchsian group is a discrete subgroup of PSL2(R), which need not be torsion free!

Remark 3.2. It will often be convenient to work with subgroups Γ of SL2(R) rather than PSL2(R),
but we can ignore the trivial action of −1 (so when we speak of torsion, we always refer to the
image of Γ in PSL2(R)).

Definition 3.3. An orbifold is a second countable Hausdorff space X locally homeomorphic to
G\Rn for some finite group G acting continuously onRn. An atlas for an orbifold is an open cover
of charts Ui , closed under finite intersection, and a corresponding collection of open Vi ⊆ Rn

equipped with the continuous action of a finite group Gi and a homeomorphismφi : Ui
∼−→ Gi\Vi

such that whenever Ui ⊆ U j there exists an injective homomorphism fi j : Gi ,→ G j and a Gi-
equivariant gluing map ψi j : Vi ,→ Vj for which ψi j ◦φi = φ j . If the gluing maps and G-action
are C∞-smooth we have a smooth orbifold, and replacing “C∞-smooth” with “holomorphic”
yields a complex orbifold.

If X is a manifold with a proper action by a discrete group G, we can make G\X into an
orbifold using an atlas defined by neighborhoods U 3 x chosen so that {g ∈ G : U ∩ gU 6= ;}=
Gx is finite; orbifolds that arise in this way are good. If Γ ⊆ SL2(R) is a Fuchsian group, then
Γ\H is a good complex orbifold of dimension 1 (and also a good 2-orbifold, a real orbifold of
dimension 2).
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3.2 Dirichlet domains

For a group G acting on a topological space X , we call an element of G trivial if it acts trivially
on every element of X . For example, ±1 are the trivial elements of SL2(R) (as noted above, we
do not require that G act faithfully).

Definition 3.4. A fundamental set for a group G acting on a topological space X is a subset
S ⊆ X for which (i) S0 = S, (ii) GS = X , (iii) S0 ∩ (gS)0 for all nontrivial g.

Let X be a completely locally compact geodesic space with metric d, and let Γ be a discrete
group of isometries acting properly on X .

Definition 3.5. The Dirichlet domain for Γ centered at x0 ∈ X is the set

D(x0) := D(Γ ; x0) := {x ∈ X : d(x0, x)≤ d(x0,γx) for all γ ∈ Γ }.

For x1, x2 ∈ X the Leibniz half-space is the set

H(x1, x2) := {x ∈ X : d(x1, x)≤ d(x2, x)},

with H(x1, x2) = X if x1 = x2, and D(x0) = ∩γH(x0,γx0) is an intersection of Leibniz half-
spaces over γ ∈ Γ − Γx0

. For x1 6= x2 the boundary

L(x1, x2) := H(x1, x2)−H(x1, x2)
0 = {x ∈ X : d(x1, x) = d(x2, x)}

is the hyperplane bisector separating x1 and x2, and H(x1, x2)0 = {x ∈ X : d(x1, x)< d(x2, x)}.

Remark 3.6. Hyperplane bisectors need not be geodesics, but hyperplane bisectors in H are.

Definition 3.7. A set S ⊆ X is convex if it contains every geodesic segment connecting points
in S, and star-shaped with respect to x0 ∈ S if it contains every geodesic segment connecting a
point in S to x0.

Lemma 3.8. Every Leibniz half-plane H(x1, x2) in X is star-shaped with respect to x1.

Proof. Consider any x ∈ H(x1, x2) and any y on a geodesic segment from x to x1. Then
d(x1, y) + d(y, x) = d(x1, x). If y 6∈ H(x1, x2) then d(x2, y)< d(x1, y) and

d(x2, x)≤ d(x2, y) + d(y, x)< d(x1, y) + d(y, x) = d(x1, x),

but this contradicts x ∈ H(x1, x2).

Corollary 3.9. The Dirichlet domain D(x0) is closed and star-shaped with respect to x0.

Proof. D(x0) is an intersection of Leibniz half-spaces that are closed and star-shaped.

Lemma 3.10. If x0 ∈ S ⊆ X is bounded then the set {γ ∈ Γ : S 6⊆ H(x0,γx0)} is finite.

Proof. If S is bounded then sup{d(x0, x) : x ∈ S} = r <∞, which implies Γ x0 ⊆ X is discrete
and Γx0

⊆ Γ is finite, since Γ is discrete and acts properly on X . Thus only finitely many γ ∈ Γ
satisfy ρ(x0,γx0)≤ 2r. For every other γ ∈ Γ and all x ∈ S we have

d(x ,γx0)≥ d(x0,γx0)− d(x , x0)> 2r − r = r ≥ d(x , x0)

which implies x ∈ H(x0,γx0).
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Corollary 3.11. We have D(x0)0 = {x ∈ D(x0): d(x0, x) < d(x0,γx) for all γ ∈ Γ − Γx0
} and

D(x0)0 = D(x0).

