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19.1 The j-function

Let L be a lattice in C (a discrete cocompact subgroup). The weight-k Eisentstein series for L is

Gk(L) :=
∑

ω∈L−{0}

1
ωk

,

which vanishes for odd k and converges for all k > 2. After replacing L with λL for some λ ∈ C×

we may assume L is the lattice spanned by [1,τ] for some τ ∈ H. We then have

Gk(z) := Gk([1,τ]) =
∑

m,n∈Z
(m,n)6=(0,0)

1
(m+ nz)k

,

thus for k > 2 we may view Gk(τ) as a holomorphic function H→ C that satisfies

Gk(τ+ 1) = Gk(τ) and Gk(−1/τ) = τkGk(τ).

This implies that Gk|kγ= Gk for all γ ∈ SL2(Z) =

�

1 1
0 1

�

,
�

0 −1
1 0

��

. For even k we have

lim
Imτ→∞

Gk(τ) = 2ζ(k),

and Gk(z) is holomorphic and nonvanishing at the cusps, makeing it a (non-cuspidal) modular
form of weight k for Γ (1) = SL2(Z).

The Weierstrass ℘-function for L is defined by

℘(z : L) :=
1
z2
+

∑

ω∈L−{0}

�

1
(z −ω)2

−
1
ω2

�

.

It is a meromorphic function on C that is periodic with respect to L: ℘(z+ω) = ℘(z) forω ∈ L;
in other words, it is an elliptic function. It has poles of order 2 at each ω ∈ L is holomorphic
elsewhere. The Laurent series expansion of ℘(z) as z = 0 is

℘(z) =
1
z2
+
∑

n≥1

(2n+ 1)G2n+2(L)z
2n,

and one can use this to show that ℘(z) = ℘(z; L) satisfies the differential equation

℘′(z) = 4℘(z)3 − g4(L)℘(z)− g6(L),

where g4(L) := 60G4(L) and g6(L) := 140G6(L). The map z 7→ (℘(z),℘′(z)) defines an isomor-
phism from the torus C/L (which is a Riemann surface of genus 1) to the elliptic curve

EL : y2 = 4x3 − g4(L)x − g6(L),

with nonzero discriminant ∆(L) := g4(L)3 − 27g6(L)2, which sends ω ∈ L to the projective
point ∞ := (0 : 1 : 0) on EL , which serves as the identity element of the group EL(C). The
discriminant function ∆(τ) :=∆([1,τ]) is a cusp form of weight 12.

Definition 19.1. The j-invariant of the lattice L, and of the elliptic curve EL , is defined by

j(L) = 1728
g2(L)3

∆(L)
= 1728

g2(L)3

g2(L)3 − 27g3(L)3
∈ C.
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If we write the EL in the form y2 = x3 + Ax + B with g4(L) = −4A and g6(L) = −4B then

j(EL) = 1728
4A3

4A3 + 27B2
,

which defined the j-invariant of elliptic curves E/k for any field k whose characteristic is not 2
or 3 (and there are generalizations that work over any field).

We call lattices L and L′ homothetic if L′ = λL for some λ ∈ C×.

Theorem 19.2. Lattices L and L′ are homothetic if and only if j(L) = j(L′), and if and only if the
corresponding elliptic curves EL and EL′ are isomorphic.

Proof. See Theorem 15.5 and Corollary 15.6 in [1].

Theorem 19.3 (Uniformization theorem). The functor L 7→ EL defines an equivalence of cate-
gories of complex tori C/L up to homethety and elliptic curves E/C up to isomorphism. The map
C/L→ EL(C) defined by z 7→ (℘(z),℘′(z)) is an isomorphism of compact Lie groups.

Proof. See Corollary 15.12 in [1].

Now consider j(τ) := j([1,τ]) as a holomorphic function H→ C. We have j(γτ) = j(τ) for
all γ ∈ Γ (1) = SL2(Z), thus j(τ) is a modular function. It is not a modular form (of weight 0)
because it is not holomorphic at the cusps: it has a pole at∞.

The function j(τ) defines an isomorphism from Y (1) := H/Γ (1) to the affine line A1(C) that
extends to an isomorphism from X (1) := H∗/Γ (1) to the projective line P1(C).

