These notes summarize the material in §6.3-4 presented in lecture. Recall the weight-*k* slash operator associated to $\alpha \in \text{GL}_2^+(\mathbb{R})$ on functions $f : \mathbf{H} \to \mathbb{C}$ is defined by

$$(f|_k \alpha)(z) \coloneqq (\det \alpha)^k j(\alpha, z)^{-k} f(\alpha z),$$

where $j(\alpha, z) \coloneqq cz + d$ for $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ and $z \in \mathbf{H}$, and we have $\operatorname{Im}(\alpha z) = \frac{\det(\alpha)\operatorname{Im}(z)}{|j(\alpha,z)|^2}$.

17.1 Function spaces of automorphic forms

Let $\Gamma \leq SL_2(\mathbb{R})$ be a lattice (which we recall is a discrete cofinite subgroup of $SL_2(\mathbb{R})$, equivalently, a finitely generated Fuchsian of the first kind; see Lecture 5). Let $k \leq in\mathbb{Z}_{>2}$, and let χ be a finite order character of Γ with $\chi(-1) = (-1)^k$ if $-1 \in \Gamma$.

For any measurable function $f : \mathbf{H} \to \mathbb{C}$ that satisfies

$$(f|_k \gamma) = \chi(\gamma) f(z) \quad \text{(for all } \gamma \in \Gamma)$$
 (1)

we define

$$\|f\|_{\Gamma,p} \coloneqq \begin{cases} \left(\int_{\Gamma \setminus \mathbf{H}} |f(z)\operatorname{im}(z)^{k/2}|^p d\nu(z)\right)^{1/p} & 1 \le p < \infty \\ \operatorname{ess\,sup}_{z \in \mathbf{H}} |f(z)\operatorname{Im}(z)^{k/2}| & p = \infty. \end{cases}$$

For $\gamma \in \Gamma$ we have

$$|f(\gamma z)\operatorname{Im}(\gamma z)^{k/2}| = |(f|k\gamma)(z)j(\gamma,z)^{-k}\operatorname{Im}(\gamma z)^{k/2}| = |f(z)\operatorname{Im}(z)^{k/2}|,$$

which ensures that $||f||_{\Gamma,p}$ is well defined. We now let $L_k^p(\Gamma, \chi)$ denote the set of measurable functions $f: \mathbf{H} \to \mathbb{C}$ that satisfy (1) with $||f||_{\Gamma,p} < \infty$, and use $H_k^p(\Gamma, \chi)$ to denote the subspace of holomorphic $f \in L_k^p(\Gamma, \chi)$. Then $L_k^2(\Gamma, \chi)$ is a Hilbert space with inner product

$$\langle f,g \rangle := \int_{\Gamma \setminus \mathbf{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^k d\nu(z).$$

Now $\Gamma \setminus \mathbf{H}$ has finite volume (Γ is a lattice), which implies $L_k^{\infty}(\Gamma, \chi) \subseteq L_k^p(\Gamma, \chi)$ and $H_k^{\infty}(\Gamma, \chi) \subseteq H_k^p(\Gamma, \chi)$ for all $p \in \mathbb{R}_{\geq 1}$. Moreover, we have $H_k^{\infty}(\Gamma, \chi) = S_k(\Gamma, \chi)$ (see [1, Theorem 2.1.5]) and the restriction of the inner product of $L_k^2(\Gamma, \chi)$ to $H_k^{\infty}(\Gamma, \chi)$ is just a rescaled version of the Petersson inner product that omits the leading factor $\nu(\Gamma \setminus \mathbf{H})^{-1}$.

