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In this final lecture we survey some generalizations of the (classical) modular forms we have
been studying in this course (some of this material can be found in [4, Chapter 15] but much
of it is taken from the literature).

23.1 Half-integral weight modular forms

Recall that for integers k and lattices Γ ≤ SL2(R) we defined weight-k modular forms for Γ as
holomorphic functions f : H→ C that satisfy

f |kγ= f

for every γ ∈ Γ and are holomorphic at the cusps of Γ , where the weight-k slash operator is

f |kγ := j(γ, z)−k f (γz)

with j(γ, z) := cz + d for γ=
�

a b
c d

�

. We now want to consider half integral values of k.
To extend this to k ∈ 1

2 +Z we need to define the square root of j(γ, z) for z ∈ H and γ ∈ Γ
in a way that makes f |kγ holomorphic and which is compatible with the action of Γ on H. In
particular, we want an analog of the cocycle condition j(γ1γ2, z) = j(γ1,γ2z) j(γ2, z) to hold.
One might be tempted to take (cz+d)1/2 :=

p
cz + d, where

p
· denotes the principal branch (so

Arg(
p

z) ∈ (−π2 , π2 ]) and then use this to define (cz+d)−k for k = n/2. Note that either c = 0 and
cz+ d is constant or cz+ d : H→ C lies in a halfplane on which

p
z is holomorphic, so we don’t

need to worry about what happens on the branch locus R<0. But note that (
p

z)−n = ±
p

z−n,
and the sign varies with z, so it is not completely clear what (cz + d)−k means, and even if we
fix a choice, neither choice satisfies the cocycle condition consistently.

Instead we extend SL2(R) to a connected double cover of SL2(R) known as the metaplectic
group Mp2(R); The fundamental group of π1(SL2(R)) ' Z has a unique quotient of order 2,
so Mp2(R) is uniquely determined as a topological space, and the fact that SL2(R) is connected
and locally path connected implies that Mp2(R) is also a topological group; it is locally compact,
since SL2(R) is, so we can consider lattices is Mp2(R) (discrete cofinite subgroups).

We can describe Mp2(R)more explicitly as follows. It consists of pairs (γ,ε)with γ ∈ SL2(R)
and ε : H→ C a holomorphic function that satisfies ε(z)2 = j(γ, z); note that without the holo-
morphic condition we would have uncountably many choices for ε(z), but with it there are
exactly two: ±

p

j(γ, z). The group operation is

(γ1,ε1) · (γ2,ε2) = (γ1γ2, z 7→ ε1(γ2z)ε2(z)),

so the cocycle conduction holds. We have a surjective homomorphism Mp2(R)→ SL2(R) defined
by (γ,ε) 7→ γ whose kernel is {(1,±

p
z)} ' {±1}. This leads to the exact sequence

1 −→ {±1} −→Mp2(R) −→ SL2(R) −→ 1

This sequence does not split in general, but it splits over Γ (4); indeed, for γ =
�

a b
c d

�

∈ Γ (4),
if we define εγ(z) =

� c
d

�p

j(γ, z), then eΓ (4) := {(γ,εγ) : γ ∈ Γ (4)} is a lattice in Mp2(R)
and the surjection Mp2(R) → SL2(R) restricts to an isomorphism eΓ (4) ∼−→ Γ (4).1 This leads
many authors to restrict their attention to half-integral weight modular forms on congruence
subgroups whose level is a multiple of 4, but one can work with any lattice in Mp2(R). We
define the weight-k slash operator for elements of Mp2(R) via

f |k(γ,ε) = ε(z)−2k f (γz),
1If one enlarges the metaplectic group to allow ε(z)2 = ± j(γ, z) one can extend this to Γ0(4).
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and one can then consider modular forms of weight k ∈ 1
2Z for lattices Γ ≤ Mp2(R). The

metaplectic group Mp2(R) is a compact Lie group (but not a matrix group), so in particular it
is a locally compact topological group in which a lattice is any discrete cofinite subgroup.