Proof. For any x ∈ D(x0) we can pick a bounded open U 3 x for which

U ∩ D(x0) = U ∩
⋂

γi∈F
H(x0,γx0)

where F is the finite set of Lemma 3.10 for S = U with elements of Γx0
removed. Therefore

U ∩ D(x0)
0 = U ∩

⋂

γ∈F
H(x0,γx0)

0

For γ ∈ Γ − (F ∪ Γx0
) we have U ⊆ H(x0,γx0)0, and if V is the set on the RHS of the corollary,

U ∩ D(x0)
0 = U ∩

⋂

γ∈Γ−Γx0

H(x0,γi x0)
0 = U ∩ V,

since H(x0,γx0)0 = {x ∈ X : d(x , x0)< d(x ,γx0)} for γ ∈ Γ − Γx0
.

This implies the first statement in the corollary, and the second then follows, since we have
D(x0)0 =

⋂

γ∈Γ−Γx0
H(x0,γx0) = D(x0).

Definition 3.12. S ⊆ X is locally finite if for every compact C ⊆ X the set {γ ∈ Γ : S ∩ γC 6= ;}
is finite.

Lemma 3.13. If S is a locally finite fundamental set then Γ is generated by {γ ∈ Γ : S ∩ γS 6= ;}.

Proof. Let Γ ∗ ≤ Γ be the subgroup generated by {γ ∈ Γ : S ∩ γS 6= ;}. Define f : X → Γ ∗\Γ
via x 7→ Γ ∗γ, with γ ∈ Γ chosen so γx ∈ S; such a γ exists because S is fundamental, and it
doesn’t matter which one we pick because if γ′x ∈ S then γ′x ∈ S ∩ γ′γ−1S 6= ;, which implies
γ′γ−1 ∈ Γ ∗ and γ′Γ ∗ = γΓ ∗.

We claim f is locally constant. Consider any x ∈ X with compact neighborhood C . Since S
is locally finite, we can pick a finite set of {γi} ⊆ Γ so that C ⊆

⋃

i γiS. By replacing C by its
intersection with the union of the γiS that contain x , we can assume x ∈ γiS for all i, which
implies that f (x) = Γ ∗γ−1

i for all i. Any y ∈ C lies in γiS for some i, which means f (y) = f (x).
But X is connected (it is a geodesic space), so f is actually constant, and for any γ ∈ Γ and

any x ∈ S we have Γ ∗ = f (x) = f (γ−1 x) = Γ ∗γ, which implies Γ ∗ = Γ .

In the theorem below, by trivial, we mean an element or subgroup of Γ that acts trivially on
every x ∈ X (so for Γ ∈ SL2(R) this would include ±1).

Theorem 3.14. Let X be a complete, locally compact geodesic space and let Γ be a discrete group
of isometries acting properly on X . If x0 ∈ X has trivial stabilizer then D(x0) is a locally finite
fundamental set for Γ that is star-shaped with respect to x0 whose boundary consists of segments
of hyperplane bisectors.

Proof. Let x0 ∈ X have trivial stabilizer. It follows from Lemma 3.8 that D(x0) is star-shaped
with respect to x0, and Corollary 3.11 implies that its boundary is a union of segments of hy-
perplane bisectors. We now show that D(x0) is a fundamental set. Corollary 3.11 implies that
D(x0)0, so (i) holds. Now consider any x ∈ X . Then Γ x is discrete and

d(Γ x , x0) = inf{d(γx , x0) : γ ∈ Γ }
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is realized by some γx ∈ D(x0). It follows that D(x0) intersects every Γ -orbit, so X = ΓD(x0)
and (ii) holds. Finally, if x ∈ D(x0)0 and x 6= γx ∈ D(x0)0, then

d(x , x0)< d(γx , x0)≤ d(γ−1γx , x0) = d(x , x0),

a contradiction, so (iii) holds.
To show that D(x0) is locally finite, it suffices to check a bounded closed disc C ⊆ X with

center x0 and radius r ≥ 0. If γC ∩ D(x0) 6= ; then for some x ∈ D(x0) we have d(x0,γx) ≤ r
and

d(x0,γx0)≤ d(x0,γx) + d(γx ,γx0)≤ r + d(x , x0),

but x ∈ S implies d(x , x0) = d(x0, x) ≤ d(x0,γx) ≤ r, so d(x0,γx0) ≤ r + r = 2r. This can
hold for only finitely many γ, since Γ x0 is discrete, so D(x0) is locally finite.

