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These notes summarize the material in §6.1-6.3 of [1] presented in lecture.

18.1 The Jacobian of a compact Riemann surface

Let X be a compact Riemann surface of genus g with holomorphic atlas {ψi : Ui
∼−→ Vi ⊆ C}

and transition maps ψi j : ψ j ◦ψ−1
i : Vi j → Vj for all Ui ∩ U j ̸= ;, where Vi j := ψi(Ui ∩ U j).

In Lecture 7 we considered the space Ω1(X ) of meromorphic differentials ω of degree n on X
defined by a collection of meromorphic functions {ωi : Vi → C} satisfying

ωi = (ω j ◦ψi j

�

dψi

dψ j

�n

on Vi j (modulo equivalence {ωi} =ω ≃ θ = {θi} if {ωi} ∪ {θi} is a meromorphic differential).
We associated to each ω a divisor div(ω) =

∑

P ordP(ωi ◦ψi) in the divisor group Div(X ) (the
free abelian group generated by P ∈ X (C)), and call a meromorphic differentialω holomorphic
if ω = 0 or div(ω) ≥ 0 (meaning every coefficient of div(ω) is nonnegative). We showed that
the space of holomorphic differentials Ω1

0(X ) is a complex vector space of dimension g.
For a lattice Γ ≤ SL2(R), we showed how to associate to each automorphic f ∈ A2n(Γ ) a

meromorphic differential ω f of degree n, and we showed that ω f is holomorphic precisely
when f is a cusp form. For cusp forms of weight 2 we get a holomorphic differential of degree 1
and the map f 7→ω f induces an isomorphism S2(Γ )≃ Ω1

0(XΓ ), where XΓ := Γ\H∗.
The homology group of H1(X ,Z) formed by equivalence classes of closed loops on X (1-

cycles modulo boundaries) is a free abelian group of rank 2g. Each γ ∈ H1(X ,Z) determines a
linear form on Ω1

0(X ) via the map

ω 7→
∫

γ

ω.

This induces an injective map Z2g ≃ H1(X ,Z) ,→ Ω1
0(X )

∨ = Hom(H1
0(X ),C) ≃ C

g that allows
us to view H1(X ,Z) as a lattice Λ = H1(X ,Z) ≃ Z2g in the vector space V = Ω1

0(X )
∨ ≃ Cg . The

quotient H1
0(X )

∨/H1(X ,Z) is a complex torus V/Λ that can be equipped with a Riemann form
(a positive definite Hermitian form V ×V → C that maps Λ×Λ to Z) that induces a polarization
(a homomorphism to the dual torus) which makes it an abelian variety called the Jacobian of X ,
denoted Jac(X ).

It turns out that because our complex torus V/Λ arose from a Riemann surface, this polar-
ization is actually an isomorphism and Jac(X ) is a principally polarized abelian variety.

Recall that compact Riemann surfaces are also algebraic curves (varieties of dimension 1)
that are smooth projective curves overC. The Jacobian of a compact Riemann surfaces is also an
algebraic variety, and in fact a smooth projective variety of dimension g. Moreover, as a complex
torus, the Jacobian is naturally equipped with a group operation (add vectors in V and reduce
modulo Λ), and this induces a group structure on the corresponding projective variety that is
defined by morphisms, making it an algebraic group. This group is obviously abelian (since V/Λ
is), but in fact it any smooth projective variety that is also an algebraic group, including those
that are not necessarily Jacobians, has an abelian group structure; thus all projective algebraic
groups are called abelian varieties (note that linear algebraic groups like GLn are not projective).

The moduli spaceAg of principally polarized abelian varieties of dimension g has dimension
g(g+1)/2, while the moduli spaceMg of smooth projective curves of genus g ≥ 2 has dimension
3g − 3. Thus for large g almost all principally polarized abelian varieties are not Jacobians.
But for g = 1 every abelian variety is a Jacobian (in fact an elliptic curve), and for g = 2,3
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the dimensions of Ag andMg coincide, meaning that almost all principally polarized abelian
varieties of dimension g ≤ 3 are Jacobians.

Recall the divisor class group Pic0(X ) = Div0(X )/Prin(X ) of divisors of degree zero modulo
principal divisors those associated to elements of the function field C(X ). We should note that
our identification of Pic0(X ) with the divisor class group is valid for smooth projective curves
over an algebraically closed field, but Pic0(X ) also has an intrinsic definition that may differ
from the divisor class group in other settings.

There is a canonical isomorphism Pic0(X ) ∼−→ Jac(X ) defined as follows. Given D ∈ Div0(X )
we write D in the form

D =
∑

i

(Pi −Q i)

(this is always possible for X/C) and associate to D the linear form

ω 7→
∑

i

∫ Q i

Pi

ω

in Ω1
0(X )

∨. Reducing modulo the lattice H1(X ,C) yields an element of Jac(X ). This is the Abel-
Jacobi map, which can be viewed as an extension of the map X → Pic0(X ) that sends x ∈ X (C)
to the divisor x − x0, where x0 ∈ X (C) is a fixed rational point.

