19.1 The *j*-function

Let *L* be a lattice in \mathbb{C} (a discrete cocompact subgroup). The weight-*k* Eisentstein series for *L* is

$$G_k(L) \coloneqq \sum_{\omega \in L - \{0\}} \frac{1}{\omega^k},$$

which vanishes for odd *k* and converges for all k > 2. After replacing *L* with λL for some $\lambda \in \mathbb{C}^{\times}$ we may assume *L* is the lattice spanned by $[1, \tau]$ for some $\tau \in \mathbf{H}$. We then have

$$G_k(z) \coloneqq G_k([1,\tau]) = \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{1}{(m+nz)^k},$$

thus for k > 2 we may view $G_k(\tau)$ as a holomorphic function $\mathbf{H} \to \mathbb{C}$ that satisfies

$$G_k(\tau + 1) = G_k(\tau)$$
 and $G_k(-1/\tau) = \tau^k G_k(\tau)$.

This implies that $G_k|_k \gamma = G_k$ for all $\gamma \in SL_2(\mathbb{Z}) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \rangle$. For even *k* we have

$$\lim_{\mathrm{Im}\,\tau\to\infty}G_k(\tau)=2\zeta(k),$$

and $G_k(z)$ is holomorphic and nonvanishing at the cusps, makeing it a (non-cuspidal) modular form of weight *k* for $\Gamma(1) = SL_2(\mathbb{Z})$.

The Weierstrass \wp -function for *L* is defined by

$$\wp(z:L) := \frac{1}{z^2} + \sum_{\omega \in L - \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

It is a meromorphic function on \mathbb{C} that is periodic with respect to $L: \varphi(z+\omega) = \varphi(z)$ for $\omega \in L$; in other words, it is an elliptic function. It has poles of order 2 at each $\omega \in L$ is holomorphic elsewhere. The Laurent series expansion of $\varphi(z)$ as z = 0 is

$$\wp(z) = \frac{1}{z^2} + \sum_{n \ge 1} (2n+1)G_{2n+2}(L)z^{2n},$$

and one can use this to show that $\rho(z) = \rho(z; L)$ satisfies the differential equation

$$\wp'(z) = 4\wp(z)^3 - g_4(L)\wp(z) - g_6(L),$$

where $g_4(L) := 60G_4(L)$ and $g_6(L) := 140G_6(L)$. The map $z \mapsto (\wp(z), \wp'(z))$ defines an isomorphism from the torus \mathbb{C}/L (which is a Riemann surface of genus 1) to the elliptic curve

$$E_L: y^2 = 4x^3 - g_4(L)x - g_6(L),$$

with nonzero discriminant $\Delta(L) := g_4(L)^3 - 27g_6(L)^2$, which sends $\omega \in L$ to the projective point $\infty := (0 : 1 : 0)$ on E_L , which serves as the identity element of the group $E_L(\mathbb{C})$. The discriminant function $\Delta(\tau) := \Delta([1, \tau])$ is a cusp form of weight 12.

Definition 19.1. The *j*-invariant of the lattice *L*, and of the elliptic curve E_L , is defined by

$$j(L) = 1728 \frac{g_2(L)^3}{\Delta(L)} = 1728 \frac{g_2(L)^3}{g_2(L)^3 - 27g_3(L)^3} \in \mathbb{C}.$$

If we write the E_L in the form $y^2 = x^3 + Ax + B$ with $g_4(L) = -4A$ and $g_6(L) = -4B$ then

$$j(E_L) = 1728 \frac{4A^3}{4A^3 + 27B^2},$$

which defined the *j*-invariant of elliptic curves E/k for any field *k* whose characteristic is not 2 or 3 (and there are generalizations that work over any field).

We call lattices *L* and *L'* homothetic if $L' = \lambda L$ for some $\lambda \in \mathbb{C}^{\times}$.

Theorem 19.2. Lattices L and L' are homothetic if and only if j(L) = j(L'), and if and only if the corresponding elliptic curves E_L and $E_{L'}$ are isomorphic.

Proof. See Theorem 15.5 and Corollary 15.6 in [1].