Theorem 17.1. $H_k^2(\Gamma, \chi) = H_k^{\infty}(\Gamma, \chi)$

Proof. This is immediate when Γ has no cusps, since then Γ**H** is compact. So let x_0 is a cusp of Γ and $f \in H_k^2(\Gamma, \chi)$. By replacing Γ with a finite index subgroup we can assume χ is trivial. Pick $\sigma \in SL_2(\mathbb{R})$ so that $\sigma x = \infty$ and put $\pm \sigma^{-1}\Gamma_{x_0}\sigma = \pm \langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \rangle$, with $h \in \mathbb{R}_{>0}$. If we pick a neighborhood $U_l = \{z \in \mathbf{H} | \operatorname{Im}(z) > l\}$ of ∞ and let $\sum a_n e^{\pi i n z/h}$ denote the Fourier espansion of $f|_k \sigma$, then

$$\begin{split} & \infty > \int_{\Gamma \setminus \mathbf{H}} |f(z)|^2 \operatorname{Im}(z)^k d\nu(z) \\ & \geq \frac{1}{2} \iint_{\substack{0 \le \operatorname{Re}(z) \le 2h \\ l \le \operatorname{Im}(z) < \infty}} |f(\sigma z) j(\sigma, z)^{-k}|^2 \operatorname{Im}(z)^k d\nu(z) \\ & = \frac{1}{2} \int_l^{\infty} \int_0^{2h} \sum_{m,n \in \mathbb{Z}} a_m \bar{a}_n e^{-\pi y(m+n)/h} e^{\pi i x(m-n)/h} y^{k-2} dx dy \\ & \geq h |a_n|^2 \int_l^{\infty} e^{-2\pi y n/h} y^{k-2} dy. \end{split}$$

for any $n \in \mathbb{Z}$. For k > 2 this implies $a_n = 0$ if $n \le 0$, so $f \in S_k(\Gamma, \chi) = H_k^{\infty}(\Gamma, \chi)$.

For $f \in L_k^1(\mathbf{H})$ we define

$$f^{\Gamma}(z) \coloneqq rac{1}{\#Z(\Gamma)} \sum_{\gamma \in \Gamma} \overline{\chi(\gamma)} f(\gamma z) j(\gamma, z)^{-z}$$

and

$$K^{\Gamma}(z_1, z_2) \coloneqq \frac{1}{\#Z(\Gamma)} \sum_{\gamma \in \Gamma} \overline{\chi(\gamma)} K(\gamma z_1, z_2) j(\gamma, z_1)^{-k},$$

where $\#Z(\Gamma) \in \{1,2\}$ counts the trivial elements of Γ . In the previous lecture we proved

$$K(z_1, z_2) = \frac{k - 1}{4\pi} \left(\frac{z_1 - \bar{z}_2}{2i}\right)^{-k},$$
(2)

and we note that $\overline{K(z_2, z_1)} = K(z_1, z_2)$ implies $\overline{K^{\Gamma}(z_2, z_1)} = K^{\Gamma}(z_1, z_2)$, for all $z_1, z_2 \in \mathbf{H}$. **Theorem 17.2.** If $f \in L_k^1(\mathbf{H})$ then $f^{\Gamma} \in L_k^1(\Gamma, \chi)$, and if $f \in H_k^1(\mathbf{H})$ then $f^{\Gamma} \in H_k^1(\Gamma, \chi)$. *Proof.* See Theorem 6.3.2 in [1].

Theorem 17.3. For $f \in L_k^1(\mathbf{H})$ the sum in f^{Γ} converges absolutely on \mathbf{H} and f^{Γ} lies in $L_k^1(\Gamma, \chi)$, and in $H_k^1(\Gamma, \chi)$ if f is holomorphic. In particular, $K^{\Gamma}(z, z_2) \in H_k^1(\Gamma, \chi)$ for every fixed $z_2 \in \mathbf{H}$.

Proof. See [1, Theorem 6.4.2].

Theorem 17.4. $K^{\Gamma}(z_1, z_2)$ is the kernel function of $H^2_k(\Gamma, \chi)$.

Proof. This is [1, Theorem 6.3.3], but modulo issues of convergence, for $f \in H^2_k(\Gamma, \chi)$ we have

$$\begin{split} \langle f, K_{z_1}^{\Gamma} \rangle &= \int_{\Gamma \setminus \mathbf{H}} f(z_2) \overline{K^{\Gamma}(z_2, z_1)} \operatorname{Im}(z_2)^k d\nu(z_2) = \int_{\Gamma \setminus \mathbf{H}} K^{\Gamma}(z_1, z_2) f(z_2) \operatorname{Im}(z_2)^k d\nu(z_2) \\ &= \frac{1}{\# Z(\Gamma)} \sum_{\gamma \in \Gamma} \int_{\gamma^{-1} F} K(z_1, z_2) f(z_2) \operatorname{Im}(z_2)^k d\nu(z_2) \\ &= \int_{\mathbf{H}} K(z_1, z_2) f(z_2) \operatorname{Im}(z_2)^k d\nu(z_2) \\ &= f(z_1), \end{split}$$

