These notes summarize the material in §6.3-4 presented in lecture. Recall the weight- k slash operator associated to $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ on functions $f: \mathbf{H} \rightarrow \mathbb{C}$ is defined by

$$
\left(\left.f\right|_{k} \alpha\right)(z):=(\operatorname{det} \alpha)^{k} j(\alpha, z)^{-k} f(\alpha z)
$$

where $j(\alpha, z):=c z+d$ for $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ and $z \in \mathbf{H}$, and we have $\operatorname{Im}(\alpha z)=\frac{\operatorname{det}(\alpha) \operatorname{Im}(z)}{|j(\alpha, z)|^{2}}$.

17.1 Function spaces of automorphic forms

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice (which we recall is a discrete cofinite subgroup of $\mathrm{SL}_{2}(\mathbb{R})$, equivalently, a finitely generated Fuchsian of the first kind; see Lecture 5). Let $k \leq i n \mathbb{Z}_{>2}$, and let χ be a finite order character of Γ with $\chi(-1)=(-1)^{k}$ if $-1 \in \Gamma$.

For any measurable function $f: \mathbf{H} \rightarrow \mathbb{C}$ that satisfies

$$
\begin{equation*}
\left(\left.f\right|_{k} \gamma\right)=\chi(\gamma) f(z) \quad(\text { for all } \gamma \in \Gamma) \tag{1}
\end{equation*}
$$

we define

$$
\|f\|_{\Gamma, p}:= \begin{cases}\left(\int_{\Gamma \backslash \mathbf{H}}\left|f(z) \operatorname{im}(z)^{k / 2}\right|^{p} d v(z)\right)^{1 / p} & 1 \leq p<\infty \\ \operatorname{ess} \sup _{z \in \mathbf{H}}\left|f(z) \operatorname{Im}(z)^{k / 2}\right| & p=\infty .\end{cases}
$$

For $\gamma \in \Gamma$ we have

$$
\left|f(\gamma z) \operatorname{Im}(\gamma z)^{k / 2}\right|=\left|(f \mid k \gamma)(z) j(\gamma, z)^{-k} \operatorname{Im}(\gamma z)^{k / 2}\right|=\left|f(z) \operatorname{Im}(z)^{k / 2}\right|,
$$

which ensures that $\|f\|_{\Gamma, p}$ is well defined. We now let $L_{k}^{p}(\Gamma, \chi)$ denote the set of measurable functions $f: \mathbf{H} \rightarrow \mathbb{C}$ that satisfy (1) with $\|f\|_{\Gamma, p}<\infty$, and use $H_{k}^{p}(\Gamma, \chi)$ to denote the subspace of holomorphic $f \in L_{k}^{p}(\Gamma, \chi)$. Then $L_{k}^{2}(\Gamma, \chi)$ is a Hilbert space with inner product

$$
\langle f, g\rangle:=\int_{\Gamma \backslash \mathbf{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d v(z)
$$

Now $\Gamma \backslash \mathbf{H}$ has finite volume (Γ is a lattice), which implies $L_{k}^{\infty}(\Gamma, \chi) \subseteq L_{k}^{p}(\Gamma, \chi)$ and $H_{k}^{\infty}(\Gamma, \chi) \subseteq$ $H_{k}^{p}(\Gamma, \chi)$ for all $p \in \mathbb{R}_{\geq 1}$. Moreover, we have $H_{k}^{\infty}(\Gamma, \chi)=S_{k}(\Gamma, \chi)$ (see [1, Theorem 2.1.5]) and the restriction of the inner product of $L_{k}^{2}(\Gamma, \chi)$ to $H_{k}^{\infty}(\Gamma, \chi)$ is just a rescaled version of the Petersson inner product that omits the leading factor $v(\Gamma \backslash \mathbf{H})^{-1}$.
Theorem 17.1. $H_{k}^{2}(\Gamma, \chi)=H_{k}^{\infty}(\Gamma, \chi)$
Proof. This is immediate when Γ has no cusps, since then $\Gamma \backslash \mathbf{H}$ is compact. So let x_{0} is a cusp of Γ and $f \in H_{k}^{2}(\Gamma, \chi)$. By replacing Γ with a finite index subgroup we can assume χ is trivial. Pick $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so that $\sigma x=\infty$ and put $\pm \sigma^{-1} \Gamma_{x_{0}} \sigma= \pm\left\langle\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$, with $h \in \mathbb{R}_{>0}$. If we pick a neighborhood $U_{l}=\{z \in \mathbf{H} \mid \operatorname{Im}(z)>l\}$ of ∞ and let $\sum a_{n} e^{\pi i n z / h}$ denote the Fourier espansion of $\left.f\right|_{k} \sigma$, then

