19.1 The \boldsymbol{j}-function

Let L be a lattice in \mathbb{C} (a discrete cocompact subgroup). The weight- k Eisentstein series for L is

$$
G_{k}(L):=\sum_{\omega \in L-\{0\}} \frac{1}{\omega^{k}},
$$

which vanishes for odd k and converges for all $k>2$. After replacing L with λL for some $\lambda \in \mathbb{C}^{\times}$ we may assume L is the lattice spanned by $[1, \tau]$ for some $\tau \in \mathbf{H}$. We then have

$$
G_{k}(z):=G_{k}([1, \tau])=\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m+n z)^{k}},
$$

thus for $k>2$ we may view $G_{k}(\tau)$ as a holomorphic function $\mathbf{H} \rightarrow \mathbb{C}$ that satisfies

$$
G_{k}(\tau+1)=G_{k}(\tau) \quad \text { and } \quad G_{k}(-1 / \tau)=\tau^{k} G_{k}(\tau) .
$$

This implies that $\left.G_{k}\right|_{k} \gamma=G_{k}$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\rangle$. For even k we have

$$
\lim _{\operatorname{Im} \tau \rightarrow \infty} G_{k}(\tau)=2 \zeta(k),
$$

and $G_{k}(z)$ is holomorphic and nonvanishing at the cusps, makeing it a (non-cuspidal) modular form of weight k for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$.

The Weierstrass \wp-function for L is defined by

$$
\wp(z: L):=\frac{1}{z^{2}}+\sum_{\omega \in L-\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

It is a meromorphic function on \mathbb{C} that is periodic with respect to $L: \wp(z+\omega)=\wp(z)$ for $\omega \in L$; in other words, it is an elliptic function. It has poles of order 2 at each $\omega \in L$ is holomorphic elsewhere. The Laurent series expansion of $\wp(z)$ as $z=0$ is

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n \geq 1}(2 n+1) G_{2 n+2}(L) z^{2 n}
$$

and one can use this to show that $\wp(z)=\wp(z ; L)$ satisfies the differential equation

$$
\wp^{\prime}(z)=4 \wp(z)^{3}-g_{4}(L) \wp(z)-g_{6}(L),
$$

where $g_{4}(L):=60 G_{4}(L)$ and $g_{6}(L):=140 G_{6}(L)$. The map $z \mapsto\left(\wp(z), \wp^{\prime}(z)\right)$ defines an isomorphism from the torus \mathbb{C} / L (which is a Riemann surface of genus 1) to the elliptic curve

$$
E_{L}: y^{2}=4 x^{3}-g_{4}(L) x-g_{6}(L),
$$

with nonzero discriminant $\Delta(L):=g_{4}(L)^{3}-27 g_{6}(L)^{2}$, which sends $\omega \in L$ to the projective point $\infty:=(0: 1: 0)$ on E_{L}, which serves as the identity element of the group $E_{L}(\mathbb{C})$. The discriminant function $\Delta(\tau):=\Delta([1, \tau])$ is a cusp form of weight 12 .

Definition 19.1. The j-invariant of the lattice L, and of the elliptic curve E_{L}, is defined by

$$
j(L)=1728 \frac{g_{2}(L)^{3}}{\Delta(L)}=1728 \frac{g_{2}(L)^{3}}{g_{2}(L)^{3}-27 g_{3}(L)^{3}} \in \mathbb{C} .
$$

If we write the E_{L} in the form $y^{2}=x^{3}+A x+B$ with $g_{4}(L)=-4 A$ and $g_{6}(L)=-4 B$ then

$$
j\left(E_{L}\right)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}},
$$

which defined the j-invariant of elliptic curves E / k for any field k whose characteristic is not 2 or 3 (and there are generalizations that work over any field).

We call lattices L and L^{\prime} homothetic if $L^{\prime}=\lambda L$ for some $\lambda \in \mathbb{C}^{\times}$.
Theorem 19.2. Lattices L and L^{\prime} are homothetic if and only if $j(L)=j\left(L^{\prime}\right)$, and if and only if the corresponding elliptic curves E_{L} and $E_{L^{\prime}}$ are isomorphic.

