These notes summarize the material in §6.1-6.3 of [1] presented in lecture.

18.1 The Jacobian of a compact Riemann surface

Let X be a compact Riemann surface of genus g with holomorphic atlas $\left\{\psi_{i}: U_{i} \xrightarrow{\sim} V_{i} \subseteq \mathbb{C}\right\}$ and transition maps $\psi_{i j}: \psi_{j} \circ \psi_{i}^{-1}: V_{i j} \rightarrow V_{j}$ for all $U_{i} \cap U_{j} \neq \emptyset$, where $V_{i j}:=\psi_{i}\left(U_{i} \cap U_{j}\right)$. In Lecture 7 we considered the space $\Omega^{1}(X)$ of meromorphic differentials ω of degree n on X defined by a collection of meromorphic functions $\left\{\omega_{i}: V_{i} \rightarrow \mathbb{C}\right\}$ satisfying

$$
\omega_{i}=\left(\omega_{j} \circ \psi_{i j}\left(\frac{d \psi_{i}}{d \psi_{j}}\right)^{n}\right.
$$

on $V_{i j}$ (modulo equivalence $\left\{\omega_{i}\right\}=\omega \simeq \theta=\left\{\theta_{i}\right\}$ if $\left\{\omega_{i}\right\} \cup\left\{\theta_{i}\right\}$ is a meromorphic differential). We associated to each ω a divisor $\operatorname{div}(\omega)=\sum_{P} \operatorname{ord}_{P}\left(\omega_{i} \circ \psi_{i}\right)$ in the divisor group $\operatorname{Div}(X)$ (the free abelian group generated by $P \in X(\mathbb{C})$), and call a meromorphic differential ω holomorphic if $\omega=0$ or $\operatorname{div}(\omega) \geq 0$ (meaning every coefficient of $\operatorname{div}(\omega)$ is nonnegative). We showed that the space of holomorphic differentials $\Omega_{0}^{1}(X)$ is a complex vector space of dimension g.

For a lattice $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$, we showed how to associate to each automorphic $f \in A_{2 n}(\Gamma)$ a meromorphic differential ω_{f} of degree n, and we showed that ω_{f} is holomorphic precisely when f is a cusp form. For cusp forms of weight 2 we get a holomorphic differential of degree 1 and the map $f \mapsto \omega_{f}$ induces an isomorphism $S_{2}(\Gamma) \simeq \Omega_{0}^{1}\left(X_{\Gamma}\right)$, where $X_{\Gamma}:=\Gamma \backslash \mathbf{H}^{*}$.

The homology group of $H_{1}(X, \mathbb{Z})$ formed by equivalence classes of closed loops on X (1cycles modulo boundaries) is a free abelian group of rank $2 g$. Each $\gamma \in H_{1}(X, \mathbb{Z})$ determines a linear form on $\Omega_{0}^{1}(X)$ via the map

$$
\omega \mapsto \int_{\gamma} \omega .
$$

This induces an injective map $\mathbb{Z}^{2 g} \simeq H_{1}(X, \mathbb{Z}) \hookrightarrow \Omega_{0}^{1}(X)^{\vee}=\operatorname{Hom}\left(H_{0}^{1}(X), \mathbb{C}\right) \simeq \mathbb{C}^{g}$ that allows us to view $H_{1}(X, \mathbb{Z})$ as a lattice $\Lambda=H_{1}(X, \mathbb{Z}) \simeq \mathbb{Z}^{2 g}$ in the vector space $V=\Omega_{0}^{1}(X)^{\vee} \simeq \mathbb{C}^{g}$. The quotient $H_{0}^{1}(X)^{\vee} / H_{1}(X, \mathbb{Z})$ is a complex torus V / Λ that can be equipped with a Riemann form (a positive definite Hermitian form $V \times V \rightarrow \mathbb{C}$ that maps $\Lambda \times \Lambda$ to \mathbb{Z}) that induces a polarization (a homomorphism to the dual torus) which makes it an abelian variety called the Jacobian of X, denoted $\operatorname{Jac}(X)$.