since $f \in H_k^2(\Gamma, \chi) \subseteq H_k^2(\mathbf{H})$ and $K(z_1, z_2)$ is the kernel function of $H_k^2(\mathbf{H})$. and this implies that $K^{\Gamma}(z_1, z_2)$ is the kernel function of $H_k^2(\Gamma, \chi)$, provided $K_{z_1}^{\Gamma} \in H_k^2$, which one can show follows from $K_{z_1} \in H_k^2(\mathbf{H})$.

This gives us a new way to compute the dimension of $S_k(\Gamma, \chi)$.

Corollary 17.5. For any lattice $\Gamma \leq SL_2(\mathbb{R})$ and integer k > 2 we have the dimension formula

$$\dim S_k(\Gamma, \chi) = \int_{\Gamma \setminus \mathbf{H}} K^{\Gamma}(z, z) \operatorname{Im}(z)^k d\nu(z).$$

Proof. Let f_1, \ldots, f_r be an orthonormal basis for $S_k(\Gamma, \chi)$ with respect to the inner product on $H_k^2(\Gamma, \chi) = H_k^\infty(\Gamma, \chi) = S_k(\Gamma, \chi)$. Then

$$K^{\Gamma}(z_1, z_2) = \sum_{i=1}^r f_i(z_1) \overline{f_i(z_2)},$$

since as noted in Lecture 16, the RHS is the kernel of any finite dimensional Hilbert space with orthonormal basis f_1, \ldots, f_r , and we have

$$\dim S_k(\Gamma, \chi) = r = \sum_{i=1}^r \langle f_i, f_i \rangle = \sum_{i=1}^r \int_{\Gamma \setminus \mathbf{H}} f_i(z) \overline{f_i(z)} \operatorname{Im}(z)^k d\nu(z) = \int_{\Gamma \setminus \mathbf{H}} K^{\Gamma}(z, z) \operatorname{Im}(z)^k d\nu(z). \quad \Box$$

17.2 Traces of Hecke operators

Let $\Gamma \leq SL_2(\mathbb{R})$ be a lattice and let $\Delta \supseteq$ be a semigroup contained in the commensurator $\tilde{\Gamma}$ of Γ in $GL_2^+(\mathbb{R})$ (so for $\alpha \in \Delta$ the group $\alpha \Gamma \alpha^{-1}$ is commensurable with Γ). Let χ be a finite order character of Γ with $\chi(-1) = (-1)^k$ if $-1 \in \Gamma$ as above, extending to a homomorphism $\Delta \to \mathbb{C}$ with

$$\chi(\alpha\gamma\alpha^{-1}) = \chi(\gamma)$$

for all $\gamma \in \Gamma$ and $\alpha \in \Delta$.

Fix $k \in \mathbb{Z}_{>2}$. Recall that the Hecke algebra $\mathbb{Z}[\Gamma \setminus \Delta / \Gamma]$ acts on $f \in S_k(\Gamma, \chi)$ via

$$(f|_k\Gamma\alpha\Gamma)(z) := \det(\alpha)^{k-1}\sum_{i=1}^r \overline{\chi}(\alpha_i)j(\alpha_i,z)^{-k}f(\alpha_i z),$$

where $\Gamma \alpha \Gamma = \prod_{i=1}^{r} \Gamma \alpha_i$ is any right coset decomposition and the action of an integer linear combination of double cosets is computed by extending \mathbb{Z} -linearly. For $\alpha \in \Delta$ we define

$$\kappa(\alpha, z) \coloneqq \det(\alpha)^{k-1} \overline{\chi}(\alpha) K(\alpha z, \alpha) j(\alpha, z)^{-k} \operatorname{Im}(z)^{k}.$$

