18.786 Number theory II Spring 2024
Lecture #18 4/22/2024

These notes summarize the material in §6.1-6.3 of [1] presented in lecture.

18.1 The Jacobian of a compact Riemann surface

Let X be a compact Riemann surface of genus g with holomorphic atlas {v;: U; = V; C C}
and transition maps 1;;: ; © 1/)1._1 : Vi = Vj for all U; N U; # B, where V;; = v;(U; N Uj).
In Lecture 7 we considered the space Q!(X) of meromorphic differentials w of degree n on X
defined by a collection of meromorphic functions {w;: V; — C} satisfying

dy; \"
w; = (wj oy (d_:,l/j;)

on V;; (modulo equivalence {w;} = w ~ 6 = {6;} if {w;} U {6;} is a meromorphic differential).
We associated to each w a divisor div(w) = ., ordp(w; 0 ;) in the divisor group Div(X) (the
free abelian group generated by P € X(C)), and call a meromorphic differential «w holomorphic
if w = 0 or div(w) = 0 (meaning every coefficient of div(w) is nonnegative). We showed that
the space of holomorphic differentials Q(l)(X ) is a complex vector space of dimension g.

For a lattice I' < SL,(R), we showed how to associate to each automorphic f € A,,(T) a
meromorphic differential w, of degree n, and we showed that w; is holomorphic precisely
when f is a cusp form. For cusp forms of weight 2 we get a holomorphic differential of degree 1
and the map f — w; induces an isomorphism S,(T') =~ Q(l)(XF), where X :=T'\H*.

The homology group of H;(X,Z) formed by equivalence classes of closed loops on X (1-
cycles modulo boundaries) is a free abelian group of rank 2g. Each y € H;(X,Z) determines a
linear form on Q(l)(X ) via the map

w— f w.
Y

This induces an injective map Z*¢ ~ H,(X,Z) — Q(X)" = Hom(H,(X),C) ~ C? that allows
us to view H,(X,Z) as a lattice A = H,(X,Z) ~ Z?¢ in the vector space V = Q(l)(X)V ~ Cé&. The
quotient Hé (X)V/H,(X,Z) is a complex torus V /A that can be equipped with a Riemann form
(a positive definite Hermitian form V x V — C that maps A x A to Z) that induces a polarization
(a homomorphism to the dual torus) which makes it an abelian variety called the Jacobian of X,
denoted Jac(X).

It turns out that because our complex torus V /A arose from a Riemann surface, this polar-
ization is actually an isomorphism and Jac(X) is a principally polarized abelian variety.

Recall that compact Riemann surfaces are also algebraic curves (varieties of dimension 1)
that are smooth projective curves over C. The Jacobian of a compact Riemann surfaces is also an
algebraic variety, and in fact a smooth projective variety of dimension g. Moreover, as a complex
torus, the Jacobian is naturally equipped with a group operation (add vectors in V and reduce
modulo A), and this induces a group structure on the corresponding projective variety that is
defined by morphisms, making it an algebraic group. This group is obviously abelian (since V /A
is), but in fact it any smooth projective variety that is also an algebraic group, including those
that are not necessarily Jacobians, has an abelian group structure; thus all projective algebraic
groups are called abelian varieties (note that linear algebraic groups like GL,, are not projective).

The moduli space .¢/, of principally polarized abelian varieties of dimension g has dimension
g(g+1)/2, while the moduli space .#,, of smooth projective curves of genus g > 2 has dimension
3g — 3. Thus for large g almost all principally polarized abelian varieties are not Jacobians.
But for g = 1 every abelian variety is a Jacobian (in fact an elliptic curve), and for g = 2,3
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the dimensions of .¢/, and .#, coincide, meaning that almost all principally polarized abelian
varieties of dimension g < 3 are Jacobians.

Recall the divisor class group Pic®(X) = Div®(X)/ Prin(X) of divisors of degree zero modulo
principal divisors those associated to elements of the function field C(X). We should note that
our identification of Pic’(X) with the divisor class group is valid for smooth projective curves
over an algebraically closed field, but Pic®(X) also has an intrinsic definition that may differ
from the divisor class group in other settings.

There is a canonical isomorphism Pic®(X) = Jac(X) defined as follows. Given D € Div®(X)

we write D in the form
D= E (P, —Q)
i

(this is always possible for X /C) and associate to D the linear form

Q;
i JP

in Q(l)(X )¥. Reducing modulo the lattice H;(X, C) yields an element of Jac(X). This is the Abel-
Jacobi map, which can be viewed as an extension of the map X — Pic’(X) that sends x € X(C)
to the divisor x — x, where x, € X(C) is a fixed rational point.

