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These notes summarize the material in §6.3-4 presented in lecture. Recall the weight-k slash
operator associated to α ∈ GL+2 (R) on functions f : H→ C is defined by

( f |kα)(z) := (detα)k j(α, z)−k f (αz),

where j(α, z) := cz + d for α=
�

a b
c d

�

∈ GL+2 (R) and z ∈ H, and we have Im(αz) = det(α) Im(z)
| j(α,z)|2 .

17.1 Function spaces of automorphic forms

Let Γ ≤ SL2(R) be a lattice (which we recall is a discrete cofinite subgroup of SL2(R), equiva-
lently, a finitely generated Fuchsian of the first kind; see Lecture 5). Let k ≤ inZ>2, and let χ
be a finite order character of Γ with χ(−1) = (−1)k if −1 ∈ Γ .

For any measurable function f : H→ C that satisfies

( f |kγ) = χ(γ) f (z) (for all γ ∈ Γ ) (1)

we define

‖ f ‖Γ ,p :=

(

�

∫

Γ\H | f (z) im(z)
k/2|pdv(z)

�1/p
1≤ p <∞

ess supz∈H | f (z) Im(z)k/2| p =∞.

For γ ∈ Γ we have

| f (γz) Im(γz)k/2|= |( f |kγ)(z) j(γ, z)−k Im(γz)k/2|= | f (z) Im(z)k/2|,

which ensures that ‖ f ‖Γ ,p is well defined. We now let Lp
k(Γ ,χ) denote the set of measurable

functions f : H→ C that satisfy (1) with ‖ f ‖Γ ,p <∞, and use H p
k (Γ ,χ) to denote the subspace

of holomorphic f ∈ Lp
k(Γ ,χ). Then L2

k(Γ ,χ) is a Hilbert space with inner product

〈 f , g〉 :=

∫

Γ\H
f (z)g(z) Im(z)kdv(z).

Now Γ\H has finite volume (Γ is a lattice), which implies L∞k (Γ ,χ) ⊆ Lp
k(Γ ,χ) and H∞k (Γ ,χ) ⊆

H p
k (Γ ,χ) for all p ∈ R≥1. Moreover, we have H∞k (Γ ,χ) = Sk(Γ ,χ) (see [1, Theorem 2.1.5])

and the restriction of the inner product of L2
k(Γ ,χ) to H∞k (Γ ,χ) is just a rescaled version of the

Petersson inner product that omits the leading factor v(Γ\H)−1.

Theorem 17.1. H2
k(Γ ,χ) = H∞k (Γ ,χ)

Proof. This is immediate when Γ has no cusps, since then Γ\H is compact. So let x0 is a cusp
of Γ and f ∈ H2

k(Γ ,χ). By replacing Γ with a finite index subgroup we can assume χ is trivial.
Pick σ ∈ SL2(R) so that σx =∞ and put ±σ−1Γx0

σ = ±

�

1 h
0 1

��

, with h ∈ R>0. If we pick a
neighborhood Ul = {z ∈ H| Im(z) > l} of∞ and let

∑

aneπinz/h denote the Fourier espansion
of f |kσ, then

∞>

∫

Γ\H
| f (z)|2 Im(z)kdv(z)

≥
1
2

∫∫

0≤Re(z)≤2h
l≤Im(z)<∞

| f (σz) j(σ, z)−k|2 Im(z)kdv(z)

=
1
2

∫ ∞

l

∫ 2h

0

∑

m,n∈Z
amāne−πy(m+n)/heπi x(m−n)/h yk−2d xd y

≥ h|an|2
∫ ∞

l
e−2πyn/h yk−2d y.
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for any n ∈ Z. For k > 2 this implies an = 0 if n≤ 0, so f ∈ Sk(Γ ,χ) = H∞k (Γ ,χ).

For f ∈ L1
k(H) we define

f Γ (z) := 1
#Z(Γ )

∑

γ∈Γ
χ(γ) f (γz) j(γ, z)−z

and
KΓ (z1, z2) := 1

#Z(Γ )

∑

γ∈Γ
χ(γ)K(γz1, z2) j(γ, z1)

−k,

where #Z(Γ ) ∈ {1, 2} counts the trivial elements of Γ . In the previous lecture we proved

K(z1, z2) =
k− 1
4π

�

z1 − z̄2

2i

�−k

, (2)

and we note that K(z2, z1) = K(z1, z2) implies KΓ (z2, z1) = KΓ (z1, z2), for all z1, z2 ∈ H.

Theorem 17.2. If f ∈ L1
k(H) then f Γ ∈ L1

k(Γ ,χ), and if f ∈ H1
k(H) then f Γ ∈ H1

k(Γ ,χ).

