18.786 Number theory II Spring 2024
Lecture #17 4/22/2024

These notes summarize the material in §6.3-4 presented in lecture. Recall the weight-k slash
operator associated to a € GL; (R) on functions f : H— C is defined by

(fl@)(z) := (deta)*j(a,2) * f (az),

where j(a,z) :=cz+d fora = (‘Cl 3) € GL;F(]R) and g € H, and we have Im(ag) = det(a)Im(z)

li(az)> *

17.1 Function spaces of automorphic forms

Let I' < SL,(R) be a lattice (which we recall is a discrete cofinite subgroup of SL,(R), equiva-
lently, a finitely generated Fuchsian of the first kind; see Lecture 5). Let k < inZ.,, and let y
be a finite order character of I with y(—1) = (=1)¢ if =1 € T..

For any measurable function f : H— C that satisfies

(Flkr)=2x()f(z)  (forally €T) (1

we define

ess sup,ey | f (2) Im(2)*/?|

If I == {(fp\H |f(Z)im(z)k/2|pdv(Z))l/P | <p<oo

For y € T' we have

|f (r2) Im(y2) /%] = |(f [ky)(2)j (7, 2) " Im(y2)"?| = |f (2) Im(2)*/?],

which ensures that ||f ||y, is well defined. We now let Li (T, x) denote the set of measurable
functions f : H— C that satisfy (1) with ||f |, < oo, and use Hi(l", x) to denote the subspace
of holomorphic f € Li(f‘, x)- Then Li(f‘, x) is a Hilbert space with inner product

(f,g) = | f)g()Im(z) dv(z).

T\H
Now I'\H has finite volume (T is a lattice), which implies L°(T, x) C Li(f‘, x)and H°(T, x) €
Hf(l“,x) for all p € Ry;. Moreover, we have H.°(T, y) = Si(T, ) (see [1, Theorem 2.1.5])
and the restriction of the inner product of L,f(F, x) to H®(T, ) is just a rescaled version of the
Petersson inner product that omits the leading factor v(I'\H) .
Theorem 17.1. HX(T, x) =H°(T, x)
Proof. This is immediate when I" has no cusps, since then I'\H is compact. So let x, is a cusp
ofTand f € H ,f(F, x). By replacing I' with a finite index subgroup we can assume y is trivial.
Pick o € SL,(R) so that cx = oo and put :I:a_ll“xoa = :I:(((lj }11)>, with h € R.. If we pick a
neighborhood U; = {z € H|Im(2) > [} of oo and let Zane”inz/ " denote the Fourier espansion
of f|;o, then

0o > f |f @)I* Im(z)*dv(z)
I'\H

1

= Ef 0<Re(z)<2h f(02)j(0,2) P Im(2)*dv(z)

[<Im(z)<oo

1 oo 2h
— _f f Z amC—lne—ny(m+n)/henix(m—n)/hyk—dedy
2 l 0
m,n€z

)
> h|an|2J e—2nyn/hyk—2dy.
l
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for any n € Z. For k > 2 this implies a, =0if n <0, so f € S, (T, y) =H.°(T, x). O

For f € L, (H) we define

F1@) = 570 22 (r2)i(r,2) ™

yer

and

KT (21,25) = 55 D 2 (DK (r21,29)j(1,21) 7,
yer

where #Z(I') € {1, 2} counts the trivial elements of T'. In the previous lecture we proved

k—1(2—%\F
K(21,22)=4—n(f) , 2)

and we note that K(z,,2;) = K(21,2,) implies KT(2,,2,) = K" (21, 2,), for all 2;,2, € H.
Theorem 17.2. If f € L;(H) then f" € LI(T, x), and if f € H,(H) then f* € HL(T, x).
Proof. See Theorem 6.3.2 in [1]. O

Theorem 17.3. For f € Li(H) the sum in fT converges absolutely on H and f' lies in L;(I‘, 1),
and in H;(I‘, x) if f is holomorphic. In particular, K'(z,2,) € H;(F, x) for every fixed z, € H.

Proof. See [1, Theorem 6.4.2]. O
Theorem 17.4. K'(z,2,) is the kernel function ofH,%(F, 1)
Proof. This is [1, Theorem 6.3.3], but modulo issues of convergence, for f € H ,%(F, %) we have
(f, KZFJ = J f(zz)Kr(zz,zl)Im(zz)kdv(zz) = f KF(Zl,Zz)f(Zz)Im(zz)de(zz)
I'\H

#Z(F)ZJ K(21,22)f (z2) Im(25)*dv(z,)
T

yel'
_ J K(z1,2,)f (23) Im(z) dv(zy)
H
= f(Zl),

since f € HX(T, x) € HZ(H) and K(z;,2,) is the kernel function of HZ(H). and this implies that
K" (zy,2,) is the kernel function of H¥(T, ), provided K;—‘l € HZ?, which one can show follows

from K, € HZ(H). O
This gives us a new way to compute the dimension of Sy (T, y).

Corollary 17.5. For any lattice I < SL,(R) and integer k > 2 we have the dimension formula

dim S, (T, y) = J K'(z,2)Im(z) dv(z).