Theorem 19.3 (Uniformization theorem). The functor $L \mapsto E_L$ defines an equivalence of categories of complex tori \mathbb{C}/L up to homethety and elliptic curves E/\mathbb{C} up to isomorphism. The map $\mathbb{C}/L \to E_L(\mathbb{C})$ defined by $z \mapsto (\wp(z), \wp'(z))$ is an isomorphism of compact Lie groups.

Proof. See Corollary 15.12 in [1].

Now consider $j(\tau) := j([1, \tau])$ as a holomorphic function $\mathbf{H} \to \mathbb{C}$. We have $j(\gamma \tau) = j(\tau)$ for all $\gamma \in \Gamma(1) = SL_2(\mathbb{Z})$, thus $j(\tau)$ is a modular function. It is not a modular form (of weight 0) because it is not holomorphic at the cusps: it has a pole at ∞ .

The function $j(\tau)$ defines an isomorphism from $Y(1) \coloneqq \mathbf{H}/\Gamma(1)$ to the affine line $\mathbb{A}^1(\mathbb{C})$ that extends to an isomorphism from $X(1) \coloneqq \mathbf{H}^*/\Gamma(1)$ to the projective line $\mathbb{P}^1(\mathbb{C})$.

If we put $q = e^{2\pi i \tau}$ the *q*-expansion of the *j*-function is

$$j(\tau) = \frac{1}{q} + 744 + \sum_{n \ge 1} a_n q^n$$

with $a_n \in \mathbb{Z}$. This explains the factor 1728 in the definition of $j(\tau)$; it is the least integer that makes the *q*-expansion of $j(\tau)$ integral.

19.2 Isogenies

Morphisms of complex tori $\varphi : \mathbb{C}/L_1 \to \mathbb{C}/L_2$ are induced by holomorphic functions $f : \mathbb{C} \to \mathbb{C}$ for which the following diagram commutes

$$\begin{array}{c} \mathbb{C} \xrightarrow{f} \mathbb{C} \\ \downarrow \pi_1 & \downarrow \pi_2 \\ \mathbb{C}/L_1 \xrightarrow{\varphi} \mathbb{C}/L_2 \end{array}$$

One can show that, up to homethety, we can always take f to be a multiplication-by- α map $z \mapsto \alpha z$ for some $\alpha \in \mathbb{C}^{\times}$ for which $\alpha L_1 \subseteq L_2$. The corresponding homomorphism φ_{α} is then defined by $z + L_1 \mapsto \alpha z + L_2$. We have an isomorphism of abelian groups

$$\left\{\alpha \in \mathbb{C} : \alpha L_1 \subseteq L_2\right\} \xrightarrow{\sim} \left\{\varphi : \mathbb{C}/L_1 \to \mathbb{C}/L_2\right\} = \operatorname{Hom}(\mathbb{C}/L_1, \mathbb{C}/L_2),$$

and if $L_1 = L_2$ this is an isomorphism of commutative rings. For most lattice *L* we have $\operatorname{End}(\mathbb{C}/L) = \mathbb{Z}$, but if *L* is homothetic to an ideal in an imaginary quadratic order \mathcal{O} then $\operatorname{End}(\mathbb{C}/L) \simeq \mathcal{O}$ (this is the theory of complex multiplication).

Definition 19.4. An isogeny of elliptic curves is a nonconstant morphism $\phi : E_1 \to E_2$ that is compatible with the group law. The degree of an isogeny ϕ is its degree as a rational map, equivalently, the degree of the extension of function fields induced by ϕ (for each $f \in k(E_2)$ we have $f \circ \phi \in k(E_1)$ and a field extension $k(E_1)/\phi^*(k(E_2))$. We say that ϕ is separable if the extension $k(E_1)/\phi^*(k(E_2))$ is separable (always true in characteristic zero).

