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19.1 The j-function
Let L be a lattice in C (a discrete cocompact subgroup). The weight-k Eisentstein series for L is
G)= > =
k T (,()k b
welL—{0}

which vanishes for odd k and converges for all k > 2. After replacing L with AL for some A € C*
we may assume L is the lattice spanned by [1, 7] for some 7 € H. We then have

1
Gi(z) = Ge([1,7]) = mﬂZﬂ T
(m,n)#(0,0)
thus for k > 2 we may view G;(7) as a holomorphic function H — C that satisfies
G(t+1)=Gi(r) and  Gi(=1/7)=7*GL(7).
This implies that G|,y = Gy for all y € SL,(Z) = (( 3 D),00 % > For even k we have

Llim_Gi(r) = 2¢(K),

and Gy (z) is holomorphic and nonvanishing at the cusps, makeing it a (non-cuspidal) modular
form of weight k for I'(1) = SL,(Z).
The Weierstrass p-function for L is defined by

" 1
p(z:L):= =+ weLZ:{O}((Z_w)Z wz)'

It is a meromorphic function on C that is periodic with respect to L: p(z+ w) = p(z) for w € L;
in other words, it is an elliptic function. It has poles of order 2 at each w € L is holomorphic
elsewhere. The Laurent series expansion of p(z) asz =0 is

0() = =5 + D20+ a5

n>1

and one can use this to show that p(z) = p(z; L) satisfies the differential equation

() = 4p(2)* — g4(L)p(2) — g6(L),

where g4(L) := 60G4(L) and g¢(L) := 140G4(L). The map z — (p(z), p’(z)) defines an isomor-
phism from the torus C/L (which is a Riemann surface of genus 1) to the elliptic curve

Ep: y? =4x®—g4(L)x — ge(L),

with nonzero discriminant A(L) = g4(L)® — 27g4(L)?, which sends w € L to the projective
point oo := (0 : 1 : 0) on E;, which serves as the identity element of the group E;(C). The
discriminant function A(7) := A([1, 7]) is a cusp form of weight 12.

Definition 19.1. The j-invariant of the lattice L, and of the elliptic curve E;, is defined by

gz(L)3 _ gz(L)3
A(L) 172882(L)3—2783(L)3

j(L)=1728
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If we write the E; in the form y? = x3 + Ax + B with g,(L) = —4A and g4(L) = —4B then

4A3
() =1728————
J(EL) 473 + 2782

which defined the j-invariant of elliptic curves E/k for any field k whose characteristic is not 2
or 3 (and there are generalizations that work over any field).

We call lattices L and L’ homothetic if L' = AL for some A € C*.

Theorem 19.2. Lattices L and L’ are homothetic if and only if j(L) = j(L’), and if and only if the
corresponding elliptic curves E; and E;, are isomorphic.

Proof. See Theorem 15.5 and Corollary 15.6 in [1]. O

Theorem 19.3 (Uniformization theorem). The functor L — E; defines an equivalence of cate-
gories of complex tori C/L up to homethety and elliptic curves E/C up to isomorphism. The map
C/L — E;(C) defined by z — (p(2), p’(2)) is an isomorphism of compact Lie groups.

Proof. See Corollary 15.12 in [1]. O

Now consider j(7) := j([1, 7]) as a holomorphic function H — C. We have j(yt) = j(7) for
all y € T(1) = SLy(Z), thus j(t) is a modular function. It is not a modular form (of weight 0)
because it is not holomorphic at the cusps: it has a pole at co.

The function j(7) defines an isomorphism from Y (1) := H/T'(1) to the affine line A!(C) that
extends to an isomorphism from X (1) := H*/T'(1) to the projective line P!(C).

If we put g = e?™" the g-expansion of the j-function is

1
j(t)=—-+744+ Zanq”
q n=1

with a, € Z. This explains the factor 1728 in the definition of j(7); it is the least integer that
makes the g-expansion of j(7) integral.
19.2 Isogenies

Morphisms of complex tori ¢: C/L; — C/L, are induced by holomorphic functions f: C — C
for which the following diagram commutes

f

C——C

lnl lnz

C/L; —— C/L,

One can show that, up to homethety, we can always take f to be a multiplication-by-a map
z — az for some a € C* for which aL; € L,. The corresponding homomorphism ¢, is then
defined by 2 + L; — az + L,. We have an isomorphism of abelian groups

{a e€eC:al; C Lz} = {cp: C/L; — (C/Lz} =Hom(C/L{,C/L,),

and if Ly = L, this is an isomorphism of commutative rings. For most lattice L we have
End(C/L) = Z, but if L is homothetic to an ideal in an imaginary quadratic order & then
End(C/L) ~ O (this is the theory of complex multiplication).
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Definition 19.4. An isogeny of elliptic curves is a nonconstant morphism ¢ : E; — E, that is
compatible with the group law. The degree of an isogeny ¢ is its degree as a rational map,
equivalently, the degree of the extension of function fields induced by ¢ (for each f € k(E,)
we have f o ¢ € k(E;) and a field extension k(E;)/¢*(k(E,). We say that ¢ is separable if the
extension k(E;)/¢*(k(E,)) is separable (always true in characteristic zero).

If L, € L, then L, /L, is a finite abelian group and the inclusion L; € L, induces a morphism
C/L, — C/L, viaz + Ly — 2z + L, and a corresponding isogeny of elliptic curves ¢ : E; — E,
whose kernel is isomorphic to L,/L; with deg¢ = [L, : L;]. If we put N = [L, : L;] then we
also have an inclusion NL, C L; that induces an isogeny in the reverse direction of the same
degree called the dual isogeny. The composition of these two isogenies (in either order) is
equivalent to multiplication-by-N.

