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21.1 Level structure

Let N ≤ Z≥1 and let E/k be an elliptic curve over a perfect field k of characteristic prime to N .
To simply notation, we put Z(N) := Z/NZ and GL2(N) := GL2(Z/NZ).

Each basis (P1, P2) for E[m] = 〈P1, P2〉 defines an isomorphism ι : E[N] ∼−→ Z(N)2 that sends
P1 to e1 :=

�

1
0

�

and P2 to e2 :=
�

0
1

�

. This induces an isomorphism Aut(E[N]) ∼−→ GL2(N) that
we also denote ι. For φ ∈ Aut(E[N]) with

φ(P1) = aP1 + cP2

φ(P2) = bP1 + dP2

we define

ι(φ) :=

�

a b
c d

�

,

so that

ι(φ(P1)) = (
a
c ) =

�

a b
c d

� �

1
0

�

= ι(φ)ι(P1)

ι(φ(P2)) =
�

b
d

�

=
�

a b
c d

� �

0
1

�

= ι(φ)ι(P2).

This is consistent with the left action of GL2(N) on Z(N)2. The isomorphism ι allows us to view
the mod-N Galois representation

ρE,N : Galk→ Aut(E[N])
ι
∼−→ GL2(N)

as a continuous group homomorphism Galk→ GL2(N).
When k has characteristic zero, each compatible system of bases for E[N] for all positive

integers N induces an isomorphism ι : Aut(T (E)) ∼−→ GL2(bZ), where

T (E) := E(k̄)tor = lim←−
N

E[N]' bZ2

is the adelic Tate module. The isomorphism ι allows us to view the Galois representation

ρE : Galk→ Aut(T (E))
ι
∼−→ GL2(bZ)

as a continuous group homomorphism Galk→ GL2(bZ). Recall that the level of an open subgroup
H ≤ GL2(bZ) is the least N ∈ Z≥1 for which H = π−1

N (πN (H)), where πN : GL2(bZ)→ GL2(N) is
the canonical projection associated to the inverse limit GL2(bZ)' lim←−N

GL2(N).

Definition 21.1. For H ≤ GL2(N), an H-level structure on an elliptic curve E is an equivalence
class [ι]H of isomorphisms ι : E[N]→ Z(N)2, where ι ∼ ι′ whenever ι = h ◦ ι′ for some h ∈ H,
where h ∈ H ≤ GL2(N) = Aut(E[N]) acts as an automorphism of Z(N)2; this action gives the
abelian group Hom(E[N],Z(N)2) the structure of a left H-module, and we can equivalently
view [ι]H = {h ◦ ι : h ∈ H} as the H-orbit of an isomorphism ι ∈ Hom(E[N],Z(N)2).

For open H ≤ GL2(bZ) of level N , an H-level structure on E is a πN (H)-level structure on E;
equivalently, an H-level structure on E is the H-orbit of an isomorphism ι ∈ Hom(T (E), bZ2).

When H ∈ GL2(N) is trivial, the H-orbits of isomorphisms ι ∈ Hom(E[N],Z(N)2) are sin-
gletons, each corresponding to a choice of basis (P1, P2) for E[N]. This is the full level-N struc-
ture on E. As noted in the previous lecture, the non-cuspidal points on the modular curve
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X (N) := Γ (N)\H∗ correspond to isomorphism classes of triples (E, P1, P2), equivalently, elliptic
curves E equipped with full level-N structure. Each H ≤ GL2(N) acts on X (N) via automor-
phisms, and non-cuspidal points on the quotient H\X (N) correspond to isomorphism classes of
elliptic curves with an H-level structure.

Alternatively, we can formally define the modular curve XH as the coarse moduli space
associated to the stackMH over SpecZ[1/N] whose non-cuspidal points parameterize elliptic
curves with H-level structure, as defined by Deligne and Rapoport [1]. The theory of stacks
is beyond the scope of this course, but we can describe this stack very explicitly by giving its
functor of points, and this description allows us to compute many invariants of XH that can be
difficult to compute using a quotient of X (N), especially when N is large.

As a stack over Z[1/N] the modular curve XH can always be viewed as a smooth projective
curve over Q that has good reduction at all primes p - N ; this amounts to taking the base
change to Q and forgetting its moduli structure. But XH is a nice curve (smooth, projective,
geometrically integral) only when det(H) = bZ×, so we will restrict our attention to this case,
which is the relevant case to consider if one is interested in elliptic curves over Q.