$$
\begin{aligned}
\infty & >\int_{\Gamma \backslash H}|f(z)|^{2} \operatorname{Im}(z)^{k} d v(z) \\
& \geq \frac{1}{2} \iint_{0 \leq \operatorname{Re}(z) \leq 2 h}\left|f(\sigma z) j(\sigma, z)^{-k}\right|^{2} \operatorname{Im}(z)^{k} d v(z) \\
& =\frac{1}{2} \int_{l}^{\infty} \int_{0}^{\infty \operatorname{In}(z h<\infty} \sum_{m, n \in \mathbb{Z}} a_{m} \bar{a}_{n} e^{-\pi y(m+n) / h} e^{\pi i x(m-n) / h} y^{k-2} d x d y \\
& \geq h\left|a_{n}\right|^{2} \int_{l}^{\infty} e^{-2 \pi y n / h} y^{k-2} d y .
\end{aligned}
$$

for any $n \in \mathbb{Z}$. For $k>2$ this implies $a_{n}=0$ if $n \leq 0$, so $f \in S_{k}(\Gamma, \chi)=H_{k}^{\infty}(\Gamma, \chi)$.
For $f \in L_{k}^{1}(\mathbf{H})$ we define

$$
f^{\Gamma}(z):=\frac{1}{\# Z(\Gamma)} \sum_{\gamma \in \Gamma} \overline{\chi(\gamma)} f(\gamma z) j(\gamma, z)^{-z}
$$

and

$$
K^{\Gamma}\left(z_{1}, z_{2}\right):=\frac{1}{\# Z(\Gamma)} \sum_{\gamma \in \Gamma} \overline{\chi(\gamma)} K\left(\gamma z_{1}, z_{2}\right) j\left(\gamma, z_{1}\right)^{-k},
$$

where $\# Z(\Gamma) \in\{1,2\}$ counts the trivial elements of Γ. In the previous lecture we proved

$$
\begin{equation*}
K\left(z_{1}, z_{2}\right)=\frac{k-1}{4 \pi}\left(\frac{z_{1}-\bar{z}_{2}}{2 i}\right)^{-k}, \tag{2}
\end{equation*}
$$

and we note that $\overline{K\left(z_{2}, z_{1}\right)}=K\left(z_{1}, z_{2}\right)$ implies $\overline{K^{\Gamma}\left(z_{2}, z_{1}\right)}=K^{\Gamma}\left(z_{1}, z_{2}\right)$, for all $z_{1}, z_{2} \in \mathbf{H}$.
Theorem 17.2. If $f \in L_{k}^{1}(\mathbf{H})$ then $f^{\Gamma} \in L_{k}^{1}(\Gamma, \chi)$, and if $f \in H_{k}^{1}(\mathbf{H})$ then $f^{\Gamma} \in H_{k}^{1}(\Gamma, \chi)$.
Proof. See Theorem 6.3.2 in [1].
Theorem 17.3. For $f \in L_{k}^{1}(\mathbf{H})$ the sum in f^{Γ} converges absolutely on \mathbf{H} and f^{Γ} lies in $L_{k}^{1}(\Gamma, \chi)$, and in $H_{k}^{1}(\Gamma, \chi)$ if f is holomorphic. In particular, $K^{\Gamma}\left(z, z_{2}\right) \in H_{k}^{1}(\Gamma, \chi)$ for every fixed $z_{2} \in \mathbf{H}$.