If we put q = e2πiτ the q-expansion of the j-function is

j(τ) =
1
q
+ 744+

∑

n≥1

anqn

with an ∈ Z. This explains the factor 1728 in the definition of j(τ); it is the least integer that
makes the q-expansion of j(τ) integral.

19.2 Isogenies

Morphisms of complex tori ϕ : C/L1 → C/L2 are induced by holomorphic functions f : C→ C
for which the following diagram commutes

C C

C/L1 C/L2

← →
f

←→ π1 ←→ π2

←→
ϕ

One can show that, up to homethety, we can always take f to be a multiplication-by-α map
z 7→ αz for some α ∈ C× for which αL1 ⊆ L2. The corresponding homomorphism ϕα is then
defined by z + L1 7→ αz + L2. We have an isomorphism of abelian groups

¦

α ∈ C : αL1 ⊆ L2

©

∼−→
¦

ϕ : C/L1→ C/L2

©

= Hom(C/L1,C/L2),

and if L1 = L2 this is an isomorphism of commutative rings. For most lattice L we have
End(C/L) = Z, but if L is homothetic to an ideal in an imaginary quadratic order O then
End(C/L)' O (this is the theory of complex multiplication).
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Definition 19.4. An isogeny of elliptic curves is a nonconstant morphism φ : E1 → E2 that is
compatible with the group law. The degree of an isogeny φ is its degree as a rational map,
equivalently, the degree of the extension of function fields induced by φ (for each f ∈ k(E2)
we have f ◦φ ∈ k(E1) and a field extension k(E1)/φ∗(k(E2). We say that φ is separable if the
extension k(E1)/φ∗(k(E2)) is separable (always true in characteristic zero).

If L1 ⊆ L2 then L2/L1 is a finite abelian group and the inclusion L1 ⊆ L2 induces a morphism
C/L1→ C/L2 via z + L1 7→ z + L2 and a corresponding isogeny of elliptic curves φ : EL1

→ EL2

whose kernel is isomorphic to L2/L1 with degφ = [L2 : L1]. If we put N = [L2 : L1] then we
also have an inclusion N L2 ⊆ L1 that induces an isogeny in the reverse direction of the same
degree called the dual isogeny. The composition of these two isogenies (in either order) is
equivalent to multiplication-by-N .

The kernel of the multiplication-by-N map on any lattice L or elliptic curve E/C is isomorphic
to Z/NZ⊕Z/NZ. We call an isogeny cyclic if its kernel is a cyclic group. Ifφ : E1→ E2 is a cyclic
isogeny of degree N then its kernel is isomorphic to Z/NZ and φ(E1[N]) is a cyclic subgroup
of E2[N] that is the kernel of the dual isogeny φ̂.

For any elliptic curve E/k the kernel of any isogeny φ : E → E′ is a finite subgroup of E(k̄)
whose order divides degφ, with equality if and only if φ is separable. Conversely, every finite
subgroup of E(k̄) is the kernel of a separable isogeny that is unique up to isomorphism; Vélu’s
formulas allow one to explicit construct this isogeny and an equation for its codomain.

19.3 Modular curves

Recall the modular curves X0(N) := H∗/Γ0(N) and X1(N) := H∗/Γ1(N). These are compact
Riemann surfaces, hence smooth projective curves over C, but in fact they have models over Q
that allow us to view them as smooth projective curves over any field whose characteristic does
not divide N .

For X0(1) = X1(1) = X (1), we haveC(X (1)) = C( j) generated by the j-function (this follows
from the fact that j(τ) defines an isomorphism X (1)' P1 and meromorphic functions on P1 are
rational functions).

If Γ is any congruence subgroup, the inclusion Γ ⊆ Γ (1) induces morphism of modular curves
XΓ → X (1). Thus every modular curve comes equipped with a map to the j-line X (1) ' P1. It
follows that each non-cuspidal point on XΓ can be associated to an elliptic curve, and this makes
applies not only over C, but for any field over which XΓ is defined.

Assuming Γ contains −1, the degree of the morphism XΓ → X (1) is [Γ (1): Γ ], which is the
degree of the function field extensionC(XΓ )/C( j). We now consider the function fieldC(X0(N)).