It turns out that because our complex torus V / Λ arose from a Riemann surface, this polarization is actually an isomorphism and $\operatorname{Jac}(X)$ is a principally polarized abelian variety.

Recall that compact Riemann surfaces are also algebraic curves (varieties of dimension 1) that are smooth projective curves over \mathbb{C}. The Jacobian of a compact Riemann surfaces is also an algebraic variety, and in fact a smooth projective variety of dimension g. Moreover, as a complex torus, the Jacobian is naturally equipped with a group operation (add vectors in V and reduce modulo Λ), and this induces a group structure on the corresponding projective variety that is defined by morphisms, making it an algebraic group. This group is obviously abelian (since V / Λ is), but in fact it any smooth projective variety that is also an algebraic group, including those that are not necessarily Jacobians, has an abelian group structure; thus all projective algebraic groups are called abelian varieties (note that linear algebraic groups like GL_{n} are not projective).

The moduli space \mathscr{A}_{g} of principally polarized abelian varieties of dimension g has dimension $g(g+1) / 2$, while the moduli space \mathscr{M}_{g} of smooth projective curves of genus $g \geq 2$ has dimension $3 g-3$. Thus for large g almost all principally polarized abelian varieties are not Jacobians. But for $g=1$ every abelian variety is a Jacobian (in fact an elliptic curve), and for $g=2,3$
the dimensions of \mathscr{A}_{g} and \mathscr{M}_{g} coincide, meaning that almost all principally polarized abelian varieties of dimension $g \leq 3$ are Jacobians.

Recall the divisor class group $\operatorname{Pic}^{0}(X)=\operatorname{Div}^{0}(X) / \operatorname{Prin}(X)$ of divisors of degree zero modulo principal divisors those associated to elements of the function field $\mathbb{C}(X)$. We should note that our identification of $\operatorname{Pic}^{0}(X)$ with the divisor class group is valid for smooth projective curves over an algebraically closed field, but $\operatorname{Pic}^{0}(X)$ also has an intrinsic definition that may differ from the divisor class group in other settings.

There is a canonical isomorphism $\operatorname{Pic}^{0}(X) \xrightarrow{\sim} \operatorname{Jac}(X)$ defined as follows. Given $D \in \operatorname{Div}^{0}(X)$ we write D in the form

$$
D=\sum_{i}\left(P_{i}-Q_{i}\right)
$$

(this is always possible for X / \mathbb{C}) and associate to D the linear form

$$
\omega \mapsto \sum_{i} \int_{P_{i}}^{Q_{i}} \omega
$$

in $\Omega_{0}^{1}(X)^{\vee}$. Reducing modulo the lattice $H_{1}(X, \mathbb{C})$ yields an element of $\operatorname{Jac}(X)$. This is the AbelJacobi map, which can be viewed as an extension of the map $X \rightarrow \operatorname{Pic}^{0}(X)$ that sends $x \in X(\mathbb{C})$ to the divisor $x-x_{0}$, where $x_{0} \in X(\mathbb{C})$ is a fixed rational point.

If $\phi: X \rightarrow Y$ is a nonconstant holomorphic map of compact Riemann surfaces, we have a pullback map $\phi^{*}: \mathbb{C}(Y) \rightarrow \mathbb{C}(X)$ defined by $\phi^{*} f=f \circ \phi$, which extends to a linear map of holomorphic differentials

$$
\phi^{*}: \Omega_{0}^{1}(Y) \rightarrow \Omega_{0}^{1}(X) .
$$

Taking duals induces the pushforward map on Jacobians $h_{*}: \operatorname{Jac}(X) \rightarrow \operatorname{Jac}(Y)$. There is also a pushforward map $h_{*}: \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}^{0}(Y)$ induced by the pushforward map $\operatorname{Div}^{0}(X) \rightarrow \operatorname{Div}^{0}(Y)$ that sends $P \in \mathbb{C}(X)$ to $h(P) \in \mathbb{C}(Y)$, and the two maps are compatible with the isomorphisms $\operatorname{Jac}(X) \simeq \operatorname{Pic}^{0}(X)$ and $\operatorname{Jac}(Y) \simeq \operatorname{Pic}^{0}(Y)$.