Proof. See Theorem 6.3.2 in [1].

Theorem 17.3. For f ∈ L1
k(H) the sum in f Γ converges absolutely on H and f Γ lies in L1

k(Γ ,χ),
and in H1

k(Γ ,χ) if f is holomorphic. In particular, KΓ (z, z2) ∈ H1
k(Γ ,χ) for every fixed z2 ∈ H.

Proof. See [1, Theorem 6.4.2].

Theorem 17.4. KΓ (z1, z2) is the kernel function of H2
k(Γ ,χ).

Proof. This is [1, Theorem 6.3.3], but modulo issues of convergence, for f ∈ H2
k(Γ ,χ) we have

〈 f , KΓz1
〉=

∫

Γ\H
f (z2)KΓ (z2, z1) Im(z2)

kdv(z2) =

∫

Γ\H
KΓ (z1, z2) f (z2) Im(z2)

kdv(z2)

= 1
#Z(Γ )

∑

γ∈Γ

∫

γ−1F
K(z1, z2) f (z2) Im(z2)

kdv(z2)

=

∫

H

K(z1, z2) f (z2) Im(z2)
kdv(z2)

= f (z1),

since f ∈ H2
k(Γ ,χ) ⊆ H2

k(H) and K(z1, z2) is the kernel function of H2
k(H). and this implies that

KΓ (z1, z2) is the kernel function of H2
k(Γ ,χ), provided KΓz1

∈ H2
k , which one can show follows

from Kz1
∈ H2

k(H).

This gives us a new way to compute the dimension of Sk(Γ ,χ).

Corollary 17.5. For any lattice Γ ≤ SL2(R) and integer k > 2 we have the dimension formula

dim Sk(Γ ,χ) =

∫

Γ\H
KΓ (z, z) Im(z)kdv(z).
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Proof. Let f1, . . . , fr be an orthonormal basis for Sk(Γ ,χ) with respect to the inner product on
H2

k(Γ ,χ) = H∞k (Γ ,χ) = Sk(Γ ,χ). Then

KΓ (z1, z2) =
r
∑

i=1

fi(z1) fi(z2),

since as noted in Lecture 16, the RHS is the kernel of any finite dimensional Hilbert space with
orthonormal basis f1, . . . , fr , and we have

dim Sk(Γ ,χ) = r =
r
∑

i=1

〈 fi , fi〉=
r
∑

i=1

∫

Γ\H
fi(z) fi(z) Im(z)

kdv(z) =

∫

Γ\H
KΓ (z, z) Im(z)kdv(z).

17.2 Traces of Hecke operators

Let Γ ≤ SL2(R) be a lattice and let ∆ ⊇ be a semigroup contained in the commensurator Γ̃ of
Γ in GL+2 (R) (so for α ∈ ∆ the group αΓα−1 is commensurable with Γ ). Let χ be a finite order
character of Γ with χ(−1) = (−1)k if −1 ∈ Γ as above, extending to a homomorphism ∆→ C
with

χ(αγα−1) = χ(γ)

for all γ ∈ Γ and α ∈∆.
Fix k ∈ Z>2. Recall that the Hecke algebra Z[Γ\∆/Γ ] acts on f ∈ Sk(Γ ,χ) via

( f |kΓαΓ )(z) := det(α)k−1
r
∑

i=1

χ(αi) j(αi , z)−k f (αiz),

where ΓαΓ =
∐r

i=1 Γαi is any right coset decomposition and the action of an integer linear
combination of double cosets is computed by extending Z-linearly. For α ∈∆ we define

κ(α, z) := det(α)k−1χ(α)K(αz, a) j(α, z)−k Im(z)k.

If T ∈ Z[Γ\∆/Γ ] is a sum of disjoint double cosets (a single double coset, for example) then the
union of the double coset summands of T is a subset of ∆ that admits a finite decomposition
into right cosets T =

∐r
i=1 Γαi; the Hecke operator T (n) ∈ T(N) = Z[Γ0(N)\∆0(N)/Γ0(N)] is

a notable example; it corresponds to the set {α ∈∆0(N)|det(α) = n} ⊆∆0(N). We will regard
such Hecke operators as elements of Z[Γ\∆/Γ ] that are also subsets of ∆ we can sum over.

