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2 Topological group actions and Fuchsian groups

This is summary of material from §33–34 of [3] presented in lecture, with proofs omitted.

2.1 Geodesic spaces

Definition 2.1. Let X be a metric space with distance d : X → R≥0. An isometry g : X ∼−→ X is a
distance preserving homeomorphism; they form a group Isom(X ) under composition.

In Lecture 1 we saw that the isometry group of the upper half-plane Isom(H)' SL2(R)/{±1}.
In any metric space X we can define the length of a path φ : [0, 1] → X as the supre-

mum over all finite subdivisions 0 = t0 < t1 < · · · < tn < tn+1 = 1 of [0,1] of the sum
∑n

i=0 d(φ(t i),φ(t i+1) (which need not be finite). Note that this length depends only on the im-
age φ, which we denote Cx0→x1

, where x0 = φ(0) and x1 = φ(1). Conversely, given a function
` assigning lengths to paths Cx0→x1

in X , we can define

d(x , y) = inf
Cx→y

`(Cx→y),

and if the infimum exists for all x , y ∈ X , then d is a distance metric (positive on distinct points,
symmetric, and satisfies the triangle inequality), called the intrinsic metric. Metric spaces whose
distance functions can be defined in this way are called length spaces (or path metric spaces).

Definition 2.2. Shortest paths in in a length space (those that realize the infimum defining
the intrinsic metric) are called geodesic segments. A geodesic in a length space is the image
of a continuous map φ : R → X for which there exists ε > 0 such that for every t0, t1 ∈ R
with t0 < t1 < t0 + ε the image of the restriction of φ to [t0, t1] is a geodesic segment. A
geodesic space is a length space in which every pair of distinct points are connected by a geodesic
segment, and if this geodesic segment is always unique, then X is a uniquely geodesic space.

In Lecture 1 we say that H is a uniquely geodesic space. More generally, we have the fol-
lowing theorem.

Theorem 2.3 (Hopf-Rinow). Every complete locally compact metric space is a geodesic space.

Proof. See [1, Prop. I.3.7].

2.2 Haar measures

Definition 2.4. Let X be a locally compact Hausdorff space. The σ-algebra Σ of X is the collec-
tion of subsets of X generated by the open and closed sets under countable unions and countable
intersections. Its elements are Borel sets, or measurable sets. A Borel measure on X is a count-
ably additive function

µ: Σ→ R≥0 ∪ {∞}.

A Radon measure on X is a Borel measure on X that additionally satisfies

(i) µ(S)<∞ if S is compact,

(ii) µ(S) = inf{µ(U) : S ⊆ U , U open},

(iii) µ(S) = sup{µ(C) : C ⊆ S, C compact},
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for all Borel sets S.1

Definition 2.5. A (left) Haar measure µ on a locally compact Hausdorff group G is a nonzero
Radon measure that is translation invariant: µ(S) = µ(gS) for all g ∈ G and measurable S ⊆ G.
Replacing µ(gS) with µ(Sg) yields a right Haar measure, and if µ is both a left and a right Haar
measure then µ and G are said to be unimodular.

It follows from the left and right invariance of the measure dα on SL2(R) defined in Lecture 1
that SL2(R) is unimodular. We used the homeomorphism SL2(R)/SO(2)' H defined by gSO2→
gi to define this measure. But SL2(R) ⊆ M2(R) ' R4 inherits a natural metric space structure
with distance function d(α,β) = ‖α− β‖, where
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2
= a2 + b2 + c2 + d2,

which is related to the distance metric d on H via

‖α‖2 = 2cosh d(i,αi).

Theorem 2.6 (Weil). Every locally compact Hausdorff group G has a Haar measure µ, and if µ′

is any other Haar measure on G then µ′ = λµ for some λ ∈ R>0.

Proof. See [2, §7.2].

2.3 Topological group actions

Recall that a covering map f : X → Y is a continuous surjection for which every y ∈ Y has an
open neighborhood V whose preimage f −1(V ) is a disjoint union of open Uα ⊆ X on which
π restricts to a homeomorphism Uα → V , in which case X is a covering space of Y . A deck
transformation of is a homeomorphism φ : X ∼−→ X that preserves f , meaning f ◦φ = f = f ◦φ.
The deck transformations form a group Deck( f ), which acts on X , with each Deck( f )-orbit lying
in a fiber of f . If we actually have Deck( f )\X ' Y , then f is a normal covering map.