Every lattice in SL2(R) is also a lattice in Mp2(R), and for k ∈ Z the definition of the weight-
k slash operator above is the same as our original definition. The set of half-integral weight
modular forms of weight k ∈ 1

2Z for a lattice Γ ∈Mp2(R) is a finite dimensional C-vector space.
The canonical example of a half-integral weight modular form is the Jacobi theta function

θ (τ) =
∑

n∈Z
e2πin2τ,

which is a weight-1/2 modular form for eΓ (4).
One can use the Jacobi theta function to define the space Mk(4N ,χ) of modular forms of

weight k ∈ 1
2 +Z and level 4N with character χ as holomorphic functions f : H→ C for which

there exists a Dirichlet character χ of modulus 4N for which

f (γz) = χ(d)
�

θ (γz)
θ (z)

�2k

f (z)

for all γ =
�

a b
c d

�

∈ Γ0(4N), and which are holomorphic at all the cusps of Γ0(4N). Most
of the theory we have developed for integral weight modular forms extends to half-integral
weight, but there are subtleties that arise, and the theory of Hecke operators and eigenforms
is more complicated. However, as shown by Shimura [10], there is a correspondence between
half-integral weight Hecke eigenforms for Mk(4N ,χ) and integral weight hecke eigenforms for
M2k−1(2N ,χ2). This is known as the Shimura correspondence, which is not 1-to-1 in general,
but if one restricts to the Kohnen plus space it is; see [8] for details.

23.2 Hilbert modular forms

Let K be a totally real number field with embeddings σ1, . . . ,σr : K → R. Each σi induces an
embedding σi : GL2(K) ,→ GL2(R), and we define

GL+2 (K) := {α ∈ GL2(K) : σi(α) ∈ GL+2 (R) for 1≤ i ≤ r},

as the subgroup of matrices in GL2(K)with totally positive determinant. The group GL+2 (K) acts
on Hr via the isometric action of GL+2 (R) on H. For functions f : Hr → C, vectors of integers
k ∈ Zr , and α ∈ GL+2 (K) we define the weight-k slash operator

( f |kα)(z) :=

� r
∏

i=1

det(σi(α))
ki/2 j(σi(α), z)ki

�

f (αz),

which we note coincides with the usual weight-k slash operator when r = 1.
Let ZK denote the ring of integers of K (the integral closure of Z in K). The group GL+2 (ZK) is

an arithmetic lattice in the locally compact group GL+2 (R)
r , as is any Γ ≤ GL+2 (K) commensurable

with GL+2 (ZK); we note that unlike the case r = 1, for r > 1 lattices in GL+2 (R) are automatically
arithmetic.

Definition 23.1. Let K be a totally real number field of degree r > 1. For k ∈ Zr and lattices
Γ ≤ GL+2 (K) commensurable with GL+2 (ZK), a Hilbert modular form f : Hr → C of weight k
for Γ is a holomorphic function that satisfies f |kγ= f for all γ ∈ Γ .
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For r = 1 (in which case K = Q) this coincides with the usual definition of a modular form
without the requirement that f be holomorphic at the cusps. Hilbert modular forms are auto-
matically holomorphic at the cusps (this follows from what is known as the Koecher principle).

We call weights k = (c, . . . , c) ∈ Zr parallel weights (or scalar weights), and these are the
most commonly studied. There is a naturally analog of the congruence subgroups Γ0(N) that is
commonly used for Hilbert modular forms: for any nonzero ideal n of ZK we define

Γ0(n) :=
��

a b
c d

�

∈ GL+2 (ZK) : c ∈ n
	

,

and say that Hilbert modular forms for Γ0(n) have level n. More generally, if c is any fractional
ZF -ideal, we can define

Γ0(c,n) :=
��

a b
c d

�

∈ GL+2 (K) : a, d ∈ ZK , c ∈ cn, b ∈ c−1
	

and consider the space Mk(c,n) of Hilbert modular forms for Γ0(c,n) of level (c,n). This is a finite
dimensional C-vector space, as is its subspace Sk(c,n) of cusp forms (Hilbert modular forms that
vanish at the cusps). These spaces have dimension zero unless k ∈ Zr

≥0.
For suitable k (including parallel even weight k) there are dimension formulas and traces

formulas, as well as a nice theory of Hecke operators and newforms; we now have Hecke op-
erators Tp associated to each prime ideal p of ZK and newforms f have Fourier coefficients ap
equal to the eigenvalue of Tp on f (all of which are algebraic integers). We should note that the
field Q( f ) generated by these eigenvalues need not contain K; indeed, we may have Q( f ) =Q.

For parallel weight-2 newforms f there is a conjectural analog of the Eichler-Shimura con-
struction that yields modular abelian varieties over K that is known to hold in many cases (in-
cluding all cases where K has odd degree) due to a theorem of Hida [7]. When f has rational
Hecke eigenvalues (so Q( f ) =Q), one obtains an elliptic curve E/K .