There is also a pullback map $h^{*}: \operatorname{Pic}_{0}(Y) \rightarrow \operatorname{Pic}_{0}(X)$ induced by the map $\operatorname{Div}^{0}(Y) \rightarrow \operatorname{Div}^{0}(X)$ that sends $Q \in Y(\mathbb{C})$ to the sum of the points $P \in \phi^{-1}(Q)$, and a corresponding pullback map $\operatorname{Jac}(Y) \rightarrow \operatorname{Jac}(X)$ that can be defined using the trace map $\Omega_{0}^{1}(X) \rightarrow \Omega_{0}^{1}(Y)$. These pullback maps are also compatible with the isomorphisms $\operatorname{Jac}(X) \simeq \operatorname{Pic}^{0}(X)$ and $\operatorname{Jac}(Y) \simeq \operatorname{Pic}^{0}(Y)$.

18.2 Modular Jacobians and Hecke operators

Let Γ_{1} and Γ_{2} be congruence subgroups, $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ and $\Gamma_{3}=\alpha^{-1} \Gamma_{1} \alpha \cap \Gamma_{2}$. If we decompose $\Gamma_{3} \backslash \Gamma_{2}$ as $\coprod_{i} \Gamma_{3} \gamma_{i}$ and $\Gamma_{1} \alpha \Gamma_{2}$ as $\coprod_{j} \Gamma_{1} \beta_{j}$ and let $\Gamma_{3}^{\prime}:=\alpha \Gamma_{3} \alpha^{-1}=\Gamma_{1} \cap \alpha \Gamma_{2} \alpha^{-1}$ then

$$
\Gamma_{2} \longleftarrow \Gamma_{3} \xrightarrow{\sim} \Gamma_{3}^{\prime} \longrightarrow \Gamma_{1}
$$

where the isomorphism is $\gamma \mapsto \alpha \gamma \alpha^{-1}$ and the other arrows are inclusions. This induces morphism of modular curves

$$
X_{\Gamma_{2}} \stackrel{\pi_{2}}{\longleftrightarrow} X_{\Gamma_{3}} \simeq X_{3}^{\prime} \xrightarrow{\pi_{1}} X_{\Gamma_{1}}
$$

Each point of $X_{\Gamma_{2}}$ is mapped via $\pi_{1} \circ \alpha \circ \pi_{2}^{-1}$ to a multiset of points of $X_{\Gamma_{1}}$. Viewing points on $X_{\Gamma_{1}}$ and $X_{\Gamma_{2}}$ as Γ_{i}-orbits in \mathbf{H}^{*} we have

$$
\Gamma_{2} z \xrightarrow{\pi_{2}^{-1}}\left\{\Gamma_{3} \gamma_{i} z\right\} \xrightarrow{\alpha}\left\{\Gamma_{3}^{\prime} \beta_{j} z\right\} \xrightarrow{\pi_{1}}\left\{\Gamma_{1} \beta_{j} z\right\}
$$

We have a corresponding map $\Gamma_{1} \alpha \Gamma_{2}: \operatorname{Div}\left(X_{\Gamma_{2}}\right) \rightarrow \operatorname{Div}\left(X_{\Gamma_{1}}\right)$, which induces a map
that we can view as map of Jacobians of modular curves: $\operatorname{Jac}\left(X_{\Gamma_{2}}\right) \rightarrow \operatorname{Jac}\left(X_{\Gamma_{1}}\right)$.
Applying $S_{2}(\Gamma) \simeq \Omega_{0}^{1}\left(X_{\Gamma}\right)$ and taking the corresponding isomorphism of the dual space yields an isomorphism

$$
\operatorname{Jac}\left(X_{\Gamma}\right) \simeq S_{2}(\Gamma)^{\vee} / H_{1}\left(X_{\Gamma}, \mathbb{Z}\right)
$$