The kernel of the multiplication-by-N map on any lattice L or elliptic curve E/C is isomorphic
to Z/NZ@®Z/NZ. We call an isogeny cyclic if its kernel is a cyclic group. If ¢ : E; — E, is a cyclic
isogeny of degree N then its kernel is isomorphic to Z/NZ and ¢(E;[N]) is a cyclic subgroup
of E,[N] that is the kernel of the dual isogeny ¢.

For any elliptic curve E/k the kernel of any isogeny ¢ : E — E’ is a finite subgroup of E(k)
whose order divides deg ¢, with equality if and only if ¢ is separable. Conversely, every finite
subgroup of E(k) is the kernel of a separable isogeny that is unique up to isomorphism; Vélu’s
formulas allow one to explicit construct this isogeny and an equation for its codomain.

19.3 Modular curves

Recall the modular curves Xy(N) = H*/T,(N) and X;(N) := H*/T;(N). These are compact
Riemann surfaces, hence smooth projective curves over C, but in fact they have models over Q
that allow us to view them as smooth projective curves over any field whose characteristic does
not divide N.

For X(1) = X,(1) = X (1), we have C(X(1)) = C(j) generated by the j-function (this follows
from the fact that j(7) defines an isomorphism X (1) ~ P! and meromorphic functions on P! are
rational functions).

If T is any congruence subgroup, the inclusion I € T'(1) induces morphism of modular curves
Xp — X(1). Thus every modular curve comes equipped with a map to the j-line X(1) ~ P!, It
follows that each non-cuspidal point on X can be associated to an elliptic curve, and this makes
applies not only over C, but for any field over which X is defined.

Assuming T' contains —1, the degree of the morphism X — X(1) is [T'(1): T'], which is the
degree of the function field extension C(X)/C(j). We now consider the function field C(X,(N)).

Theorem 19.5. For each positive integer N the function jy(7) := j(N ) is a modular function for
IH(N) that generates the extension C(X(N))/C(j), in other words, C(Xy(N)) = C(J, jy)-

Proof. See Theorems 19.13 and 19.14 in [1]. O

Note that while C(j) is a transcendental extension of C, the field C(j, jy) is a finite (hence
algebraic) extension of C(j).

Definition 19.6. The (classical) modular polynomial ®5(Y) € C(j)[Y] is the minimal polyno-
mial of jy over C(j). If we replace each occurrence of j in the coefficients of &) with X, we
obtain a bivariate polynomial &y € Z[X, Y] that satisfies &5 (X,Y) = &5 (Y, X).

Theorem 19.7. For j,, j, € C we have ®y(j;, j5) = 0 if and only if j; and j, are the j-invariants
of elliptic curves Eq, E, over C for which there exists a cyclic isogeny ¢ : E; — E, of degree N.
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Proof. See Theorem 20.3 in [1] for a proof in the case where N is prime. O

Remark 19.8. If E; and E, are related by an isogeny ¢: E; — E, of degree N, the pair
(j(E1), j(E,)) does not necessarily determine ¢ uniquely (not even up to isomorphism), as it is
possible for there to be two cyclic isogenies of degree N from E; to E, that have distinct kernels.
This occurs precisely when j(E,) is a double root of the polynomial &5 (j(E;),Y).

The connection between I[[,(N') and isogenies can be seen in two ways. First, there is a one-
to-one correspondence between cyclic subgroups H of Z/NZ ® Z/NZ of order N and cosets of
IH(N) in T'(1). Alternatively, if we fix a basis (P,Q) of Z/NZ & Z/NZ so that H = (P), then the
matrices in GL,(Z/NZ) that send P to a multiple of P and therefore stabilize H are precisely
the upper triangular matrices; if we restrict to matrices of determinant 1, these are precisely the
reductions of elements of I;(N) modulo N.

This leads to the moduli interpretation of Xy(N). There is a one-to-one correspondence
between non-cuspidal points in X,(N)(C) and equivalence classes of pairs (E, (P)), where E is
an elliptic curve and P € E[N] is a point of order N. We regard two pairs (E, (P)) and (E’, (P’})
to be equivalent whenever there is an isomorphism ¢: E — E’ for which (P’) = (1(P)).

Let us now consider the modular curve X;(N). Matrices in I3(N) don’t just fix a cyclic
subgroup of Z/NZ x Z/NZ of order N, they fix a point of order N, and there is a one-to-
one correspondence between non-cuspidal points in X;(N)(C) and equivalence classes of pairs
(E, P), where E is an elliptic curve and P € E[N] is a point of order N, where we now regard
pairs (E,P) and (E’, P’) as equivalent if there is an isomorphism ¢: E — E’ for which P’ = ((P).

For the modular curve X(N) we have a one-to-one correspondence between non-cuspidal
points in X (N)(C) and equivalence classes of triples (E, P,Q) where E[N] = (P,Q) and equiva-
lence involves an isomorphism ¢: E — E’ with «(P) =P’ and +(Q) =Q’.

Every matrix in GL,(Z/NZ) defines an automorphism of X(N) via its action on P and Q,
so given any subgroup H < GL,(Z/NZ) we can consider the quotient curve X(N)/H. If we
take H to be the subgroup of upper triangular matrices in GL,(Z/NZ), this quotient is X,(N),
and restricting to upper triangular matrices with a 1 in the upper left corner yields X;(N).

Unlike the curves X(N) and X;(N), which have models over Q, the curve X(N) is defined
over Q({y)(so over Q only when N < 2). But if H is a subgroup of GL,(Z/NZ) for which
det(H) = (Z/NZ)*, the quotient X(N)/H will have a model over Q.
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