Recall that for K =Q the modularity theorem gives a 1-to-1 correspondence between isogeny
classes of elliptic curves E/Q of conductor N and newforms f of weight 2 and level N with
Q( f ) = Q in which E and f have the same L-function. It is similarly conjectured that there
is a 1-to-1 correspondence between elliptic curves over totally real fields K of conductor n and
Hilbert modular newforms of parallel weight 2 and level n with Q( f ) = Q in which E and f
have the same L-function.

There is much recent progress toward this conjecture, which is now known to hold for all
real quadratic fields [6] all totally real cubic fields [5], and in many other cases. Unlike E/Q, it
is possible for E/K to have everywhere good reduction (meaning the its conductor is the trivial
ideal ZK), corresponding to a Hilbert modular form for the full Hilbert modular group GL+2 (ZK).

Remark 23.2. Some authors restrict to subgroups of SL2(ZK) ≤ GL+2 (ZK) when discussing
Hilbert modular forms. This is a nontrivial restriction: the determinant of an element of GL+2 (ZK)
is a unit that is positive in every real embedding (a totally positive unit), but this condition is
satisfied by the square of any unit, and there are infinitely many when K =Q.

23.3 Bianchi modular forms

We began this course by considering the action of GL2(R) on H ' SL2(R)/SO2(R), restrict-
ing to GL+2 (R) so that the action is isometric, and then to lattices in SL2(R), which acts on
SL2(R)/SO2(R) via left multiplication. Here SO2(R) is the maximal compact subgroup of SL2(R),
and we note that SU2(C) is the maximal compact subgroup of SL2(C). Replacing R with C, we
get an action of SL2(C) on SL2(C)/SU2(C).
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What is the analog of the complex upper halfplane H is in this setting? Well H = H2 is a
2-dimensional real manifold equipped with the hyperbolic metric induced by the Haar measure
of SL2(R), and is often called hyperbolic 2-space. Now SL2(C)/SU2(C) is a 3-dimensional real
manifold isomorphic to hyperbolic 3-space

H3 := C×R>0 = {(x1 + x2i, y) : x1, x2 ∈ R, y ∈ R>0}.

The Haar measure on SL2(C) induces the hyperbolic metric d x i d x2d y
y3 on H3 and SL2(C) then acts

on H3 via isometries.
For any number field K of degree r, we have r embeddings of K intoC, each of which induces

an embedding of SL2(K) into SL2(C), allowing us to view SL2(K) as a subgroup of SL2(C)r that
acts on Hr

3 via isometries.
In the simplest case r = 1 and K is an imaginary quadratic field, which we assume hence-

forth. A complication arises because H3 is not a complex manifold, so we cannot define modular
forms as “holomorphic” functions on H3. One instead works with vector-valued real analytic
functions F : H3 → Ck+1 that are invariant under the action of certain differential operators
(Casimir operators associated to the Lie algebra of SL2(C)). The weight-k slash operator asso-
ciated to α ∈ SL2(C) is then defined by

(F |kα) := Symk(J(α, z)−1)F(αz),

where J(α, z) :=
� cx+d −c y

c̄ y cx+d

�

for α =
�

a b
c d

�

and z = (x , y) ∈ C×R>0 = H3 and Symk denotes
the linear operator corresponding to the kth symmetric power of the standard representation of
SL2(C) on C2. For integers k ≥ 0 and congruence subgroups Γ ≤ SL2(ZK) one can then consider
the space of Bianchi modular forms of weight k for Γ , which turns out to be a finite dimension
C-vector space that contains a subspace of cusp forms and Hecke operators Tp associated to
prime ideals of ZK . There is a notion of newforms that are simultaneous eigenforms for all the
Hecke operators, and these form a basis for the new subspace of cusp forms.

As with Hilbert modular forms, one expects to be able to associate modular abelian varieties
over K to weight-2 Bianchi newforms f , and when Q( f ) = Q, to obtain elliptic curves over K .
But unlike the case of Hilbert modular forms, this is not quite true; there are weight-2 Bianchi
newforms with Q( f ) = Q that do not correspond to any elliptic curve E/K , but instead corre-
spond to a simple abelian surface whose endomorphism ring is an order in a quaternion algebra
(something that cannot hold for an elliptic curve over a number field).

It is however true that every elliptic curve over an imaginary quadratic field K is modular,
meaning it has the same L-function as a weight-2 Bianchi newform f with Q( f ) = Q; this was
recently proved in [12].