If we put ΓH := ±H ∩ SL2(Z), then over the cyclotomic field Q(ζN ), every component of the
base change of the curve XH is isomorphic to the (nice) algebraic curve corresponding to the
Riemann surface XΓH := ΓH\H∗, which a priori is defined over C but admits a model over Q(ζN )
(but not necessarily over Q, which is another reason to consider XH).

The group ΓH ≤ SL2(Z) is necessarily a congruence subgroup, since it contains SL2(Z/NZ),
but it may also contain SL2(Z/MZ) for some proper divisor M of N . Thus the level of the
congruence subgroup ΓH need not coincide with the level of H, although it will necessarily divide
it. Indeed, there will typically be infinitely many non-conjugate open subgroups H ≤ GL2(bZ) of
varying level N that share the same intersection ΓH with SL2(Z). The corresponding modular
curves XH are all isomorphic over Qcyc =

⋃

N Q(ζN ), but not over Q; they are twists of XΓH .

21.2 Twists

Definition 21.2. Two curves X , X ′ over a field k are twists (of each other) if X L ' X ′L for some
extension L/k. The same definition also applies to abelian varieties (and more generally to any
category of objects over a field k that has an appropriate notion of base change).

For a fixed curve X/k, the k-isomorphism classes of twists X ′ of X are parameterized by the
cohomology set H1(Galk, Aut(X k̄)). Note that Aut(X k̄) need not be abelian, so this is a pointed
set and not necessarily a group. Twisting is a subtle topic in general, but it is quite simple when
Aut(X k̄) is a finite abelian group on which Galk acts trivially, which is true in almost all cases
where X is an elliptic curve.

For an elliptic curve E/k with j(E) 6= 0, 1728 the only non-trivial isomorphism of Ek̄ is
the map that sends P to −P, in which case Aut(Ek̄) = Aut(E) ' {±1} is a cyclic group of
order 2 with trivial Galk-action. In this situation H1(Galk, Aut(Ek̄)) consists of all continuous
homomorphisms Galk → {±1}, each of which is either trivial (corresponding to a trivial twist
E′ ' E) or has a kernel whose fixed field is a quadratic extension L/k over which E′L ' EL for
some E′ 6' E that is unique up to k-isomorphism; this is the quadratic twist of E by L/k.

When k does not have characteristic 2 or 3, we can assume E is defined by a Weierstrass
equation y2 = x3 + Ax + B, in which case the map P 7→ −P simply negates the y-coordinate of
P, and if we write the fixed field of the kernel of a non-trivial element of H1(Galk, Aut(Ek̄)) as
L = k(

p
d) for some non-square d ∈ k, the twist E′ of E by L is isomorphic to d y2 = x3+Ax+B

(and also to y2 = x3 + d2Ax + d3B).

18.786 Spring 2024, Lecture #21, Page 2



Even if j(E) = 0,1728, provided k does not have characteristic 2 or 3 the automorphism
group Aut(Ek̄) is a cyclic of order 4 or 6 (for j(E) = 1728 and j(E) = 0, respectively). In
this situation Aut(Ek̄) may not be a trivial Galk-module (this depends on whether k contains a
primitive 4th or 6th root of unity), but in any case it is still easy to understand the Galk-module
structure of Aut(Ek̄) and write down Weierstrass equations for twists of E.

21.3 Modular curves XH

Let us now describe XH in terms of its functor of points. As with quotients of the upper half
plane, we will first describe YH , which effectively solves the moduli problem, and then explain
how to add “cusps" to YH so that XH can be viewed as a smooth projective curve.

Let H be an open subgroup of GL2(bZ) of level N with det(H) = Z× and let k be a perfect
field of characteristic prime to N . The set YH(k̄) consists of equivalence classes of pairs (E, [ι]H),
where E/k̄ is an elliptic curve and [ι]H is an H-level structure on E. We have an equivalence
(E, [ι]H) ∼ (E′, [ι′]H) whenever there is an isomorphism φ : E → E′ for which the induced
isomorphismφN : E[N]→ E′[N] satisfies ι ∼ ι′◦φN , meaning ι = h◦ι′◦φN for some h ∈ πN (H).

Equivalently, YH(k̄) consists of pairs ( j(E),α), where α= H gAE is a double coset in

H\GL2(N)/AE ,

where AE := {ϕN : ϕ ∈ Aut(E)}withϕN := ι(ϕ|E[N]). For j(E) 6= 0,1728 we have AE = {±1}, and
if −1 ∈ H we can identify double cosets in H\GL2(N)/{±1} with the right cosets in H\GL2(N).