Definition 2.7. The action of a topological group G on a topological space X is a covering space
action if every x ∈ X has an open neighborhood U for which

ρ(G, U) := {g ∈ G : U ∩ gU 6= ;}= {1}.

If G is a covering space action, then π: X → G\X is a normal covering map and G ⊆ Deck(π).

Covering space actions are free actions, since Gx ⊆ ρ(G, U) for every open U 3 x , but the
actions we are most interested have non-trivial stabilizers and cannot be covering space actions.
This leads to the following definition.

Definition 2.8. The action of a topological group G on a topological space X is wandering if
every x ∈ X has an open neighborhood U for which ρ(G, U) is finite.

Lemma 2.9. For a Hausdorff group G acting on a Hausdorff space X the following are equivalent:

(i) The action of G is wandering;

(ii) Every x ∈ X has open neighborhood U for which ρ(G, U) = Gx is finite.

1Some authors additionally require X to be σ-compact (a countable union of compact sets); all the X we shall
consider are σ-compact.
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If G acts freely these equivalent conditions hold if and only if the G-action is a covering space action.

Proof. This is [3, Lemma 34.3.6].

Lemma 2.10. For a Hausdorff group G acting on a Hausdorff space X the following are equivalent:

(i) G\X is Hausdorff;

(ii) If Gx 6= G y then there are open U 3 x and V 3 y for which gU ∩ V = ; for all g ∈ G;

(iii) The set {(x , g x) : g ∈ G, x ∈ X } ⊆ X × X is closed.

Proof. This is [3, Lemma 34.4.1].

Recall that a continuous map f : X → Y is quasiproper if inverse images of compact sets are
compact, and if it is also a closed map then f is proper.

Lemma 2.11. Every quasiproper continuous map of locally compact Hausdorff spaces is proper.

Proof. See [3, Lemma 34.4.5].

Definition 2.12. A topological group G acts properly on a topological space X if the action map
λ: G × X → X × X defined by (g, x) 7→ (x , g x) is proper.

Proposition 2.13. Let G be a Hausdorff group acting properly on a Hausdorff space X . Then the
following hold:

(i) G\X is Hausdorff;

(ii) Every G-orbit Gx is closed;

(iii) The map G/Gx → Gx defined by g 7→ g x is a homeomorphism;

(iv) Every stabilizer Gx is compact.

Proof. (i)–(iii) follow from Lemma 2.10, since λ(G×X ) is closed, and (iv) follows from the fact
that the singleton set (x , x) ∈ X × X is compact, so Gx ' Gx × {x}= λ−1(x , x) is too.

Theorem 2.14. Let G be a Hausdorff group acting on a locally compact Hausdorff space X . The
following are equivalent:

(i) G is discrete and the G-action is proper;

(ii) For every compact K ⊂ X the set {g ∈ G : K ∩ gK 6= ;} is finite;

(iii) For every compact K , L ⊂ X the set {g ∈ G : K ∩ g L 6= ;} is finite;

(iv) For all x , y ∈ X there exist open U 3 x, V 3 y for which {g ∈ G : U ∩ gV 6= ;} is finite.

These four equivalent conditions imply the following two:

(v) The G-action is wandering;

(vi) Every orbit Gx is discrete and every stabilizer Gx is finite.

When X is metrizable and G acts via isometries, all six conditions are equivalent.

Proof. This is [3, Theorem 34.5.1].

18.786 Spring 2024, Lecture #2, Page 3



2.4 Fuchsian groups

Proposition 2.15. Let Γ be a subgroup of SL2(R) or PSL2(R). The action of Γ on H is wandering
if and only if Γ is discrete.

Proof. The action of Γ ⊆ SL2(R) is is the same as that of its image in PSL2(R), and Γ is discrete
if and only if its image in PSL2(R) is discrete. For Γ ⊆ PSL2(R) see [3, Proposition 34.7.2].

Definition 2.16. A Fuchsian group is a discrete subgroup of SL2(R) or PSL2(R).
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