23.4 Siegel modular forms

For each positive integer g we define the Siegel upper half space

Hg := {z ∈Mg(C) : zT = z and Im(z)> 0}

of symmetric g × g matrices with positive definite imaginary part. Let J =
� 0 −Ig

Ig 0

�

∈M2g(Z).
The symplectic group

Sp2g(R) := {γ ∈ SL2g(R) : γTJγ= J}
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acts on Hg via “linear fractional transformations” τ 7→ (aτ+ b)(cτ+ d)−1 for
�

a b
c d

�

∈ Sp2g(Z);
note that for g > 1 this expression involves matrices and the order of multiplication matters.
This extends to an isometric action of GSp+2g(R) on Hg , where

GSp2g(R) = {γ ∈ SL2g(R) : γTJγ= λJ with λ ∈ R×}

is the group of symplectic similitudes and GSp+2g(R) is the subgroup with positive determinant.
Each τ ∈ Hg has an associated lattice Λτ := τZg ⊕Zg ⊆ Cg for which the torus Aτ = Cg/Λτ

is an abelian variety A/C equipped with the principal polarization

Eτ : (τx1 + x2,τy1 + y2) = (x
T
1 , xT

2 )J

�

y1
y2

�

.

For V ' Cg , a polarization on a torus V/Λ is a Hermitian form H : V ×V → C with H(Λ,Λ) = Z.
Every polarization induces a homomorphism v 7→ H(v, ·) to the dual torus V ∗/Λ∗, where

V ∗ :=
�

f : V → C : f (αv) = ᾱ f (v) and f (v1 + v2) = f (v1) + f (v2)
	

and Λ∗ := { f ∈ V ∗ : Im f (Λ) ⊆ Z}. This is defines an isogeny from the abelian variety A= V/Λ
and the dual abelian variety A∗ = V ∗/Λ∗; for principal polarizations this is an isomorphism.

Two elements τ,τ′ ∈ Hg define isomorphic principally polarized abelian varieties Aτ ' Aτ′
if and only if they lie in the same Sp2g(Z) orbit. We thus have a bijection between isomor-
phism classes of principally polarized abelian varieties A/C of dimension g and the quotient
Sp2g(Z)\Hg , which is a varietyAg/Q of dimension g(g +1)/2, the moduli space of principally
polarized abelian varieties of dimension g. For g = 1 the moduli space A1 corresponds to
the modular curve Y (1) = Γ (1)\H; note that Γ (1) = SL2(Z) = Sp2(Z) and H = H1. As with
Y (1) =A1, the moduli spaceAg is not compact, but it can be compactified and embedded into
projective space (analogous to the construction of X (1) from Y (1), but a bit more complicated).

We note that for g ≤ 3 the dimensions ofAg andMg coincide. HereMg is the moduli space
of nice (smooth projective geometrically connected) curves; it has dimension 1 for g = 1 and
dimension 3g−3 for g > 1. Thus almost all principally polarized abelian varieties of dimension
g ≤ 3 are Jacobians of nice curves of genus g, but this is not true for any g > 3.

We now define
Γ (N) := {γ ∈ Sp2g(Z) : γ≡ 1 mod N},

and call subgroups Γ ≤ Sp2g(Z) that contain Γ (N) for some N congruence subgroups. For g > 1
a holomorphic function f : Hg → C is a (classical) Siegel modular form of (parallel even) weight
k ∈ 2Z for a congruence subgroup Γ if it is invariant under the weight-k slash operator

( f |kγ)(τ) := (det J(γ,τ)−k f (γτ),

for all γ =
�

A B
C D

�

∈ Γ , where J(γ,τ) = Cτ+ D. This definition coincides with the definition of
a modular form for a congruence subgroup when g = 1 except the holomorphicity condition at
the cusps is omitted because it is automatically satisfied (by Koecher’s principle).

This definition can be generalized in many ways, including to non-parallel weights and
vector-valued functions associated to representations of GLg(C), but for the purpose of this
introduction there is one particular generalization we want to consider, and to simplify matters
we will restrict to g = 2. Rather than a congruence subgroup Γ ≤ Sp2g(Z) we instead use a
paramodular group

K(N) :=







Z NZ Z Z
Z Z Z Z/N
Z NZ Z Z

NZ NZ NZ Z






∩ Sp4(Q).
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Points on the quotient K(N)\H2 now correspond to (1, N)-polarized abelian surfaces, but this
distinction won’t concern us here; the connection between modular forms and abelian varieties
is via their L-functions and operates at the level of isogeny classes (recall that polarizations are
isogenies); the L-function of an abelian variety is independent of its polarization.