If φ : X → Y is a nonconstant holomorphic map of compact Riemann surfaces, we have a
pullback map φ∗ : C(Y ) → C(X ) defined by φ∗ f = f ◦ φ, which extends to a linear map of
holomorphic differentials

φ∗ : Ω1
0(Y )→ Ω

1
0(X ).

Taking duals induces the pushforward map on Jacobians h∗ : Jac(X )→ Jac(Y ). There is also a
pushforward map h∗ : Pic0(X )→ Pic0(Y ) induced by the pushforward map Div0(X )→ Div0(Y )
that sends P ∈ C(X ) to h(P) ∈ C(Y ), and the two maps are compatible with the isomorphisms
Jac(X )≃ Pic0(X ) and Jac(Y )≃ Pic0(Y ).

There is also a pullback map h∗ : Pic0(Y )→ Pic0(X ) induced by the map Div0(Y )→ Div0(X )
that sends Q ∈ Y (C) to the sum of the points P ∈ φ−1(Q), and a corresponding pullback map
Jac(Y )→ Jac(X ) that can be defined using the trace map Ω1

0(X )→ Ω
1
0(Y ). These pullback maps

are also compatible with the isomorphisms Jac(X )≃ Pic0(X ) and Jac(Y )≃ Pic0(Y ).

18.2 Modular Jacobians and Hecke operators

Let Γ1 and Γ2 be congruence subgroups, α ∈ GL+2 (Q) and Γ3 = α−1Γ1α ∩ Γ2. If we decompose
Γ3\Γ2 as
∐

i Γ3γi and Γ1αΓ2 as
∐

j Γ1β j and let Γ ′3 := αΓ3α−1 = Γ1 ∩αΓ2α−1 then

Γ2←− Γ3 ∼−→ Γ ′3 −→ Γ1

where the isomorphism is γ 7→ αγα−1 and the other arrows are inclusions. This induces mor-
phism of modular curves

XΓ2
π2←− XΓ3 ≃ X ′3

π1−→ XΓ1

Each point of XΓ2 is mapped via π1 ◦ α ◦π−1
2 to a multiset of points of XΓ1 . Viewing points on

XΓ1 and XΓ2 as Γi-orbits in H∗ we have

Γ2z
π−1

27→ {Γ3γiz}
α
→ {Γ ′3β jz}

π1→ {Γ1β jz}
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We have a corresponding map Γ1αΓ2 : Div(XΓ2)→ Div(XΓ1), which induces a map

that we can view as map of Jacobians of modular curves: Jac(XΓ2)→ Jac(XΓ1).
Applying S2(Γ )≃ Ω1

0(XΓ ) and taking the corresponding isomorphism of the dual space yields
an isomorphism

Jac(XΓ )≃ S2(Γ )
∨/H1(XΓ ,Z)

that is compatible with pushforward and pullback maps. The map

Γ1αΓ2 : S2(Γ1)→ S2(Γ2)

induces a map on the dual spaces, and a map on Jacobians

Γ1αΓ2 : Jac(X2)→ Jac(X1),

which defines an action of the Hecke algebra T = Z[ΓαΓ ] on the Jacobian Jac(XΓ ).

18.3 Eichler-Shimura

Now let f ∈ S2(Γ1(N)) be a newform, hence an eigenform of T(N) = Z[Γ1(N)∆(N)/Γ1(N)], and
consider the eigenvalue map

λ f : T(N)→ C

defined by f |2T = λ f (T ) f . Let I f := kerλ f := {T ∈ T(N) : f |2T = 0}. Since T(N) acts on
Jac(X1(N)), we can view I f Jac(X1(N)) as a subgroup of the divisor class group Pic0(X1(N))
corresponding to an abelian subvariety of Jac1(X1(N)).

Definition 18.1. The modular abelian variety A f associated to the newform f ∈ S2(Γ1(N)) is
the quotient Jac(X1(N))/I f Jac(X1(N)).

The eigenvalues λ f (T ) and the Fourier coefficients an( f ) are algebraic integers that gener-
ate a number field Q( f ). By letting Gal(Q/Q) act on the coefficients of f , we obtain a Galois
conjugate newform f σ associated to each σ ∈ Gal(Q/Q) (equivalently, we can view the coeffi-
cients of f as abstract elements of the number field Q( f ) and consider the different embedding
of Q( f ) into C.

The set of all Galois conjugates of f spans a subspace of S2(Γ1(N)) of dimension [Q( f ) :Q],
and this is equal to the dimension of A f ; indeed A f is invariant under the action of Gal(Q/Q)
and can be viewed as an abelian variety over Q. Replacing f with a Galois conjugate newform
does not change A f .

If we let Vf denote the subspace of S2(Γ1(N)) spanned by the Galois conjugates of f and
consider H1(X1(N),Z) ,→ Ω1

0(X1(N)) ≃ S2(Γ1(N)), restricting H1(X1(N),Z) to its action on
elements of Vf ⊆ S2(Γ1(N)) yields a lattice Λ f ⊆ Vf , and we can alternatively define A f as the
abelian variety corresponding to the complex torus Vf /Λ f (which also admits a polarization).
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