If $L_1 \subseteq L_2$ then L_2/L_1 is a finite abelian group and the inclusion $L_1 \subseteq L_2$ induces a morphism $\mathbb{C}/L_1 \to \mathbb{C}/L_2$ via $z + L_1 \mapsto z + L_2$ and a corresponding isogeny of elliptic curves $\phi : E_{L_1} \to E_{L_2}$ whose kernel is isomorphic to L_2/L_1 with deg $\phi = [L_2 : L_1]$. If we put $N = [L_2 : L_1]$ then we also have an inclusion $NL_2 \subseteq L_1$ that induces an isogeny in the reverse direction of the same degree called the dual isogeny. The composition of these two isogenies (in either order) is equivalent to multiplication-by-N.

The kernel of the multiplication-by-*N* map on any lattice *L* or elliptic curve E/\mathbb{C} is isomorphic to $\mathbb{Z}/N\mathbb{Z}\oplus\mathbb{Z}/N\mathbb{Z}$. We call an isogeny cyclic if its kernel is a cyclic group. If $\phi : E_1 \to E_2$ is a cyclic isogeny of degree *N* then its kernel is isomorphic to $\mathbb{Z}/N\mathbb{Z}$ and $\phi(E_1[N])$ is a cyclic subgroup of $E_2[N]$ that is the kernel of the dual isogeny $\hat{\phi}$.

For any elliptic curve E/k the kernel of any isogeny $\phi : E \to E'$ is a finite subgroup of $E(\bar{k})$ whose order divides deg ϕ , with equality if and only if ϕ is separable. Conversely, every finite subgroup of $E(\bar{k})$ is the kernel of a separable isogeny that is unique up to isomorphism; Vélu's formulas allow one to explicit construct this isogeny and an equation for its codomain.

19.3 Modular curves

Recall the modular curves $X_0(N) := \mathbf{H}^*/\Gamma_0(N)$ and $X_1(N) := \mathbf{H}^*/\Gamma_1(N)$. These are compact Riemann surfaces, hence smooth projective curves over \mathbb{C} , but in fact they have models over \mathbb{Q} that allow us to view them as smooth projective curves over any field whose characteristic does not divide *N*.

For $X_0(1) = X_1(1) = X(1)$, we have $\mathbb{C}(X(1)) = \mathbb{C}(j)$ generated by the *j*-function (this follows from the fact that $j(\tau)$ defines an isomorphism $X(1) \simeq \mathbb{P}^1$ and meromorphic functions on \mathbb{P}^1 are rational functions).

If Γ is any congruence subgroup, the inclusion $\Gamma \subseteq \Gamma(1)$ induces morphism of modular curves $X_{\Gamma} \to X(1)$. Thus every modular curve comes equipped with a map to the *j*-line $X(1) \simeq \mathbb{P}^1$. It follows that each non-cuspidal point on X_{Γ} can be associated to an elliptic curve, and this makes applies not only over \mathbb{C} , but for any field over which X_{Γ} is defined.

Assuming Γ contains -1, the degree of the morphism $X_{\Gamma} \to X(1)$ is $[\Gamma(1): \Gamma]$, which is the degree of the function field extension $\mathbb{C}(X_{\Gamma})/\mathbb{C}(j)$. We now consider the function field $\mathbb{C}(X_0(N))$.

Theorem 19.5. For each positive integer N the function $j_N(\tau) \coloneqq j(N\tau)$ is a modular function for $\Gamma_0(N)$ that generates the extension $\mathbb{C}(X_0(N))/\mathbb{C}(j)$, in other words, $\mathbb{C}(X_0(N)) = \mathbb{C}(j, j_N)$.

Proof. See Theorems 19.13 and 19.14 in [1].

Note that while $\mathbb{C}(j)$ is a transcendental extension of \mathbb{C} , the field $\mathbb{C}(j, j_N)$ is a finite (hence algebraic) extension of $\mathbb{C}(j)$.

Definition 19.6. The (classical) modular polynomial $\Phi_N(Y) \in \mathbb{C}(j)[Y]$ is the minimal polynomial of j_N over $\mathbb{C}(j)$. If we replace each occurrence of j in the coefficients of Φ_N with X, we obtain a bivariate polynomial $\Phi_N \in \mathbb{Z}[X, Y]$ that satisfies $\Phi_N(X, Y) = \Phi_N(Y, X)$.