Modular forms for paramodular groups are called paramodular forms. There is a nice theory
of Hecke operators, eigenforms, and newforms for paramodular groups that is conjectured to
have all the properties one would like; in particular the new subspace of cuspidal paramodular
forms of weight k and level N has a basis consisting of newforms that are normalized eigenforms
for all of the Hecke operators Tp for p - N . The theory of newforms is more complicated than
in the classical case (there are three different ways in which a paramodular form of level M |N
can arise as a paramodular form of level N , as well as Gritsenko lifts of Jacobi forms that need
to be excluded), but this theory is now well understood [9].

23.5 The paramodular conjecture

For abelian surfaces there is a conjectured analog of the modularity of elliptic curves known as
the paramodular conejecture, due to Brumer and Kramer [2].

Conjecture 23.3 (Paramodular conjecture). Let A/Q be an abelian surface of conductor N with
End(A) = Z. Then L(A, s) = L( f , s) for some weight-2 paramodular newform of level N with
rational Hecke eigenvalues. Conversely, for every weight-2 paramodular newform of level N with
rational Hecke eigenvalues we have L( f , s) = L(A, s) for an abelian variety A/Q that is either an
abelian surface of conductor N with End(A) = Z, or an abelian fourfold of conductor N2 with
End(A) an order in a non-split quaternion algebra.

Both directions of this conjecture are open and highly non-trivial; in particular, there is no
analog of the Eichler–Shimura construction that allows one to associate an abelian variety to a
weight-2 paramodular newform. In fact there has been more progress toward proving the first
part of the conjecture (the modularity of abelian surfaces) than the second (which for g = 1 was
known long before the modularity of elliptic curves, due to the Eichler–Shimura construction).
The necessity of allowing for the case of QM abelian fourfolds noted by Frank Calegari highlights
the difficulty and is analogous to the situation with weight-2 Bianchi newforms with rational
Hecke eigenvalues that correspond to QM abelian surfaces rather than elliptic curves.

The paramodular conjecture has now been verified for many abelian surfaces over Q with
small conductor N , including for N = 277, which is the first level where one finds paramodular
newforms with rational Hecke eigenvalues and believed to be the smallest conductor of an
abelian surface A/Q with End(A) = Z. There are two abelian surfaces A of conductor 277, both
of which are isogenous to the Jacobian of

y2 + (x3 + x2 + x + 1)y = −x2 − x ,

which is the genus 2 curve with label 277.a.277.1 in the LMFDB. Infinite families of abelian
surfaces over Q for which the paramodular conjectures holds are now known [3], building on
the potential modular results of Boxer, Calegari, Gee, and Pilloni [1]. Very recently the same
authors have announced a proof that the paramodular conjecture holds for a positive proportion
of abelian surfaces over Q (but the new result uses different techniques).

One can define paramodular groups K(N) ≤ Sp2g(Q) for even g > 2, but in general the
quotient K(N)\Hg parameterizes abelian varieties whose endomorphism ring is an order in a
totally real field of degree g/2. For g > 2 these abelian varieties are not fully general and do
not account for a positive proportion of abelian varieties of dimension g.
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23.6 Shimura varieties

We have seen that modular curves that parameterize elliptic curves equipped with a level struc-
ture, Siegel modular varieties that parameterize abelian varieties equipped with a polarization,
and paramodular varieties that parameterize abelian varieties whose endomorphism rings are
orders in a totally real field. These are all special cases of Shimura varieties, and in particular,
PEL type Shimura varieties, that parameterize abelian varieties with a particular polarization
(P), endomorphism ring (E), and level structure (L).

We won’t attempt to give a formal definition of Shimura varieties here, but they generally
start with a complex manifold M (such as M = H) endowed with a Hermitian metric (such
as the hyperbolic metric) that is induced by the Haar measure of a locally compact topological
group (such as SL2(R)) acting via isometries. Moreover, this topological group corresponds to
the real points G(R) of aQ-algebraic group G (such as G = SL2). This allows us to then consider
arithmetic lattices Γ ≤ G(R) (such as SL2(Z)) and Shimura varieties X = Γ\M formed by the
quotient that are defined over a finite extension of Q and which parameterize abelian varieties
equipped with certain structures.
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