If : X — Y is a nonconstant holomorphic map of compact Riemann surfaces, we have a
pullback map ¢*: C(Y) — C(X) defined by ¢*f = f o ¢, which extends to a linear map of
holomorphic differentials

P*: QL(Y) - QH(X).
Taking duals induces the pushforward map on Jacobians h, : Jac(X) — Jac(Y). There is also a
pushforward map h, : Pic®(X) — Pic®(Y) induced by the pushforward map Div®(X) — DivO(Y)
that sends P € C(X) to h(P) € C(Y), and the two maps are compatible with the isomorphisms
Jac(X) ~ Pic®(X) and Jac(Y) ~ Pic(Y).

There is also a pullback map h*: Picy(Y) — Picy(X) induced by the map Div®(Y) — Div®(X)
that sends Q € Y(C) to the sum of the points P € ¢~}(Q), and a corresponding pullback map
Jac(Y) — Jac(X) that can be defined using the trace map Q(l)(X )— Qé(Y). These pullback maps
are also compatible with the isomorphisms Jac(X) ~ Pic’(X) and Jac(Y) =~ Pic®(Y).

18.2 Modular Jacobians and Hecke operators

Let T} and I, be congruence subgroups, a € GLJ(Q) and Iy = a~'TyanT,. If we decompose
[\Ip as | [; T3y, and Tyal as [ [; 11 B; and let T := alya™ ! =T) nala ! then

L5 —T0

where the isomorphism is y — aya™! and the other arrows are inclusions. This induces mor-
phism of modular curves

X X X 2L X
b I —43 n

Each point of Xy, is mapped via m; 0o a o n;l to a multiset of points of Xr,. Viewing points on
Xr, and X, as [j-orbits in H* we have

1

Ty T
Lz = {Tyz} - {I;B;2} = {182}
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We have a corresponding map Iy al;: Div(Xr,) — Div(X, ), which induces a map

that we can view as map of Jacobians of modular curves: Jac(Xr,) — Jac(Xr, ).
Applying S,(T") =~ Q(l) (Xr) and taking the corresponding isomorphism of the dual space yields
an isomorphism
Jac(Xr) ~ S,(T)" /H,(Xr, Z)

that is compatible with pushforward and pullback maps. The map
Taly: Sy(Th) — Sa(T3)
induces a map on the dual spaces, and a map on Jacobians
Iyal,: Jac(X,) — Jac(Xq),

which defines an action of the Hecke algebra T = Z[T'al'] on the Jacobian Jac(Xy).

18.3 Eichler-Shimura

Now let f € So(T;(N)) be a newform, hence an eigenform of T(N) = Z[T}(N)A(N)/T;(N)], and
consider the eigenvalue map

defined by f[,T = A¢(T)f. Let Iy := kerA; := {T € T(N) : f|,T = 0}. Since T(N) acts on
Jac(X;(N)), we can view I;Jac(X;(N)) as a subgroup of the divisor class group Pic®(X1(N))
corresponding to an abelian subvariety of Jac;(X;(N)).

Definition 18.1. The modular abelian variety A¢ associated to the newform f € S,(T;(N)) is
the quotient Jac(X;(N))/IfJac(X;(N)).

The eigenvalues A((T) and the Fourier coefficients a,(f) are algebraic integers that gener-
ate a number field Q(f). By letting Gal(Q/Q) act on the coefficients of f, we obtain a Galois
conjugate newform f7 associated to each o € Gal(Q/Q) (equivalently, we can view the coeffi-
cients of f as abstract elements of the number field Q(f) and consider the different embedding
of Q(f) into C.

The set of all Galois conjugates of f spans a subspace of Sy(T}(N)) of dimension [Q(f) : Q],
and this is equal to the dimension of A¢; indeed Ay is invariant under the action of Gal(Q/Q)
and can be viewed as an abelian variety over Q. Replacing f with a Galois conjugate newform
does not change A¢.

If we let V; denote the subspace of Sy(I7(N)) spanned by the Galois conjugates of f and
consider H;(X;(N),Z) — Q(l)(Xl(N)) ~ S, (I1(N)), restricting H;(X;(N),Z) to its action on
elements of Vy C S,(I3(NV)) yields a lattice Ay € V;, and we can alternatively define Ay as the
abelian variety corresponding to the complex torus V; /A, (which also admits a polarization).
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