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20.1 Galois representations attached to elliptic curves

Let E be an elliptic curve over a number field K . For each positive integer m we use E[m] to
denote the m-torsion subgroup of E(K). The Galois group GK := Gal(K/K) acts on E[m], since
the coordinates of P ∈ E[m] are roots of the m-division polynomials whose coefficients lie in K .
This yields the mod-m Galois representation

ρE,m : GK → Aut(E[m]).

The abelian group E[m] ' Z/mZ
⊕

Z/mZ is a free Z/mZ module of rank 2, hence its auto-
morphism group is isomorphic to GL2(Z/mZ). After fixing a Z/mZ-module basis for E[m] we
obtain a linear representation

ρE,m : GK → GL2(Z/mZ).

Note that this representation depends on a choice of basis and is defined only up to conjugation.
When m is a prime `we have Z/`Z ' F` and can view this as a 2-dimensional F`-representation.

The multiplication-by-` map P 7→ `P defines a surjective homomorphism E[`n+1]→ E[`n]
for each n ∈ Z≥0. These maps uniquely determine an inverse system that is used to define the
`-adic Tate module

T`(E) := lim←−
n

E[`n],

which is a free Z`-module of rank 2. If we fix a basis (P1,Q1) for E[`], we can then choose
(P2,Q2) so that `P2 = P1 and `Q2 = Q1, since the multiplication-by-` map defines a surjection
E[`2]� E[`] (it is a homomorphism whose kernel has cardinality #E[`] = `2 = [E[`2] : E[`]],
so it must be surjective). Continuing in this fashion yields a compatible system of bases that
allows us to identify Aut(T`(E)) with GL2(Z`) and we have the `-adic Galois representation

ρE,`∞ : GK → Aut(T`(E))' GL2(Z`).

As above, the isomorphism with GL2(Z`) depends on a choice of basis, so this representation is
determined only up to conjugation in GL2(Z`).

More generally, for any m, n ∈ Z≥1 with n|m the multiplication-by-(m/n)map defines a sur-
jective homomorphism E[m]� E[n], yielding an inverse system of torsion subgroups ordered
by divisibility, and we can consider the adelic Tate module

T (E) := lim←−
m

E[m],

which is a free bZ-module of rank 2. Now bZ '
∏

`Z`, so any choice of compatible systems of
bases for all the `-adic Tate modules T`(E) yields a compatible system of bases for T (E) and we
obtain the adelic Galois representation

ρE : GK → Aut(T (E))' GL2(bZ)'
∏

`

GL2(Z`),

which is again defined only up to conjugation on GL2(bZ).
Note that GK and GL2(bZ) are both profinite groups, hence topological groups, and the rep-

resentation ρE is continuous in this topology (in other word, ρE is a morphism of topological
groups, not just a morphism of groups). Both groups can be defined as inverse limits of finite
groups, which we regard as topological groups equipped with the discrete topology, and the
inverse limit is a topological group that is compact and totally disconnected (any two points can
be separated by open sets that partition the space).
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In the case of GK this topology is the Krull topology, and we recall that Galois theory for
infinite algebraic extensions requires that we restrict our attention to subgroups that are closed
in the Krull topology: there is a one-to-one inclusion reversing correspondence between closed
subgroups of GK and algebraic extensions of K in K , but this is not true if consider arbitrary
subgroups; indeed, every subgroup of GK with the same closure will have the same fixed field.

Under this correspondence, finite extensions of K in K correspond to finite index closed
subgroups of GK , which are necessarily also open subgroups, since their complement is a finite
union of closed cosets, hence closed. Conversely, every open subgroup of GK is a closed subgroup
of finite index (it must have finite index because GK is compact and cosets form an open subcover
with no proper subcovers, and every open subgroup of a topological group is also closed, since
it is the complement of the open set formed by the union of its cosets).