Proof. See [1, Theorem 6.4.2].
Theorem 17.4. $K^{\Gamma}\left(z_{1}, z_{2}\right)$ is the kernel function of $H_{k}^{2}(\Gamma, \chi)$.
Proof. This is [1, Theorem 6.3.3], but modulo issues of convergence, for $f \in H_{k}^{2}(\Gamma, \chi)$ we have

$$
\begin{aligned}
\left\langle f, K_{z_{1}}^{\Gamma}\right\rangle & =\int_{\Gamma \backslash \mathbf{H}} f\left(z_{2}\right) \overline{K^{\Gamma}\left(z_{2}, z_{1}\right)} \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right)=\int_{\Gamma \backslash \mathbf{H}} K^{\Gamma}\left(z_{1}, z_{2}\right) f\left(z_{2}\right) \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) \\
& =\frac{1}{\# Z(\Gamma)} \sum_{\gamma \in \Gamma} \int_{\gamma^{-1} F} K\left(z_{1}, z_{2}\right) f\left(z_{2}\right) \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) \\
& =\int_{\mathbf{H}} K\left(z_{1}, z_{2}\right) f\left(z_{2}\right) \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) \\
& =f\left(z_{1}\right)
\end{aligned}
$$

since $f \in H_{k}^{2}(\Gamma, \chi) \subseteq H_{k}^{2}(\mathbf{H})$ and $K\left(z_{1}, z_{2}\right)$ is the kernel function of $H_{k}^{2}(\mathbf{H})$. and this implies that $K^{\Gamma}\left(z_{1}, z_{2}\right)$ is the kernel function of $H_{k}^{2}(\Gamma, \chi)$, provided $K_{z_{1}}^{\Gamma} \in H_{k}^{2}$, which one can show follows from $K_{z_{1}} \in H_{k}^{2}(\mathbf{H})$.

This gives us a new way to compute the dimension of $S_{k}(\Gamma, \chi)$.
Corollary 17.5. For any lattice $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ and integer $k>2$ we have the dimension formula

$$
\operatorname{dim} S_{k}(\Gamma, \chi)=\int_{\Gamma \backslash \mathbf{H}} K^{\Gamma}(z, z) \operatorname{Im}(z)^{k} d v(z) .
$$

Proof. Let f_{1}, \ldots, f_{r} be an orthonormal basis for $S_{k}(\Gamma, \chi)$ with respect to the inner product on $H_{k}^{2}(\Gamma, \chi)=H_{k}^{\infty}(\Gamma, \chi)=S_{k}(\Gamma, \chi)$. Then

$$
K^{\Gamma}\left(z_{1}, z_{2}\right)=\sum_{i=1}^{r} f_{i}\left(z_{1}\right) \overline{f_{i}\left(z_{2}\right)},
$$

since as noted in Lecture 16, the RHS is the kernel of any finite dimensional Hilbert space with orthonormal basis f_{1}, \ldots, f_{r}, and we have

$$
\operatorname{dim} S_{k}(\Gamma, \chi)=r=\sum_{i=1}^{r}\left\langle f_{i}, f_{i}\right\rangle=\sum_{i=1}^{r} \int_{\Gamma \backslash \mathbf{H}} f_{i}(z) \overline{f_{i}(z)} \operatorname{Im}(z)^{k} d v(z)=\int_{\Gamma \backslash \mathbf{H}} K^{\Gamma}(z, z) \operatorname{Im}(z)^{k} d v(z)
$$