Proof. See Theorem 15.5 and Corollary 15.6 in [1].
Theorem 19.3 (Uniformization theorem). The functor $L \mapsto E_{L}$ defines an equivalence of categories of complex tori \mathbb{C} / L up to homethety and elliptic curves E / \mathbb{C} up to isomorphism. The map $\mathbb{C} / L \rightarrow E_{L}(\mathbb{C})$ defined by $z \mapsto\left(\wp(z), \wp^{\prime}(z)\right)$ is an isomorphism of compact Lie groups.

Proof. See Corollary 15.12 in [1].
Now consider $j(\tau):=j([1, \tau])$ as a holomorphic function $\mathbf{H} \rightarrow \mathbb{C}$. We have $j(\gamma \tau)=j(\tau)$ for all $\gamma \in \Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$, thus $j(\tau)$ is a modular function. It is not a modular form (of weight 0) because it is not holomorphic at the cusps: it has a pole at ∞.

The function $j(\tau)$ defines an isomorphism from $Y(1):=\mathbf{H} / \Gamma(1)$ to the affine line $\mathbb{A}^{1}(\mathbb{C})$ that extends to an isomorphism from $X(1):=\mathbf{H}^{*} / \Gamma(1)$ to the projective line $\mathbb{P}^{1}(\mathbb{C})$.

If we put $q=e^{2 \pi i \tau}$ the q-expansion of the j-function is

$$
j(\tau)=\frac{1}{q}+744+\sum_{n \geq 1} a_{n} q^{n}
$$

with $a_{n} \in \mathbb{Z}$. This explains the factor 1728 in the definition of $j(\tau)$; it is the least integer that makes the q-expansion of $j(\tau)$ integral.

19.2 Isogenies

Morphisms of complex tori $\varphi: \mathbb{C} / L_{1} \rightarrow \mathbb{C} / L_{2}$ are induced by holomorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ for which the following diagram commutes

One can show that, up to homethety, we can always take f to be a multiplication-by- α map $z \mapsto \alpha z$ for some $\alpha \in \mathbb{C}^{\times}$for which $\alpha L_{1} \subseteq L_{2}$. The corresponding homomorphism φ_{α} is then defined by $z+L_{1} \mapsto \alpha z+L_{2}$. We have an isomorphism of abelian groups

$$
\left\{\alpha \in \mathbb{C}: \alpha L_{1} \subseteq L_{2}\right\} \xrightarrow{\sim}\left\{\varphi: \mathbb{C} / L_{1} \rightarrow \mathbb{C} / L_{2}\right\}=\operatorname{Hom}\left(\mathbb{C} / L_{1}, \mathbb{C} / L_{2}\right),
$$

and if $L_{1}=L_{2}$ this is an isomorphism of commutative rings. For most lattice L we have $\operatorname{End}(\mathbb{C} / L)=\mathbb{Z}$, but if L is homothetic to an ideal in an imaginary quadratic order \mathscr{O} then $\operatorname{End}(\mathbb{C} / L) \simeq \mathscr{O}$ (this is the theory of complex multiplication).

Definition 19.4. An isogeny of elliptic curves is a nonconstant morphism $\phi: E_{1} \rightarrow E_{2}$ that is compatible with the group law. The degree of an isogeny ϕ is its degree as a rational map, equivalently, the degree of the extension of function fields induced by ϕ (for each $f \in k\left(E_{2}\right)$ we have $f \circ \phi \in k\left(E_{1}\right)$ and a field extension $k\left(E_{1}\right) / \phi^{*}\left(k\left(E_{2}\right)\right.$. We say that ϕ is separable if the extension $k\left(E_{1}\right) / \phi^{*}\left(k\left(E_{2}\right)\right)$ is separable (always true in characteristic zero).

If $L_{1} \subseteq L_{2}$ then L_{2} / L_{1} is a finite abelian group and the inclusion $L_{1} \subseteq L_{2}$ induces a morphism $\mathbb{C} / L_{1} \rightarrow \mathbb{C} / L_{2}$ via $z+L_{1} \mapsto z+L_{2}$ and a corresponding isogeny of elliptic curves $\phi: E_{L_{1}} \rightarrow E_{L_{2}}$ whose kernel is isomorphic to L_{2} / L_{1} with $\operatorname{deg} \phi=\left[L_{2}: L_{1}\right]$. If we put $N=\left[L_{2}: L_{1}\right]$ then we also have an inclusion $N L_{2} \subseteq L_{1}$ that induces an isogeny in the reverse direction of the same degree called the dual isogeny. The composition of these two isogenies (in either order) is equivalent to multiplication-by- N.