Each σ ∈ Galk induces an isomorphism Eσ[N]→ E[N] defined by P 7→ σ−1(P), where Eσ

is the elliptic curve obtained by letting σ act on the coefficients of an equation defining E; let
σ−1 denote this isomorphism. We have a right Galk-action on YH(k̄) given by

(E, [ι]H) 7→ (Eσ, [ι ◦σ−1]H),

and define YH(k) to be the fixed points of this action. Each point in YH(k) is represented by a
pair (E, [ι]H), where E/k is an elliptic curve and for every σ ∈ Galk there is a ϕ ∈ Aut(Ek̄) and
h ∈ H such that

ι ◦σ−1 = h ◦ ι ◦ϕN .

Equivalently, YH(k) consists of pairs ( j(E),α) where j(E) ∈ k is the j-invariant of an elliptic
curve E/k and α= H gAE ∈ H is a double coset with H gρE,N (σ)AE = H gAE for every σ ∈ Galk.

For E/k with j(E) 6= 0,1728, if −1 ∈ H we can determine the k-rational points on YH corre-
sponding to E (if any) by computing the fixed points of ρE,N (Galk) ⊆ GL2(N) in the permutation
representation of GL2(N) given by the right action of GL2(N) on H\GL2(N). This amounts to
computing the rational points in the fiber of XH → X (1) above the point j(E) on X (1)' P1

k.

Proposition 21.3. Let H be an open subgroup of GL2(bZ) of level N and E/k be an elliptic curve. If
ρE,N (GalK)≤ H then there exists an isomorphism ι : E[N] ∼−→ Z(N)2 for which (E, [ι]H) ∈ YH(k).

Conversely, if (E, [ι]H) ∈ YH(k), then for every twist E′ of E there exists ι′ : E′[N] ∼−→ Z(N)2

with (E′, [ι′]H) ∈ YH(k), and if Aut(Ek̄) = {±1} for at least one twist E′ we haveρE′,N (Galk)≤ H.

Proof. If ρE,N (Galk) ≤ H then Galk fixes the trivial double coset HαAE with α = 1, and we
have ( j(E),α) ∈ YH(k). For the converse, if E′ is a twist of E, then we have an isomorphism
φ : E′

k̄
∼−→ Ek̄ that induces an isomorphism φN : E′[N] ∼−→ E[N], and if we put ι′ = ι ◦φN the

pairs (E, [ι]H) and (E′, [ι′]H) are equivalent (as witnessed by φ) and represent the same point
in YH(k̄), so if (E, [ι]H) lies in YH(k) then so does (E′, [ι′]H). See Problem 2 on Problem Set 7
for the final claim.
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Remark 21.4. The final claim of Proposition 21.3 actually holds whenever Aut(Ek̄) is cyclic,
which is always true provided k does not have characteristic 2 or 3; see [2, Proposition 12.2.1].

The modular curve XH is obtained from YH by adjoining cusps X∞H , whose functor of points
we now describe. The cusps in X∞H (k̄) correspond to double cosets H\GL2(N)/U(N), where
U(N) = 〈±

�

1 1
0 1

�

〉 corresponds to the stabilizer of∞ in SL2(Z). We equip X∞H (k̄) with a right
Galk-action hgu 7→ hgχN (σ)u, where the cyclotomic character χN (σ) :=

�

e 0
0 1

�

is defined by
σ(ζN ) = ζe

N . Rational cusps in X∞H (k) corresponds to double cosets in H\GL2(N)/U(N) that
are fixed by χN (Galk).

21.4 Computing the genus

The genus of a curve is invariant under base change. If follows that if we puts ΓH := ±H∩SL2(Z)
then g(XH) = g(XΓH ) (here we are assuming det(H) = bZ× so that XH is geometrically connected,
but otherwise we define the genus of H to be the genus of each of its geometric components, all
of which are isomorphic to XΓH ). In fact the genus of XΓH depends only on the intersection of
ΓH with SL2(N), where N is any multiple of the level of ΓH ; we can take N to be the level of H,
but it is more efficient to take N to be the level of ΓH .

This allows us to compute the genus of XH via the formula

g(H) = g(ΓH) = 1+
i(ΓH)
12
−
ν2(ΓH)

4
−
ν3(ΓH)

3
−
ν∞(ΓH)

2
,

where we view ΓH as a subgroup of SL2(N) that contains −1, let i(ΓH) := [SL2(N) : ΓH], let
ν2(ΓH) and ν3(ΓH) count right cosets in ΓH\SL2(N) containing conjugates of

�

0 1
−1 0

�

and
�

0 1
−1 −1

�

,
respectively, and let ν∞(ΓH) count the orbits of ΓH\SL2(N) under the right action of

�

1 1
0 1

�

.
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