17.2 Traces of Hecke operators

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice and let $\Delta \supseteq$ be a semigroup contained in the commensurator $\tilde{\Gamma}$ of Γ in $\mathrm{GL}_{2}^{+}(\mathbb{R})$ (so for $\alpha \in \Delta$ the group $\alpha \Gamma \alpha^{-1}$ is commensurable with Γ). Let χ be a finite order character of Γ with $\chi(-1)=(-1)^{k}$ if $-1 \in \Gamma$ as above, extending to a homomorphism $\Delta \rightarrow \mathbb{C}$ with

$$
\chi\left(\alpha \gamma \alpha^{-1}\right)=\chi(\gamma)
$$

for all $\gamma \in \Gamma$ and $\alpha \in \Delta$.
Fix $k \in \mathbb{Z}_{>2}$. Recall that the Hecke algebra $\mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$ acts on $f \in S_{k}(\Gamma, \chi)$ via

$$
\left(\left.f\right|_{k} \Gamma \alpha \Gamma\right)(z):=\operatorname{det}(\alpha)^{k-1} \sum_{i=1}^{r} \bar{\chi}\left(\alpha_{i}\right) j\left(\alpha_{i}, z\right)^{-k} f\left(\alpha_{i} z\right),
$$

where $\Gamma \alpha \Gamma=\coprod_{i=1}^{r} \Gamma \alpha_{i}$ is any right coset decomposition and the action of an integer linear combination of double cosets is computed by extending \mathbb{Z}-linearly. For $\alpha \in \Delta$ we define

$$
\kappa(\alpha, z):=\operatorname{det}(\alpha)^{k-1} \bar{\chi}(\alpha) K(\alpha z, a) j(\alpha, z)^{-k} \operatorname{Im}(z)^{k} .
$$

If $T \in \mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$ is a sum of disjoint double cosets (a single double coset, for example) then the union of the double coset summands of T is a subset of Δ that admits a finite decomposition into right cosets $T=\coprod_{i=1}^{r} \Gamma \alpha_{i}$; the Hecke operator $T(n) \in \mathbb{T}(N)=\mathbb{Z}\left[\Gamma_{0}(N) \backslash \Delta_{0}(N) / \Gamma_{0}(N)\right]$ is a notable example; it corresponds to the set $\left\{\alpha \in \Delta_{0}(N) \mid \operatorname{det}(\alpha)=n\right\} \subseteq \Delta_{0}(N)$. We will regard such Hecke operators as elements of $\mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$ that are also subsets of Δ we can sum over.

Theorem 17.6. Let $T \in \mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$ be a sum of double cosets. The trace of T acting on $S_{k}(\Gamma, \chi)$ is

$$
\operatorname{tr}(T)=\operatorname{tr}\left(T \mid S_{k}(\Gamma, \chi)\right)=\frac{1}{\# Z(\Gamma)} \int_{\Gamma \backslash \mathbf{H}} \sum_{\alpha \in T} \kappa(\alpha, z) d v(z)
$$

Proof. Let f_{1}, \ldots, f_{r} be an orthonormal basis of $S_{k}(\Gamma, \chi)$ and let $T=\coprod_{i=1}^{n} \Gamma \alpha_{i}$. Then