The kernel of the multiplication-by- N map on any lattice L or elliptic curve E / \mathbb{C} is isomorphic to $\mathbb{Z} / N \mathbb{Z} \oplus \mathbb{Z} / N \mathbb{Z}$. We call an isogeny cyclic if its kernel is a cyclic group. If $\phi: E_{1} \rightarrow E_{2}$ is a cyclic isogeny of degree N then its kernel is isomorphic to $\mathbb{Z} / N \mathbb{Z}$ and $\phi\left(E_{1}[N]\right)$ is a cyclic subgroup of $E_{2}[N]$ that is the kernel of the dual isogeny $\hat{\phi}$.

For any elliptic curve E / k the kernel of any isogeny $\phi: E \rightarrow E^{\prime}$ is a finite subgroup of $E(\bar{k})$ whose order divides $\operatorname{deg} \phi$, with equality if and only if ϕ is separable. Conversely, every finite subgroup of $E(\bar{k})$ is the kernel of a separable isogeny that is unique up to isomorphism; Vélu's formulas allow one to explicit construct this isogeny and an equation for its codomain.

19.3 Modular curves

Recall the modular curves $X_{0}(N):=\mathbf{H}^{*} / \Gamma_{0}(N)$ and $X_{1}(N):=\mathbf{H}^{*} / \Gamma_{1}(N)$. These are compact Riemann surfaces, hence smooth projective curves over \mathbb{C}, but in fact they have models over \mathbb{Q} that allow us to view them as smooth projective curves over any field whose characteristic does not divide N.

For $X_{0}(1)=X_{1}(1)=X(1)$, we have $\mathbb{C}(X(1))=\mathbb{C}(j)$ generated by the j-function (this follows from the fact that $j(\tau)$ defines an isomorphism $X(1) \simeq \mathbb{P}^{1}$ and meromorphic functions on \mathbb{P}^{1} are rational functions).

If Γ is any congruence subgroup, the inclusion $\Gamma \subseteq \Gamma(1)$ induces morphism of modular curves $X_{\Gamma} \rightarrow X(1)$. Thus every modular curve comes equipped with a map to the j-line $X(1) \simeq \mathbb{P}^{1}$. It follows that each non-cuspidal point on X_{Γ} can be associated to an elliptic curve, and this makes applies not only over \mathbb{C}, but for any field over which X_{Γ} is defined.

Assuming Γ contains -1 , the degree of the morphism $X_{\Gamma} \rightarrow X(1)$ is [$\Gamma(1): \Gamma$], which is the degree of the function field extension $\mathbb{C}\left(X_{\Gamma}\right) / \mathbb{C}(j)$. We now consider the function field $\mathbb{C}\left(X_{0}(N)\right)$.

Theorem 19.5. For each positive integer N the function $j_{N}(\tau):=j(N \tau)$ is a modular function for $\Gamma_{0}(N)$ that generates the extension $\mathbb{C}\left(X_{0}(N)\right) / \mathbb{C}(j)$, in other words, $\mathbb{C}\left(X_{0}(N)\right)=\mathbb{C}\left(j, j_{N}\right)$.
Proof. See Theorems 19.13 and 19.14 in [1].
Note that while $\mathbb{C}(j)$ is a transcendental extension of \mathbb{C}, the field $\mathbb{C}\left(j, j_{N}\right)$ is a finite (hence algebraic) extension of $\mathbb{C}(j)$.

Definition 19.6. The (classical) modular polynomial $\Phi_{N}(Y) \in \mathbb{C}(j)[Y]$ is the minimal polynomial of j_{N} over $\mathbb{C}(j)$. If we replace each occurrence of j in the coefficients of Φ_{N} with X, we obtain a bivariate polynomial $\Phi_{N} \in \mathbb{Z}[X, Y]$ that satisfies $\Phi_{N}(X, Y)=\Phi_{N}(Y, X)$.
Theorem 19.7. For $j_{1}, j_{2} \in \mathbb{C}$ we have $\Phi_{N}\left(j_{1}, j_{2}\right)=0$ if and only if j_{1} and j_{2} are the j-invariants of elliptic curves E_{1}, E_{2} over \mathbb{C} for which there exists a cyclic isogeny $\phi: E_{1} \rightarrow E_{2}$ of degree N.