Theorem 17.6. Let T ∈ Z[Γ\∆/Γ ] be a sum of double cosets. The trace of T acting on Sk(Γ ,χ) is

tr(T ) = tr(T |Sk(Γ ,χ)) =
1

#Z(Γ )

∫

Γ\H

∑

α∈T

κ(α, z)dv(z)
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Proof. Let f1, . . . , fr be an orthonormal basis of Sk(Γ ,χ) and let T =
∐n

i=1 Γαi . Then

tr(ΓαΓ ) =
r
∑

l=1

〈 fl |ΓαΓ , fl〉

=
r
∑

l=1

∫

Γ\H

n
∑

i=1

det(αi)
k−1χ(αi) j(αi , z)−k fl(αiz) fl(z) Im(z)

kdv(z)

=

∫

Γ\H

n
∑

i=1

det(αi)
k−1χ(αi) j(αi , z)−kKΓ (αiz1, z2) Im(z)

kdv(z)

=
1

#Z(Γ )

∫

Γ\H

∑

α∈T

det(α)k−1χ(α)K(αz, z) j(α, z)−k Im(z)kdv(z)

=
1

#Z(Γ )

∫

Γ\H

∑

α∈T

κ(α, z)dv(z).

In order to compute the integral in Theorem 17.6 we need to treat cusps of Γ separately.
For x ∈ P1(R) a cusp of Γ , and a Hecke operator T ⊆ ∆, let Tx := {α ∈ T : αx = x}. If Ux is a
neighborhood of x that is stable under the action of Γx := {γ ∈ Γ : γx = x} then

∫

Γx\Ux

∑

α∈T

κ(α, z)dv(z) =

∫

Γx\Ux

∑

α∈T−Tx

κ(α, z)dv(z) +

∫

Γx\Ux

∑

α∈Tx

κ(α, z)dv(z)

Lemma 17.7. For any cusp x of Γ with Γx -stable neighborhood Ux and Hecke operator T ∈
Z[Γ\∆/Γ ] that is a sum of double cosets we have

∫

Γx\Ux

∑

α∈T−Tx

κ(α, z)dv(z) =
∑

α∈T−Tx

∫

Γx\Ux

κ(α, z)dv(z)

and [Tx : Γx]<∞.

Proof. See [1, Theorem 6.4.5] and [1, Lemma 6.4.6].

Theorem 17.8. Let x be a cusp of Γ with σx =∞ for some σ ∈ SL2(R). then
∫

Γx\Ux

∑

α∈Tx

κ(α, z)dv(z) = lim
s→0+

∑

α∈Tx

∫

Γx\Ux

κ(α, z) Im(z)−s| j(σ, z)|2sdv(z).

Proof. This is [1, Theorem 6.4.7].

Let PΓ ⊆ P1(R) denote the set of cusps of Γ and choose neighborhoods Ux of x ∈ PΓ so
that Uγx = γUx and Ux ∩ Ux ′ = ; for x 6= x ′, and choose σx ∈ SL2(R) so that σx x =∞ and
Im(σγxγz) = Im(σxz) for γ ∈ Γ and z ∈ H. Let T ⊆ ∆ be a union of double Γ -cosets, put
Z(T ) := T ∩R× and T∞ := ∪x∈PΓ (Tx − Z(T )). We then have

tr(T ) =
1

#Z(Γ )

 

∑

α∈T−T∞

∫

Γ\H
κ(α, z)dv(z) + lim

s→0+

∑

α∈T∞

∫

Γ\H
κ(α, z, s)dv(z)

!

,

where κ(α, z, s) := κ(α, z) Im(z)−s| j(σx , z)|2s for z ∈
⋃

αx=x Ux .
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For α ∈ T let Γ (α) := {γ ∈ Γ : αγ = γα}, and for any union of Γ -conjugacy classes S ⊆ T let
conjΓ (S) denote a set of Γ -conjugacy class representatives. Then

tr(T ) =
1

#Z(Γ )

 

∑

α∈conjΓ (T−T∞)

∫

Γ (α)\H
κ(α, z)dv(z) + lim

s→0+

∑

α∈conjΓ (T∞)

∫

Γ (α)\H
κ(α, z, s)dv(z)

!

.

We now consider the integrals
∫

Γ (α)\H κ(α, z)dv(z). There are five different cases:

1. α is scalar;

2. α is elliptic (tr(α)< 4det(α));

3. α is hyperbolic (tr(α)> 4 det(α)) with fixed points that are not cusps of Γ ;

4. α is hyperbolic (tr(α)> 4 det(α)) with a fixed point that is a cusp of Γ ;

5. α is parabolic (tr(α) = 4det(α).

17.2.1 Scalar case

We have α=
�

a 0
0 a

�

with Γ (α) = Γ and αz = z, so

∫

Γ (α)\H
κ(α, z)dv(z) = det(α)k−1χ(α)

∫

Γ\H
K(αz, z) j(α, z)−k Im(z)kdv(z)

= a2k−2χ(α)

∫

Γ\H

k− 1
4π

�

z − z̄
2i

�−k

a−k Im(z)kdv(z)

=
k− 1
4π

ak−2χ(α)v(Γ\H).