that is compatible with pushforward and pullback maps. The map

$$
\Gamma_{1} \alpha \Gamma_{2}: S_{2}\left(\Gamma_{1}\right) \rightarrow S_{2}\left(\Gamma_{2}\right)
$$

induces a map on the dual spaces, and a map on Jacobians

$$
\Gamma_{1} \alpha \Gamma_{2}: \operatorname{Jac}\left(X_{2}\right) \rightarrow \operatorname{Jac}\left(X_{1}\right),
$$

which defines an action of the Hecke algebra $T=\mathbb{Z}[\Gamma \alpha \Gamma]$ on the $\operatorname{Jacobian} \operatorname{Jac}\left(X_{\Gamma}\right)$.

18.3 Eichler-Shimura

Now let $f \in S_{2}\left(\Gamma_{1}(N)\right)$ be a newform, hence an eigenform of $\mathbb{T}(N)=\mathbb{Z}\left[\Gamma_{1}(N) \Delta(N) / \Gamma_{1}(N)\right]$, and consider the eigenvalue map

$$
\lambda_{f}: \mathbb{T}(N) \rightarrow \mathbb{C}
$$

defined by $\left.f\right|_{2} T=\lambda_{f}(T) f$. Let $I_{f}:=\operatorname{ker} \lambda_{f}:=\left\{T \in \mathbb{T}(N):\left.f\right|_{2} T=0\right\}$. Since $\mathbb{T}(N)$ acts on $\operatorname{Jac}\left(X_{1}(N)\right)$, we can view $I_{f} \operatorname{Jac}\left(X_{1}(N)\right)$ as a subgroup of the divisor class group $\operatorname{Pic}^{0}\left(X_{1}(N)\right)$ corresponding to an abelian subvariety of $\operatorname{Jac}_{1}\left(X_{1}(N)\right)$.

Definition 18.1. The modular abelian variety A_{f} associated to the newform $f \in S_{2}\left(\Gamma_{1}(N)\right)$ is the quotient $\operatorname{Jac}\left(X_{1}(N)\right) / I_{f} \operatorname{Jac}\left(X_{1}(N)\right)$.

The eigenvalues $\lambda_{f}(T)$ and the Fourier coefficients $a_{n}(f)$ are algebraic integers that generate a number field $\mathbb{Q}(f)$. By letting $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ act on the coefficients of f, we obtain a Galois conjugate newform f^{σ} associated to each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ (equivalently, we can view the coefficients of f as abstract elements of the number field $\mathbb{Q}(f)$ and consider the different embedding of $\mathbb{Q}(f)$ into \mathbb{C}.

The set of all Galois conjugates of f spans a subspace of $S_{2}\left(\Gamma_{1}(N)\right)$ of dimension $[\mathbb{Q}(f): \mathbb{Q}]$, and this is equal to the dimension of A_{f}; indeed A_{f} is invariant under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and can be viewed as an abelian variety over \mathbb{Q}. Replacing f with a Galois conjugate newform does not change A_{f}.

If we let V_{f} denote the subspace of $S_{2}\left(\Gamma_{1}(N)\right)$ spanned by the Galois conjugates of f and consider $H_{1}\left(X_{1}(N), \mathbb{Z}\right) \hookrightarrow \Omega_{0}^{1}\left(X_{1}(N)\right) \simeq S_{2}\left(\Gamma_{1}(N)\right)$, restricting $H_{1}\left(X_{1}(N), \mathbb{Z}\right)$ to its action on elements of $V_{f} \subseteq S_{2}\left(\Gamma_{1}(N)\right)$ yields a lattice $\Lambda_{f} \subseteq V_{f}$, and we can alternatively define A_{f} as the abelian variety corresponding to the complex torus V_{f} / Λ_{f} (which also admits a polarization).

References

[1] Fred Diamond and Jerry Shurman, A first course in modular forms, Springer, 2005.
[2] Toshitsune Miyake, Modular forms, Springer, 2006.