If $T \in \mathbb{Z}[\Gamma \setminus \Delta / \Gamma]$ is a sum of disjoint double cosets (a single double coset, for example) then the union of the double coset summands of *T* is a subset of Δ that admits a finite decomposition into right cosets $T = \prod_{i=1}^{r} \Gamma \alpha_i$; the Hecke operator $T(n) \in \mathbb{T}(N) = \mathbb{Z}[\Gamma_0(N) \setminus \Delta_0(N) / \Gamma_0(N)]$ is a notable example; it corresponds to the set $\{\alpha \in \Delta_0(N) | \det(\alpha) = n\} \subseteq \Delta_0(N)$. We will regard such Hecke operators as elements of $\mathbb{Z}[\Gamma \setminus \Delta / \Gamma]$ that are also subsets of Δ we can sum over.

Theorem 17.6. Let $T \in \mathbb{Z}[\Gamma \setminus \Delta / \Gamma]$ be a sum of double cosets. The trace of T acting on $S_k(\Gamma, \chi)$ is

$$\operatorname{tr}(T) = \operatorname{tr}(T|S_k(\Gamma,\chi)) = \frac{1}{\#Z(\Gamma)} \int_{\Gamma \setminus \mathbf{H}} \sum_{\alpha \in T} \kappa(\alpha,z) d\nu(z)$$

Proof. Let f_1, \ldots, f_r be an orthonormal basis of $S_k(\Gamma, \chi)$ and let $T = \prod_{i=1}^n \Gamma \alpha_i$. Then

$$tr(\Gamma \alpha \Gamma) = \sum_{l=1}^{r} \langle f_{l} | \Gamma \alpha \Gamma, f_{l} \rangle$$

$$= \sum_{l=1}^{r} \int_{\Gamma \setminus \mathbf{H}} \sum_{i=1}^{n} \det(\alpha_{i})^{k-1} \overline{\chi}(\alpha_{i}) j(\alpha_{i}, z)^{-k} f_{l}(\alpha_{i}z) \overline{f_{l}(z)} \operatorname{Im}(z)^{k} d\nu(z)$$

$$= \int_{\Gamma \setminus \mathbf{H}} \sum_{i=1}^{n} \det(\alpha_{i})^{k-1} \overline{\chi}(\alpha_{i}) j(\alpha_{i}, z)^{-k} K^{\Gamma}(\alpha_{i}z_{1}, z_{2}) \operatorname{Im}(z)^{k} d\nu(z)$$

$$= \frac{1}{\# Z(\Gamma)} \int_{\Gamma \setminus \mathbf{H}} \sum_{\alpha \in T} \det(\alpha)^{k-1} \overline{\chi}(\alpha) K(\alpha z, z) j(\alpha, z)^{-k} \operatorname{Im}(z)^{k} d\nu(z)$$

$$= \frac{1}{\# Z(\Gamma)} \int_{\Gamma \setminus \mathbf{H}} \sum_{\alpha \in T} \kappa(\alpha, z) d\nu(z).$$

In order to compute the integral in Theorem 17.6 we need to treat cusps of Γ separately. For $x \in \mathbb{P}^1(\mathbb{R})$ a cusp of Γ , and a Hecke operator $T \subseteq \Delta$, let $T_x := \{\alpha \in T : \alpha x = x\}$. If U_x is a neighborhood of x that is stable under the action of $\Gamma_x := \{\gamma \in \Gamma : \gamma x = x\}$ then

$$\int_{\Gamma_x \setminus U_x} \sum_{\alpha \in T} \kappa(\alpha, z) d\nu(z) = \int_{\Gamma_x \setminus U_x} \sum_{\alpha \in T - T_x} \kappa(\alpha, z) d\nu(z) + \int_{\Gamma_x \setminus U_x} \sum_{\alpha \in T_x} \kappa(\alpha, z) d\nu(z)$$

Lemma 17.7. For any cusp x of Γ with Γ_x -stable neighborhood U_x and Hecke operator $T \in \mathbb{Z}[\Gamma \setminus \Delta/\Gamma]$ that is a sum of double cosets we have

$$\int_{\Gamma_x \setminus U_x} \sum_{\alpha \in T - T_x} \kappa(\alpha, z) d\nu(z) = \sum_{\alpha \in T - T_x} \int_{\Gamma_x \setminus U_x} \kappa(\alpha, z) d\nu(z)$$

and $[T_x: \Gamma_x] < \infty$.