$$
\begin{aligned}
\operatorname{tr}(\Gamma \alpha \Gamma) & =\sum_{l=1}^{r}\left\langle f_{l} \mid \Gamma \alpha \Gamma, f_{l}\right\rangle \\
& =\sum_{l=1}^{r} \int_{\Gamma \backslash \mathbf{H}} \sum_{i=1}^{n} \operatorname{det}\left(\alpha_{i}\right)^{k-1} \bar{\chi}\left(\alpha_{i}\right) j\left(\alpha_{i}, z\right)^{-k} f_{l}\left(\alpha_{i} z\right) \overline{f_{l}(z)} \operatorname{Im}(z)^{k} d v(z) \\
& =\int_{\Gamma \backslash \mathbf{H}} \sum_{i=1}^{n} \operatorname{det}\left(\alpha_{i}\right)^{k-1} \bar{\chi}\left(\alpha_{i}\right) j\left(\alpha_{i}, z\right)^{-k} K^{\Gamma}\left(\alpha_{i} z_{1}, z_{2}\right) \operatorname{Im}(z)^{k} d v(z) \\
& =\frac{1}{\# Z(\Gamma)} \int_{\Gamma \backslash \mathbf{H}} \sum_{\alpha \in T} \operatorname{det}(\alpha)^{k-1} \bar{\chi}(\alpha) K(\alpha z, z) j(\alpha, z)^{-k} \operatorname{Im}(z)^{k} d v(z) \\
& =\frac{1}{\# Z(\Gamma)} \int_{\Gamma \backslash \mathbf{H}} \sum_{\alpha \in T} \kappa(\alpha, z) d v(z) .
\end{aligned}
$$

In order to compute the integral in Theorem 17.6 we need to treat cusps of Γ separately. For $x \in \mathbb{P}^{1}(\mathbb{R})$ a cusp of Γ, and a Hecke operator $T \subseteq \Delta$, let $T_{x}:=\{\alpha \in T: \alpha x=x\}$. If U_{x} is a neighborhood of x that is stable under the action of $\Gamma_{x}:=\{\gamma \in \Gamma: \gamma x=x\}$ then

$$
\int_{\Gamma_{x} \backslash U_{x}} \sum_{\alpha \in T} \kappa(\alpha, z) d v(z)=\int_{\Gamma_{x} \backslash U_{x}} \sum_{\alpha \in T-T_{x}} \kappa(\alpha, z) d v(z)+\int_{\Gamma_{x} \backslash U_{x}} \sum_{\alpha \in T_{x}} \kappa(\alpha, z) d v(z)
$$

Lemma 17.7. For any cusp x of Γ with Γ_{x}-stable neighborhood U_{x} and Hecke operator $T \in$ $\mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$ that is a sum of double cosets we have

$$
\int_{\Gamma_{x} \backslash U_{x}} \sum_{\alpha \in T-T_{x}} \kappa(\alpha, z) d v(z)=\sum_{\alpha \in T-T_{x}} \int_{\Gamma_{x} \backslash U_{x}} \kappa(\alpha, z) d v(z)
$$

and $\left[T_{x}: \Gamma_{x}\right]<\infty$.
Proof. See [1, Theorem 6.4.5] and [1, Lemma 6.4.6].
Theorem 17.8. Let x be a cusp of Γ with $\sigma x=\infty$ for some $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$. then

$$
\int_{\Gamma_{x} \backslash U_{x}} \sum_{\alpha \in T_{x}} \kappa(\alpha, z) d v(z)=\lim _{s \rightarrow 0^{+}} \sum_{\alpha \in T_{x}} \int_{\Gamma_{x} \backslash U_{x}} \kappa(\alpha, z) \operatorname{Im}(z)^{-s}|j(\sigma, z)|^{2 s} d v(z) .
$$

Proof. This is [1, Theorem 6.4.7].
Let $P_{\Gamma} \subseteq \mathbb{P}^{1}(\mathbb{R})$ denote the set of cusps of Γ and choose neighborhoods U_{x} of $x \in P_{\Gamma}$ so that $U_{\gamma x}=\gamma U_{x}$ and $U_{x} \cap U_{x^{\prime}}=\emptyset$ for $x \neq x^{\prime}$, and choose $\sigma_{x} \in \mathrm{SL}_{2}(\mathbb{R})$ so that $\sigma_{x} x=\infty$ and $\operatorname{Im}\left(\sigma_{\gamma x} \gamma z\right)=\operatorname{Im}\left(\sigma_{x} z\right)$ for $\gamma \in \Gamma$ and $z \in \mathbf{H}$. Let $T \subseteq \Delta$ be a union of double Γ-cosets, put $Z(T):=T \cap \mathbb{R}^{\times}$and $T_{\infty}:=\cup_{x \in P_{\mathrm{r}}}\left(T_{x}-Z(T)\right)$. We then have