We are thus particularly interested in open subgroups H ≤ GL2(bZ). It follows from the
definition of the topology of an inverse limit of discrete groups that every such H is the inverse
image of its projection to GL2(Z/mZ) for some positive integer m; the least such m is the level
of H. The inverse image of any finite subgroup of GL2(Z/mZ) in GL2(bZ) is an open subgroup,
but note the same subgroup of GL2(bZ) can be obtained from infinitely many different values
of m. However, if we restrict our attention to subgroups of GL2(Z/mZ) that are not the inverse
image of their projection to GL2(Z/nZ) for any n|m we obtain a one-to-one correspondence
with open subgroups of GL2(bZ) of level m.

20.2 Complex multiplication

Theorem 20.1. Let E/k be an elliptic curve with endomorphism ring End(E) and endomorphism
algebra End0(E) := End(E)⊗Z Q. Then End(E) is a free Z-module of rank r that is an order in
the Q-algebra End0(E) of dimension r and exactly one of the following holds:

r = 1 End0(E) =Q and End(E) = Z;

r = 2 End0(E) is an imaginary quadratic field Q(α) with α2 < 0

r = 4 End0(E) is a non-split quaternion algebra Q(α,β) with α2,β2 < 0 and char(k) 6= 0.

Proof. See Theorem 12.17 in [1]

When k is a number field only the first two possibilities can occur, and when End0(E) is an
imaginary quadratic field we say that E has complex multiplication. Such E are rare: for any
fixed number field K the set { j(E) : End(E) 6= Z} is finite, and even if we let K range over all
number fields of degree at most d, we still obtain a finite set.

We should note that End(E) is not invariant under base change; any endomorphisms defined
over K are necessarily defined over any extension L/K , but E may acquire additional endomor-
phisms over an extension L/K . If End(EK) is an imaginary quadratic field then we say that E
has potential complex multiplication, and in this case there is a unique minimal extension L/K
of degree at most 2 for which End(EL) = End(EK): we can take L to be the compositum of K
and the imaginary quadratic field End(EK).

1

The endomorphism ring of EK has a profound impact on the Galois representation ρE . If
End(E) is an imaginary quadratic order O (so E has complex multiplication) then E[m] is not
just a free (Z/mZ)-module of rank 2, it is also a free O /mO -module of rank 1. If we fix a basis
〈P,Q〉= E[m] and consider the orbit of P under the action of End(E)' O = [1τ], we obtain all

1This fact is specific to elliptic curves; for a general abelian variety A/K whose geometric endomorphism algebra
is a field F , the minimal field L for which End(AL) = End(AK) is not necessarily KF .
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of E[m]. The endomorphisms α ∈ End(E) are defined over K , hence compatible with the action
of GK , and this implies that we can actually view the mod-m representation as a homomorphism

ρE,m : GK → GL1(O /mO )' (O /mO )×.

This implies that the image of ρE,m is an abelian subgroup of GL2(Z/mZ), which forces it to be
much smaller than GL2(Z/mZ); ignoring log factors, its cardinality will be quadratic in m, while
the cardinality of GL2(Z/mZ) is roughly quartic in m. This is true for every m and implies that
ρE(GK) is an abelian subgroup of GL2(bZ) and it cannot be open because it must have infinite
index.

Even when End(E) = Z, if End(EK) is an imaginary quadratic order O (so E has potential
complex multiplication), then over a quadratic extension L/K we will have End(EL) = O , in
which case ρE(GL) is an abelian subgroup of GL2(bZ) that has index 2 in ρE(GK); in this case
ρE(GK) will not be abelian (it be a generalized dihedral group), but it will still have infinite
index in GL2(bZ) and cannot be open.

20.3 Images of Galois representations

Theorem 20.2 (Serre’s open image theorem). Let E be an elliptic curve over a number field K.
Then ρE(GK) is an open subgroup of GL2(bZ) if and only if E does not have potential complex
multiplication.

Proof. The forward direction was argued above; the reverse direction is Théorèm 3 in [2].
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