Proof. See [1, Theorem 6.4.5] and [1, Lemma 6.4.6].

Theorem 17.8. Let x be a cusp of Γ with $\sigma x = \infty$ for some $\sigma \in SL_2(\mathbb{R})$. then

$$\int_{\Gamma_x \setminus U_x} \sum_{\alpha \in T_x} \kappa(\alpha, z) d\nu(z) = \lim_{s \to 0^+} \sum_{\alpha \in T_x} \int_{\Gamma_x \setminus U_x} \kappa(\alpha, z) \operatorname{Im}(z)^{-s} |j(\sigma, z)|^{2s} d\nu(z).$$

Proof. This is [1, Theorem 6.4.7].

Let $P_{\Gamma} \subseteq \mathbb{P}^{1}(\mathbb{R})$ denote the set of cusps of Γ and choose neighborhoods U_{x} of $x \in P_{\Gamma}$ so that $U_{\gamma x} = \gamma U_{x}$ and $U_{x} \cap U_{x'} = \emptyset$ for $x \neq x'$, and choose $\sigma_{x} \in SL_{2}(\mathbb{R})$ so that $\sigma_{x} x = \infty$ and $Im(\sigma_{\gamma x} \gamma z) = Im(\sigma_{x} z)$ for $\gamma \in \Gamma$ and $z \in \mathbf{H}$. Let $T \subseteq \Delta$ be a union of double Γ -cosets, put $Z(T) \coloneqq T \cap \mathbb{R}^{\times}$ and $T_{\infty} \coloneqq \bigcup_{x \in P_{\Gamma}} (T_{x} - Z(T))$. We then have

$$\operatorname{tr}(T) = \frac{1}{\#Z(\Gamma)} \left(\sum_{\alpha \in T - T_{\infty}} \int_{\Gamma \setminus \mathbf{H}} \kappa(\alpha, z) d\nu(z) + \lim_{s \to 0^+} \sum_{\alpha \in T^{\infty}} \int_{\Gamma \setminus \mathbf{H}} \kappa(\alpha, z, s) d\nu(z) \right),$$

where $\kappa(\alpha, z, s) := \kappa(\alpha, z) \operatorname{Im}(z)^{-s} |j(\sigma_x, z)|^{2s}$ for $z \in \bigcup_{\alpha x = x} U_x$.

For $\alpha \in T$ let $\Gamma(\alpha) := \{\gamma \in \Gamma : \alpha\gamma = \gamma\alpha\}$, and for any union of Γ -conjugacy classes $S \subseteq T$ let $\operatorname{conj}_{\Gamma}(S)$ denote a set of Γ -conjugacy class representatives. Then

$$\operatorname{tr}(T) = \frac{1}{\#Z(\Gamma)} \left(\sum_{\alpha \in \operatorname{conj}_{\Gamma}(T-T_{\infty})} \int_{\Gamma(\alpha) \setminus \mathbf{H}} \kappa(\alpha, z) d\nu(z) + \lim_{s \to 0^+} \sum_{\alpha \in \operatorname{conj}_{\Gamma}(T_{\infty})} \int_{\Gamma(\alpha) \setminus \mathbf{H}} \kappa(\alpha, z, s) d\nu(z) \right).$$

We now consider the integrals $\int_{\Gamma(\alpha)\backslash H} \kappa(\alpha, z) d\nu(z)$. There are five different cases:

- 1. α is scalar;
- 2. α is elliptic (tr(α) < 4 det(α));
- 3. α is hyperbolic (tr(α) > 4 det(α)) with fixed points that are not cusps of Γ ;
- 4. α is hyperbolic (tr(α) > 4 det(α)) with a fixed point that is a cusp of Γ ;
- 5. α is parabolic (tr(α) = 4 det(α).