$$
\operatorname{tr}(T)=\frac{1}{\# Z(\Gamma)}\left(\sum_{\alpha \in T-T_{\infty}} \int_{\Gamma \backslash \mathbf{H}} \kappa(\alpha, z) d v(z)+\lim _{s \rightarrow 0^{+}} \sum_{\alpha \in T^{\infty}} \int_{\Gamma \backslash \mathbf{H}} \kappa(\alpha, z, s) d v(z)\right),
$$

where $\kappa(\alpha, z, s):=\kappa(\alpha, z) \operatorname{Im}(z)^{-s}\left|j\left(\sigma_{x}, z\right)\right|^{2 s}$ for $z \in \bigcup_{\alpha x=x} U_{x}$.

For $\alpha \in T$ let $\Gamma(\alpha):=\{\gamma \in \Gamma: \alpha \gamma=\gamma \alpha\}$, and for any union of Γ-conjugacy classes $S \subseteq T$ let $\operatorname{conj}_{\Gamma}(S)$ denote a set of Γ-conjugacy class representatives. Then

$$
\operatorname{tr}(T)=\frac{1}{\# Z(\Gamma)}\left(\sum_{\alpha \in \operatorname{conj}_{\Gamma}\left(T-T_{\infty}\right)} \int_{\Gamma(\alpha) \backslash \mathbf{H}} \kappa(\alpha, z) d v(z)+\lim _{s \rightarrow 0^{+}} \sum_{\alpha \in \operatorname{conj}_{\Gamma}\left(T_{\infty}\right)} \int_{\Gamma(\alpha) \backslash \mathbf{H}} \kappa(\alpha, z, s) d v(z)\right)
$$

We now consider the integrals $\int_{\Gamma(\alpha) \backslash \mathbf{H}} \kappa(\alpha, z) d v(z)$. There are five different cases:

1. α is scalar;
2. α is elliptic $(\operatorname{tr}(\alpha)<4 \operatorname{det}(\alpha))$;
3. α is hyperbolic $(\operatorname{tr}(\alpha)>4 \operatorname{det}(\alpha))$ with fixed points that are not cusps of Γ;
4. α is hyperbolic $(\operatorname{tr}(\alpha)>4 \operatorname{det}(\alpha))$ with a fixed point that is a cusp of Γ;
5. α is parabolic $(\operatorname{tr}(\alpha)=4 \operatorname{det}(\alpha)$.

17.2.1 Scalar case

We have $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ with $\Gamma(\alpha)=\Gamma$ and $\alpha z=z$, so

$$
\begin{aligned}
\int_{\Gamma(\alpha) \backslash \mathbf{H}} \kappa(\alpha, z) d v(z) & =\operatorname{det}(\alpha)^{k-1} \bar{\chi}(\alpha) \int_{\Gamma \backslash \mathbf{H}} K(\alpha z, z) j(\alpha, z)^{-k} \operatorname{Im}(z)^{k} d v(z) \\
& =a^{2 k-2} \bar{\chi}(\alpha) \int_{\Gamma \backslash \mathbf{H}} \frac{k-1}{4 \pi}\left(\frac{z-\bar{z}}{2 i}\right)^{-k} a^{-k} \operatorname{Im}(z)^{k} d v(z) \\
& =\frac{k-1}{4 \pi} a^{k-2} \bar{\chi}(\alpha) v(\Gamma \backslash \mathbf{H}) .
\end{aligned}
$$