3.3 Hyperbolic space

Hyperbolic space H3 is the set

C×R>0 = {(x , y) = (x1 + x2i, y) ∈ C×R : y > 0}.

equipped with the metric induced by the hyperbolic length element and volume

ds =

q

d x2
1 + d x2

2 + d y3

y
dV =

d x1d x2d y
y3

.

Its boundary is the sphere at infinity P1(C), analogous to the circle at infinity P1(R) that forms
the boundary of the hyperbolic plane H2 := H.

The group SL2(C) acts on P1(C) via linear fractional transformations, and we extend this to
hyperbolic space by embedding C×R>0 in the Hamiltonians H = C+C j (where jz = x̄ j for
z ∈ C ⊆ H) via (x , y) 7→ x + y j and defining

�

a b
c d

�

z =
az + b
cz + d

for z = x + y j ∈ H. One can then show that PSL2(C) acts faithfully and transitively on H3 via
isometries, and that every orientation preserving isometry of H3 corresponds to the action of
an element of PSL2(C) (and in general Isom(H3)' PSL2(C)oZ/2Z)), just as every orientation
preserving isometry of H2 corresponds to the action of an element of PSL2(R)' PGL+2 (R) (and
in general, Isom(H2)' PGL2(R))

Definition 3.15. A Kleinian group is a discrete subgroup of SL2(C) or PSL2(C).

As with Fuchisan groups (discrete subgroups of SL2(R) or PSL2(R)), Kleinian groups act
properly on H3 via isometries.

3.4 Hyperbolic Dirichlet domains

We now specialize to the case X is either hyperbolic space H2 or the hyperbolic plan H3, which
we note are both complete, locally compact, uniquely geodesic spaces, and Γ is a Fuchsian or
Kleinian group.
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Definition 3.16. A fundamental domain for Γ is a connected fundamental set S whose boundary
has measure zero; if the boundary of S is a countable union of geodesic segments then we say
that S has geodesic boundary.

Theorem 3.17. Let Γ be a Fuchsian group acting on X = H2 or a Kleinian group acting on X = H3.
Let z0 ∈ X have stabilizer Γ0 and let u0 ∈ X have trivial stabilizer in Γ0. Then

D(Γ ; z0)∩ D(Γ0; u0)

is a convex locally finite fundamental domain for Γ with geodesic boundary.

Proof. We first note that any Dirichlet domain D(x0) for a Fuchsian or Kleinian group G (includ-
ing Γ and Γ0) is convex with geodesic boundary because it is a countable intersection of Leibniz
half-spaces H(x0,γx0) over γ ∈ G; Leibniz half-spaces in H2 or H3 are convex with geodesic
boundary and G is countable (because G is discrete and X is locally compact second countable).
It follows that D(Γ ; z0)∩ D(Γ0; u0) is a convex set with geodesic boundary.

Theorem 3.14 implies that D(Γ0; u0) is a locally finite fundamental set for Γ0, and this implies
that D(γ; z0) ∩ D(Γ0; u0) is locally finite, since a subset of a locally finite set is locally finite. It
remains only to show that S := D(Γ ; z0)∩D(Γ0; u0) is a fundamental set; we have already shown
it is convex with geodesic boundary, so this will imply it is a fundamental domain.

The proof of Corollary 3.11 implies S0 = S, since S is an intersection of Leibniz half-spaces,
so (i) holds. Now consider any z ∈ X , and choose γ ∈ Γ to minimize d(z0,γz) and choose γ0 ∈ Γ0
so γ0γz ∈ D(Γ0; u0) (note D(Γ0; u0) is a fundamental set). Then d(z0,γ0γz) = d(z0γz), by the
minimality of γ, which implies that γ0γz ∈ D(Γ ; z0) and therefore in S, thus ΓS = X and (ii)
holds. Finally, if γ ∈ Γ is nontrivial, either γ ∈ Γ0 and S0 ∩ (γS)0 = ; because D(Γ0; u0) is a
fundamental set for Γ0, or γ 6∈ Γ0 and S0 ∩ (γS)0 6= ; implies d(z, z0) < d(γz, z0) ≤ d(z, z0), a
contradiction, as in the proof of Theorem 3.14; so (iii) holds.

Corollary 3.18. Let Γ by a Fuchsian group. If z0 ∈ H has trivial stabilizer then the Dirichlet domain
D(Γ ; z0) is a connected, convex, locally finite fundamental domain for Γ with geodesic boundary.
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