17.2.1 Scalar case

We have $\alpha = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ with $\Gamma(\alpha) = \Gamma$ and $\alpha z = z$, so

$$\begin{split} \int_{\Gamma(\alpha)\backslash \mathbf{H}} \kappa(\alpha, z) d\nu(z) &= \det(\alpha)^{k-1} \overline{\chi}(\alpha) \int_{\Gamma\backslash \mathbf{H}} K(\alpha z, z) j(\alpha, z)^{-k} \operatorname{Im}(z)^{k} d\nu(z) \\ &= a^{2k-2} \overline{\chi}(\alpha) \int_{\Gamma\backslash \mathbf{H}} \frac{k-1}{4\pi} \left(\frac{z-\overline{z}}{2i}\right)^{-k} a^{-k} \operatorname{Im}(z)^{k} d\nu(z) \\ &= \frac{k-1}{4\pi} a^{k-2} \overline{\chi}(\alpha) \nu(\Gamma\backslash \mathbf{H}). \end{split}$$

17.2.2 Elliptic case

If $z_0 \in \mathbf{H}$ is the fixed point of α and we put $\rho := \begin{pmatrix} 1 & -z_0 \\ 1 & -\bar{z}_0 \end{pmatrix}$ then $\rho \alpha \rho^{-1} = \begin{pmatrix} \eta & 0 \\ 0 & \zeta \end{pmatrix}$, where η, ζ are the eignevalues of α , and if we put $w = \rho z = re^{i\theta}$ then one finds that

$$\kappa(\alpha,z) = \frac{k-1}{4\pi} (\eta\zeta)^{k-1} \overline{\chi}(\alpha) \zeta^{-k} \left(\frac{1-r^2}{1-(\eta/\zeta)r^2}\right)^k$$

and using $dv(w) = 4r(1-r^2)^{-2}drd\theta$ we obtain

$$\begin{split} \int_{\Gamma(\alpha)\backslash \mathbf{H}} \kappa(\alpha, z) d\nu(z) &= \frac{k-1}{4\pi\zeta} \eta^{k-1} \overline{\chi}(\alpha) \int_0^1 \int_0^\pi 4r(1-r^2)^{k-2} (1-(\eta/\zeta)r^2)^{-k} dr d\theta \\ &= \frac{(k-1)\eta^{k-1} \overline{\chi}(\alpha)}{[\Gamma(\alpha): Z(\Gamma)]\zeta} \int_0^1 (1-t)^{k-2} (1-(\eta/\zeta)t)^{-k} dt \\ &= \frac{(k-1)\eta^{k-1} \overline{\chi}(\alpha)}{[\Gamma(\alpha): Z(\Gamma)]\zeta} ((k-1)(1-\eta/\zeta))^{-1} \\ &= \frac{\overline{\chi}(\alpha)}{[\Gamma(\alpha): Z(\Gamma)]} \frac{\eta^{k-1}}{(\zeta-\eta)} \end{split}$$

17.2.3 Hyperbolic case with no fixed cusps

In this case one finds that

$$\int_{\Gamma(\alpha)\setminus H} \kappa(\alpha,z) d\nu(z) = 0.$$

17.2.4 Hyperbolic case with a fixed cusp

In this case one finds that

$$\int_{\Gamma(\alpha)\setminus H} \kappa(\alpha,z) d\nu(z) = -\overline{\chi}(\alpha \frac{\min(|\eta|,|\zeta|)^{k-1}}{|\zeta-\eta|} \operatorname{sgn}(\zeta)^k.$$

17.2.5 Parabolic case

Let *x* be the fixed point of α ; then *x* is a cusp of Γ and $\Gamma(\alpha) = \Gamma_z$; see the argument in [1]. Choose $\sigma \in SL_2(\mathbb{R})$ so that $\sigma x = \infty$, and let $\sigma \alpha \sigma = \begin{pmatrix} \zeta & \lambda \\ 0 & \zeta \end{pmatrix}$. Let T^p be the set of parabolic elements in *T*, and for each cusp *x* of Γ let $T_x^p \coloneqq T^p \cap T_x$. Then $\bigcup_{x \in \Gamma \setminus P_{\Gamma}} T_x^p$ is a complete set of representatives for $\operatorname{conj}_{\Gamma}(T^p)$. Let $\pm \sigma \Gamma_x \sigma^{-1} = \langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \rangle$ with h > 0, and for $\alpha \in T_x^p$, put $h(\alpha) \coloneqq \lambda/\zeta$ and let $\operatorname{sgn}(\alpha) = \operatorname{sgn}(\zeta)$. Then