17.2.2 Elliptic case

If $z_{0} \in \mathbf{H}$ is the fixed point of α and we put $\rho:=\left(\begin{array}{ll}1 & -z_{0} \\ 1 & -\bar{z}_{0}\end{array}\right)$ then $\rho \alpha \rho^{-1}=\left(\begin{array}{ll}\eta & 0 \\ 0 & \zeta\end{array}\right)$, where η, ζ are the eignevalues of α, and if we put $w=\rho z=r e^{i \theta}$ then one finds that

$$
\kappa(\alpha, z)=\frac{k-1}{4 \pi}(\eta \zeta)^{k-1} \bar{\chi}(\alpha) \zeta^{-k}\left(\frac{1-r^{2}}{1-(\eta / \zeta) r^{2}}\right)^{k}
$$

and using $d v(w)=4 r\left(1-r^{2}\right)^{-2} d r d \theta$ we obtain

$$
\begin{aligned}
\int_{\Gamma(\alpha) \backslash \mathbf{H}} \kappa(\alpha, z) d v(z) & =\frac{k-1}{4 \pi \zeta} \eta^{k-1} \bar{\chi}(\alpha) \int_{0}^{1} \int_{0}^{\pi} 4 r\left(1-r^{2}\right)^{k-2}\left(1-(\eta / \zeta) r^{2}\right)^{-k} d r d \theta \\
& =\frac{(k-1) \eta^{k-1} \bar{\chi}(\alpha)}{[\Gamma(\alpha): Z(\Gamma)] \zeta} \int_{0}^{1}(1-t)^{k-2}(1-(\eta / \zeta) t)^{-k} d t \\
& =\frac{(k-1) \eta^{k-1} \bar{\chi}(\alpha)}{[\Gamma(\alpha): Z(\Gamma)] \zeta}((k-1)(1-\eta / \zeta))^{-1} \\
& =\frac{\bar{\chi}(\alpha)}{[\Gamma(\alpha): Z(\Gamma)]} \frac{\eta^{k-1}}{(\zeta-\eta)}
\end{aligned}
$$

17.2.3 Hyperbolic case with no fixed cusps

In this case one finds that

$$
\int_{\Gamma(\alpha) \backslash H} \kappa(\alpha, z) d v(z)=0 .
$$

17.2.4 Hyperbolic case with a fixed cusp

In this case one finds that

$$
\int_{\Gamma(\alpha) \backslash H} \kappa(\alpha, z) d v(z)=-\bar{\chi}\left(\alpha \frac{\min (|\eta|,|\zeta|)^{k-1}}{|\zeta-\eta|} \operatorname{sgn}(\zeta)^{k} .\right.
$$

17.2.5 Parabolic case

Let x be the fixed point of α; then x is a cusp of Γ and $\Gamma(\alpha)=\Gamma_{z}$; see the argument in [1]. Choose $\sigma \in \mathrm{SL}_{2}(\mathbb{R})$ so that $\sigma x=\infty$, and let $\sigma \alpha \sigma=\left(\begin{array}{ll}\zeta & \lambda \\ 0 & \zeta\end{array}\right)$. Let T^{p} be the set of parabolic elements in T, and for each cusp x of Γ let $T_{x}^{p}:=T^{p} \cap T_{x}$. Then $\bigcup_{x \in \Gamma \backslash P_{\Gamma}} T_{x}^{p}$ is a complete set of representatives for $\operatorname{conj}_{\Gamma}\left(T^{p}\right)$. Let $\pm \sigma \Gamma_{x} \sigma^{-1}=\left\langle\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$ with $h>0$, and for $\alpha \in T_{x}^{p}$, put $h(\alpha):=\lambda / \zeta$ and let $\operatorname{sgn}(\alpha)=\operatorname{sgn}(\zeta)$. Then

$$
\lim _{s \rightarrow 0^{+}} \sum_{\alpha \in T_{x}^{p}} \int_{\Gamma(\alpha) \backslash \mathbf{H}} \kappa(\alpha, z, x) d v(s)=\lim _{s \rightarrow 0^{+}} \frac{1}{2 \pi} \sum_{\alpha \in T_{x}^{p}} \bar{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \operatorname{det}(\alpha)^{k / 2-1}(i h / h(\alpha))^{1+s} .
$$