17.2.2 Elliptic case

If z0 ∈ H is the fixed point of α and we put ρ :=
�

1 −z0
1 −z̄0

�

then ραρ−1 =
�

η 0
0 ζ

�

, where η,ζ are

the eignevalues of α, and if we put w= ρz = reiθ then one finds that

κ(α, z) =
k− 1
4π
(ηζ)k−1χ(α)ζ−k

�

1− r2

1− (η/ζ)r2

�k

and using dv(w) = 4r(1− r2)−2drdθ we obtain

∫

Γ (α)\H
κ(α, z)dv(z) =

k− 1
4πζ

ηk−1χ(α)

∫ 1

0

∫ π

0

4r(1− r2)k−2(1− (η/ζ)r2)−kdrdθ

=
(k− 1)ηk−1χ(α)
[Γ (α) : Z(Γ )]ζ

∫ 1

0

(1− t)k−2(1− (η/ζ)t)−kd t

=
(k− 1)ηk−1χ(α)
[Γ (α) : Z(Γ )]ζ

((k− 1)(1−η/ζ))−1

=
χ(α)

[Γ (α) : Z(Γ )]
ηk−1

(ζ−η)
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17.2.3 Hyperbolic case with no fixed cusps

In this case one finds that
∫

Γ (α)\H
κ(α, z)dv(z) = 0.

17.2.4 Hyperbolic case with a fixed cusp

In this case one finds that
∫

Γ (α)\H
κ(α, z)dv(z) = −χ(α

min(|η|, |ζ|)k−1

|ζ−η|
sgn(ζ)k.

17.2.5 Parabolic case

Let x be the fixed point of α; then x is a cusp of Γ and Γ (α) = Γz; see the argument in [1].
Choose σ ∈ SL2(R) so that σx =∞, and let σασ =

�

ζ λ
0 ζ

�

. Let T p be the set of parabolic

elements in T , and for each cusp x of Γ let T p
x := T p ∩ Tx . Then

⋃

x∈Γ\PΓ T p
x is a complete

set of representatives for conjΓ (T
p). Let ±σΓxσ−1 = 〈

�

1 h
0 1

�

〉 with h > 0, and for α ∈ T p
x , put

h(α) := λ/ζ and let sgn(α) = sgn(ζ). Then

lim
s→0+

∑

α∈T p
x

∫

Γ (α)\H
κ(α, z, x)dv(s) = lim

s→0+
1

2π

∑

α∈T p
x

χ(α) sgn(α)k det(α)k/2−1(ih/h(α))1+s.

17.3 The trace formula

Let Γ ≤ SL2(R) be a lattice, let ∆ be a semigroup with Γ ≤ ∆ ≤ Γ̃ , let χ be a finite order
character of Γ with χ(−1) = (−1)k if −1 ∈ Γ , extended to∆ so that χ(αγα−1) = χ(γ) for α ∈∆
and γ ∈ Γ , and let T ∈ Z[Γ\∆/Γ ] be a sum of Γ -double cosets viewed as a subset of ∆.

Define Z(T ) = T∩R×, let T e be the subset of elliptic α ∈ T , let Th be the subset of hyperbolic
α ∈ T whose fixed points are cusps of Γ , let Th′ be the subset of hyperbolic α ∈ T whose fixed
points are not cusps of Γ , and let T p be the subset of parabolic α ∈ T whose fixed points are
cusps of Γ , so that

T = Z(T )t T e t Th t Th′ t T p.

For α ∈ T let ηα and ζα denote the eigenvalues of α, with ηα = reiθ and ζα = re−iθ if α is elliptic
with σασ−1 = r

�

cosθ sinθ
− sinθ cosθ

�

. For non-elliptic α let sgn(α) := sgn(ζα), and for parabolic α let
m(α) = λ/(hζα) where ±σΓ (α)σ−1 = ±


�

1 h
0 1

��

.

Theorem 17.9. The trace of T acting on Sk(Γ ,χ) is

tr(T ) = t0 + te + th + tp,
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where

t0 =
(k− 1)v(Γ\H)

4π#Z(Γ )

∑

α∈Z(T )

χ(α) sgn(α)k det(α)k/2−1,

te = −
∑

α∈conjΓ (T e)

χ(α)ηk−1
α

|Γ (α)|(ηα − ζα)
,

th = −
1

#Z(Γ )

∑

α∈conjΓ (Th)

χ(α) sgn(α)k
min(|ζα|, |ηα|)k−1

|ζα −ηα|
,

tp = lim
s→0+

1
2π#Z(Γ )

∑

α∈conjΓ (T p)

χ(α) sgn(α)k det(α)k/2−1(i/m(α))1+s.
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