$$\lim_{s\to 0^+}\sum_{\alpha\in T_x^p}\int_{\Gamma(\alpha)\backslash \mathbf{H}}\kappa(\alpha,z,x)d\nu(s)=\lim_{s\to 0^+}\frac{1}{2\pi}\sum_{\alpha\in T_x^p}\overline{\chi}(\alpha)\operatorname{sgn}(\alpha)^k\operatorname{det}(\alpha)^{k/2-1}(ih/h(\alpha))^{1+s}.$$

17.3 The trace formula

Let $\Gamma \leq SL_2(\mathbb{R})$ be a lattice, let Δ be a semigroup with $\Gamma \leq \Delta \leq \tilde{\Gamma}$, let χ be a finite order character of Γ with $\chi(-1) = (-1)^k$ if $-1 \in \Gamma$, extended to Δ so that $\chi(\alpha \gamma \alpha^{-1}) = \chi(\gamma)$ for $\alpha \in \Delta$ and $\gamma \in \Gamma$, and let $T \in \mathbb{Z}[\Gamma \setminus \Delta / \Gamma]$ be a sum of Γ -double cosets viewed as a subset of Δ .

Define $Z(T) = T \cap \mathbb{R}^{\times}$, let T^e be the subset of elliptic $\alpha \in T$, let T^h be the subset of hyperbolic $\alpha \in T$ whose fixed points are cusps of Γ , let $T^{h'}$ be the subset of hyperbolic $\alpha \in T$ whose fixed points are not cusps of Γ , and let T^p be the subset of parabolic $\alpha \in T$ whose fixed points are cusps of Γ , so that

$$T = Z(T) \sqcup T^e \sqcup T^h \sqcup T^{h'} \sqcup T^p.$$

For $\alpha \in T$ let η_{α} and ζ_{α} denote the eigenvalues of α , with $\eta_{\alpha} = re^{i\theta}$ and $\zeta_{\alpha} = re^{-i\theta}$ if α is elliptic with $\sigma \alpha \sigma^{-1} = r \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. For non-elliptic α let $\operatorname{sgn}(\alpha) := \operatorname{sgn}(\zeta_{\alpha})$, and for parabolic α let $m(\alpha) = \lambda/(h\zeta_{\alpha})$ where $\pm \sigma \Gamma(\alpha)\sigma^{-1} = \pm \langle \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \rangle$.

Theorem 17.9. The trace of T acting on $S_k(\Gamma, \chi)$ is

$$\operatorname{tr}(T) = t_0 + t_e + t_h + t_p,$$

where

$$\begin{split} t_{0} &= \frac{(k-1)\nu(\Gamma \backslash \mathbf{H})}{4\pi \# Z(\Gamma)} \sum_{\alpha \in Z(T)} \overline{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \operatorname{det}(\alpha)^{k/2-1}, \\ t_{e} &= -\sum_{\alpha \in \operatorname{conj}_{\Gamma}(T^{e})} \frac{\overline{\chi}(\alpha)\eta_{\alpha}^{k-1}}{|\Gamma(\alpha)|(\eta_{\alpha} - \zeta_{\alpha})}, \\ t_{h} &= -\frac{1}{\# Z(\Gamma)} \sum_{\alpha \in \operatorname{conj}_{\Gamma}(T^{h})} \overline{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \frac{\min(|\zeta_{\alpha}|, |\eta_{\alpha}|)^{k-1}}{|\zeta_{\alpha} - \eta_{\alpha}|}, \\ t_{p} &= \lim_{s \to 0^{+}} \frac{1}{2\pi \# Z(\Gamma)} \sum_{\alpha \in \operatorname{conj}_{\Gamma}(T^{p})} \overline{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \operatorname{det}(\alpha)^{k/2-1}(i/m(\alpha))^{1+s}. \end{split}$$

References

[1] Toshitsune Miyake, *Modular forms*, Springer, 2006.