Proof. See Theorem 20.3 in [1] for a proof in the case where N is prime.
Remark 19.8. If E_{1} and E_{2} are related by an isogeny $\phi: E_{1} \rightarrow E_{2}$ of degree N, the pair ($j\left(E_{1}\right), j\left(E_{2}\right)$) does not necessarily determine ϕ uniquely (not even up to isomorphism), as it is possible for there to be two cyclic isogenies of degree N from E_{1} to E_{2} that have distinct kernels. This occurs precisely when $j\left(E_{2}\right)$ is a double root of the polynomial $\Phi_{N}\left(j\left(E_{1}\right), Y\right)$.

The connection between $\Gamma_{0}(N)$ and isogenies can be seen in two ways. First, there is a one-to-one correspondence between cyclic subgroups H of $\mathbb{Z} / N \mathbb{Z} \oplus \mathbb{Z} / N \mathbb{Z}$ of order N and cosets of $\Gamma_{0}(N)$ in $\Gamma(1)$. Alternatively, if we fix a basis $\langle P, Q\rangle$ of $\mathbb{Z} / N \mathbb{Z} \oplus \mathbb{Z} / N \mathbb{Z}$ so that $H=\langle P\rangle$, then the matrices in $G L_{2}(\mathbb{Z} / \mathrm{NZ})$ that send P to a multiple of P and therefore stabilize H are precisely the upper triangular matrices; if we restrict to matrices of determinant 1, these are precisely the reductions of elements of $\Gamma_{0}(N)$ modulo N.

This leads to the moduli interpretation of $X_{0}(N)$. There is a one-to-one correspondence between non-cuspidal points in $X_{0}(N)(\mathbb{C})$ and equivalence classes of pairs $(E,\langle P\rangle)$, where E is an elliptic curve and $P \in E[N]$ is a point of order N. We regard two pairs $(E,\langle P\rangle)$ and $\left(E^{\prime},\left\langle P^{\prime}\right\rangle\right)$ to be equivalent whenever there is an isomorphism $\iota: E \rightarrow E^{\prime}$ for which $\left\langle P^{\prime}\right\rangle=\langle\iota(P)\rangle$.

Let us now consider the modular curve $X_{1}(N)$. Matrices in $\Gamma_{1}(N)$ don't just fix a cyclic subgroup of $\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$ of order N, they fix a point of order N, and there is a one-toone correspondence between non-cuspidal points in $X_{1}(N)(\mathbb{C})$ and equivalence classes of pairs (E, P), where E is an elliptic curve and $P \in E[N]$ is a point of order N, where we now regard pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$ as equivalent if there is an isomorphism $\iota: E \rightarrow E^{\prime}$ for which $P^{\prime}=\iota(P)$.

For the modular curve $X(N)$ we have a one-to-one correspondence between non-cuspidal points in $X(N)(\mathbb{C})$ and equivalence classes of triples (E, P, Q) where $E[N]=\langle P, Q\rangle$ and equivalence involves an isomorphism $\iota: E \rightarrow E^{\prime}$ with $\iota(P)=P^{\prime}$ and $\iota(Q)=Q^{\prime}$.

Every matrix in $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ defines an automorphism of $X(N)$ via its action on P and Q, so given any subgroup $H \leq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ we can consider the quotient curve $X(N) / H$. If we take H to be the subgroup of upper triangular matrices in $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, this quotient is $X_{0}(N)$, and restricting to upper triangular matrices with a 1 in the upper left corner yields $X_{1}(N)$.

Unlike the curves $X_{0}(N)$ and $X_{1}(N)$, which have models over \mathbb{Q}, the curve $X(N)$ is defined over $\mathbb{Q}\left(\zeta_{N}\right)$ (so over \mathbb{Q} only when $N \leq 2$). But if H is a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ for which $\operatorname{det}(H)=(\mathbb{Z} / N \mathbb{Z})^{\times}$, the quotient $X(N) / H$ will have a model over \mathbb{Q}.

References

[1] Andrew V. Sutherland, Lecture notes for Elliptic Curves (18.783), 2023.