Theorem 19.7. For $j_1, j_2 \in \mathbb{C}$ we have $\Phi_N(j_1, j_2) = 0$ if and only if j_1 and j_2 are the *j*-invariants of elliptic curves E_1, E_2 over \mathbb{C} for which there exists a cyclic isogeny $\phi : E_1 \to E_2$ of degree N.

Proof. See Theorem 20.3 in [1] for a proof in the case where *N* is prime.

Remark 19.8. If E_1 and E_2 are related by an isogeny $\phi : E_1 \to E_2$ of degree N, the pair $(j(E_1), j(E_2))$ does not necessarily determine ϕ uniquely (not even up to isomorphism), as it is possible for there to be two cyclic isogenies of degree N from E_1 to E_2 that have distinct kernels. This occurs precisely when $j(E_2)$ is a double root of the polynomial $\Phi_N(j(E_1), Y)$.

The connection between $\Gamma_0(N)$ and isogenies can be seen in two ways. First, there is a oneto-one correspondence between cyclic subgroups H of $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$ of order N and cosets of $\Gamma_0(N)$ in $\Gamma(1)$. Alternatively, if we fix a basis $\langle P, Q \rangle$ of $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$ so that $H = \langle P \rangle$, then the matrices in $GL_2(\mathbb{Z}/N\mathbb{Z})$ that send P to a multiple of P and therefore stabilize H are precisely the upper triangular matrices; if we restrict to matrices of determinant 1, these are precisely the reductions of elements of $\Gamma_0(N)$ modulo N.

This leads to the moduli interpretation of $X_0(N)$. There is a one-to-one correspondence between non-cuspidal points in $X_0(N)(\mathbb{C})$ and equivalence classes of pairs $(E, \langle P \rangle)$, where *E* is an elliptic curve and $P \in E[N]$ is a point of order *N*. We regard two pairs $(E, \langle P \rangle)$ and $(E', \langle P' \rangle)$ to be equivalent whenever there is an isomorphism $\iota : E \to E'$ for which $\langle P' \rangle = \langle \iota(P) \rangle$.

Let us now consider the modular curve $X_1(N)$. Matrices in $\Gamma_1(N)$ don't just fix a cyclic subgroup of $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ of order N, they fix a point of order N, and there is a one-toone correspondence between non-cuspidal points in $X_1(N)(\mathbb{C})$ and equivalence classes of pairs (E, P), where E is an elliptic curve and $P \in E[N]$ is a point of order N, where we now regard pairs (E, P) and (E', P') as equivalent if there is an isomorphism $\iota : E \to E'$ for which $P' = \iota(P)$.

For the modular curve X(N) we have a one-to-one correspondence between non-cuspidal points in $X(N)(\mathbb{C})$ and equivalence classes of triples (E, P, Q) where $E[N] = \langle P, Q \rangle$ and equivalence involves an isomorphism $\iota : E \to E'$ with $\iota(P) = P'$ and $\iota(Q) = Q'$.

Every matrix in $GL_2(\mathbb{Z}/N\mathbb{Z})$ defines an automorphism of X(N) via its action on P and Q, so given any subgroup $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$ we can consider the quotient curve X(N)/H. If we take H to be the subgroup of upper triangular matrices in $GL_2(\mathbb{Z}/N\mathbb{Z})$, this quotient is $X_0(N)$, and restricting to upper triangular matrices with a 1 in the upper left corner yields $X_1(N)$.

Unlike the curves $X_0(N)$ and $X_1(N)$, which have models over \mathbb{Q} , the curve X(N) is defined over $\mathbb{Q}(\zeta_N)$ (so over \mathbb{Q} only when $N \leq 2$). But if H is a subgroup of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ for which $\det(H) = (\mathbb{Z}/N\mathbb{Z})^{\times}$, the quotient X(N)/H will have a model over \mathbb{Q} .

References

[1] Andrew V. Sutherland, Lecture notes for Elliptic Curves (18.783), 2023.