17.3 The trace formula

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$ be a lattice, let Δ be a semigroup with $\Gamma \leq \Delta \leq \tilde{\Gamma}$, let χ be a finite order character of Γ with $\chi(-1)=(-1)^{k}$ if $-1 \in \Gamma$, extended to Δ so that $\chi\left(\alpha \gamma \alpha^{-1}\right)=\chi(\gamma)$ for $\alpha \in \Delta$ and $\gamma \in \Gamma$, and let $T \in \mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$ be a sum of Γ-double cosets viewed as a subset of Δ.

Define $Z(T)=T \cap \mathbb{R}^{\times}$, let T^{e} be the subset of elliptic $\alpha \in T$, let T^{h} be the subset of hyperbolic $\alpha \in T$ whose fixed points are cusps of Γ, let $T^{h^{\prime}}$ be the subset of hyperbolic $\alpha \in T$ whose fixed points are not cusps of Γ, and let T^{p} be the subset of parabolic $\alpha \in T$ whose fixed points are cusps of Γ, so that

$$
T=Z(T) \sqcup T^{e} \sqcup T^{h} \sqcup T^{h^{\prime}} \sqcup T^{p} .
$$

For $\alpha \in T$ let η_{α} and ζ_{α} denote the eigenvalues of α, with $\eta_{\alpha}=r e^{i \theta}$ and $\zeta_{\alpha}=r e^{-i \theta}$ if α is elliptic with $\sigma \alpha \sigma^{-1}=r\left(\begin{array}{c}\cos \theta \sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\right)$. For non-elliptic α let $\operatorname{sgn}(\alpha):=\operatorname{sgn}\left(\zeta_{\alpha}\right)$, and for parabolic α let $m(\alpha)=\lambda /\left(h \zeta_{\alpha}\right)$ where $\pm \sigma \Gamma(\alpha) \sigma^{-1}= \pm\left\langle\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)\right\rangle$.

Theorem 17.9. The trace of T acting on $S_{k}(\Gamma, \chi)$ is

$$
\operatorname{tr}(T)=t_{0}+t_{e}+t_{h}+t_{p}
$$

where

$$
\begin{aligned}
& t_{0}=\frac{(k-1) v(\Gamma \backslash \mathbf{H})}{4 \pi \# Z(\Gamma)} \sum_{\alpha \in Z(T)} \bar{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \operatorname{det}(\alpha)^{k / 2-1}, \\
& t_{e}=-\sum_{\alpha \in \operatorname{conj}_{\mathrm{r}}\left(T^{e}\right)} \frac{\bar{\chi}(\alpha) \eta_{\alpha}^{k-1}}{|\Gamma(\alpha)|\left(\eta_{\alpha}-\zeta_{\alpha}\right)}, \\
& t_{h}=-\frac{1}{\# Z(\Gamma)} \sum_{\alpha \in \operatorname{conj}_{\mathrm{r}}\left(T^{h}\right)} \bar{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \frac{\min \left(\left|\zeta_{\alpha}\right|,\left|\eta_{\alpha}\right|\right)^{k-1}}{\left|\zeta_{\alpha}-\eta_{\alpha}\right|}, \\
& t_{p}=\lim _{s \rightarrow 0^{+}} \frac{1}{2 \pi \# Z(\Gamma)} \sum_{\alpha \in \operatorname{conj}_{\mathrm{r}}\left(T^{p}\right)} \bar{\chi}(\alpha) \operatorname{sgn}(\alpha)^{k} \operatorname{det}(\alpha)^{k / 2-1}(i / m(\alpha))^{1+s} .
\end{aligned}
$$

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