Theorem 19.5. For each positive integer N the function jN (τ) := j(Nτ) is a modular function for
Γ0(N) that generates the extension C(X0(N))/C( j), in other words, C(X0(N)) = C( j, jN ).

Proof. See Theorems 19.13 and 19.14 in [1].

Note that while C( j) is a transcendental extension of C, the field C( j, jN ) is a finite (hence
algebraic) extension of C( j).

Definition 19.6. The (classical) modular polynomial ΦN (Y ) ∈ C( j)[Y ] is the minimal polyno-
mial of jN over C( j). If we replace each occurrence of j in the coefficients of ΦN with X , we
obtain a bivariate polynomial ΦN ∈ Z[X , Y ] that satisfies ΦN (X , Y ) = ΦN (Y, X ).

Theorem 19.7. For j1, j2 ∈ C we have ΦN ( j1, j2) = 0 if and only if j1 and j2 are the j-invariants
of elliptic curves E1, E2 over C for which there exists a cyclic isogeny φ : E1→ E2 of degree N.
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Proof. See Theorem 20.3 in [1] for a proof in the case where N is prime.

Remark 19.8. If E1 and E2 are related by an isogeny φ : E1 → E2 of degree N , the pair
( j(E1), j(E2)) does not necessarily determine φ uniquely (not even up to isomorphism), as it is
possible for there to be two cyclic isogenies of degree N from E1 to E2 that have distinct kernels.
This occurs precisely when j(E2) is a double root of the polynomial ΦN ( j(E1), Y ).

The connection between Γ0(N) and isogenies can be seen in two ways. First, there is a one-
to-one correspondence between cyclic subgroups H of Z/NZ⊕Z/NZ of order N and cosets of
Γ0(N) in Γ (1). Alternatively, if we fix a basis 〈P,Q〉 of Z/NZ⊕Z/NZ so that H = 〈P〉, then the
matrices in GL2(Z/NZ) that send P to a multiple of P and therefore stabilize H are precisely
the upper triangular matrices; if we restrict to matrices of determinant 1, these are precisely the
reductions of elements of Γ0(N) modulo N .

This leads to the moduli interpretation of X0(N). There is a one-to-one correspondence
between non-cuspidal points in X0(N)(C) and equivalence classes of pairs (E, 〈P〉), where E is
an elliptic curve and P ∈ E[N] is a point of order N . We regard two pairs (E, 〈P〉) and (E′, 〈P ′〉)
to be equivalent whenever there is an isomorphism ι : E→ E′ for which 〈P ′〉= 〈ι(P)〉.

Let us now consider the modular curve X1(N). Matrices in Γ1(N) don’t just fix a cyclic
subgroup of Z/NZ × Z/NZ of order N , they fix a point of order N , and there is a one-to-
one correspondence between non-cuspidal points in X1(N)(C) and equivalence classes of pairs
(E, P), where E is an elliptic curve and P ∈ E[N] is a point of order N , where we now regard
pairs (E, P) and (E′, P ′) as equivalent if there is an isomorphism ι : E→ E′ for which P ′ = ι(P).

For the modular curve X (N) we have a one-to-one correspondence between non-cuspidal
points in X (N)(C) and equivalence classes of triples (E, P,Q) where E[N] = 〈P,Q〉 and equiva-
lence involves an isomorphism ι : E→ E′ with ι(P) = P ′ and ι(Q) =Q′.

Every matrix in GL2(Z/NZ) defines an automorphism of X (N) via its action on P and Q,
so given any subgroup H ≤ GL2(Z/NZ) we can consider the quotient curve X (N)/H. If we
take H to be the subgroup of upper triangular matrices in GL2(Z/NZ), this quotient is X0(N),
and restricting to upper triangular matrices with a 1 in the upper left corner yields X1(N).

Unlike the curves X0(N) and X1(N), which have models over Q, the curve X (N) is defined
over Q(ζN )(so over Q only when N ≤ 2). But if H is a subgroup of GL2(Z/NZ) for which
det(H) = (Z/NZ)×, the quotient X (N)/H will have a model over Q.
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