I'\H
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Proof. Let f1,...,f, be an orthonormal basis for S;(T, y) with respect to the inner product on
HZ(T, ) =H°(T, x) = Sk(T, x). Then

K'(21,2,) = ) fi(z1)fi (),

i=1

since as noted in Lecture 16, the RHS is the kernel of any finite dimensional Hilbert space with
orthonormal basis f;,..., f., and we have

r

dimS (T, ) =7 =D (fi fi) = >, | F@fEmME) dv(z) =J K'(z,2)Im(z)*dv(z). O
I\

i=1 i=1 JT\H H

17.2 Traces of Hecke operators

Let T’ < SL,(R) be a lattice and let A 2 be a semigroup contained in the commensurator I of
I'in GL;’(]R) (so for a € A the group al'a! is commensurable with I'). Let x be a finite order
character of I' with y(—1) = (—1)X if =1 € T as above, extending to a homomorphism A — C
with
x(aya™) = x(y)
forally el and a € A.
Fix k € Z.,. Recall that the Hecke algebra Z[T'\A/T'] acts on f € S (T, y) via

(flTal)(z) = det(a)* " > 7(a)jla;,2) ™ f (a;2),
i=1

where Tal' = ]_[irzl T'a; is any right coset decomposition and the action of an integer linear
combination of double cosets is computed by extending Z-linearly. For a € A we define

k(a,2) = det(a)k_lf(a)K(az, a)j(a, 2) ¥ Im(z)k.

If T € Z[T\A/T] is a sum of disjoint double cosets (a single double coset, for example) then the
union of the double coset summands of T is a subset of A that admits a finite decomposition
into right cosets T = ]_[irzl T'a;; the Hecke operator T(n) € T(N) = Z[TH(N)\Ay(N)/Ty(N)] is
a notable example; it corresponds to the set {a € Ay(N)|det(a) =n} € Ay(N). We will regard
such Hecke operators as elements of Z[T'\A/T] that are also subsets of A we can sum over.

Theorem 17.6. Let T € Z[T\A/T'] be a sum of double cosets. The trace of T acting on Sy(T, y) is

tr(T) = tr(T|Si (T, x)) = #(F)J > x(a,2)dv(z)
T

\H qeT
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Proof. Let fy,..., f, be an orthonormal basis of Sy (T, x) and let T =] [_, T'a;. Then

r

tr(Tal) = Y {filTar, f;)

=1

=> J > det(a) 7 (a)j(a;, 2) ¥ fi@2) fi(z) Im(z) dv(z)

[=1JT\H i=1

= J Z det(a) 7 (ay)j( e, 2) K" (a;21,25) Im(2)*dv(z)
r

\H i=1
1
—#Z(T)
1
— #Z(T)

Z det(a) 17 (a)K (az,2)j(a,z) * Im(z)kdv(z)

MHaeT

Z k(a,2)dv(z). O
IHaeT

In order to compute the integral in Theorem 17.6 we need to treat cusps of I' separately.
For x € P!(R) a cusp of T, and a Hecke operator T C A, let T, :={a € T :ax =x}. If U, is a
neighborhood of x that is stable under the action of T, := {y € T': yx = x} then

f Z k(a,z)dv(z) = f Z k(a,z)dv(z) + J Z k(a,2z)dv(z)
LA\Uy a€T [ \Uy a€T—T, L \Uy a€T,

Lemma 17.7. For any cusp x of T with T,-stable neighborhood U, and Hecke operator T &
Z[T\A/T] that is a sum of double cosets we have

f Z k(a,z)dv(z) = Z J k(a,z)dv(z)
[ \Uyx a€T—T, a€T—T, J T \Uy
and [T, : T, ] < oo.
Proof. See [1, Theorem 6.4.5] and [1, Lemma 6.4.6]. O
Theorem 17.8. Let x be a cusp of T with ox = oo for some 0 € SL,(R). then

J Z k(a,z)dv(z) = lirn+ Z J x(a,2)Im(z)"*|j(o,2)|*dv(z).

[ \U, aeT, 20 ser, Jra,

Proof. This is [1, Theorem 6.4.7]. O

Let P. C P!(R) denote the set of cusps of I' and choose neighborhoods U, of x € Py so
that U, = yU, and U, NU,, = @ for x # x’, and choose o, € SL,(R) so that o, x = oo and
Im(o,,y2z) = Im(o,z) for y € T'and z € H. Let T S A be a union of double I'-cosets, put
Z(T):=TNR* and T, := Uyep.(Ty —Z(T)). We then have

tr(T) = #Zl(l“)( Z

a€T—To

J k(a,z)dv(z) + lim Z f K(a,Z,S)dV(Z)):
I'\H =07 I\H

acT e

where x(a,2,s) = k(a,z)Im(z) *|j(o,2)|* forz € J,,_, Us-
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Forae T letT(a) :={y €l : ay = ya}, and for any union of I'-conjugacy classes S C T let
conj(S) denote a set of I'-conjugacy class representatives. Then

1 .
tr(T) = 720 ( Z f k(a,2z)dv(z) +sl_1)r(r)1+ Z f K(a,z,s)dv(z)) .
aeconjp(T—Too) ¥ T(@)\H aeconjp(Too) ¥ T(a)\H

We now consider the integrals fF(a)\H k(a,z)dv(z). There are five different cases:

a is scalar;

a is elliptic (tr(a) < 4det(a));

a is hyperbolic (tr(a) > 4 det(a)) with fixed points that are not cusps of T;
a is hyperbolic (tr(a) > 4 det(a)) with a fixed point that is a cusp of T;

AR e

a is parabolic (tr(a) = 4det(a).

17.2.1 Scalar case

We have a = (82) with I'(a) =T and az =z, so

J k(a,z)dv(z) = det(a)k_lf(a)f K(az,2)j(a,z) * Im(z)*dv(z)
I'(a)\H T'\H

_ _=N\"k
= a®*2%(a) k—l(z ,Z) a*Im(2)*dv(z)
rH 4m 21

k—1

= ——d" 27 (a)v(T\H).
4

17.2.2 Elliptic case

If 2, € H is the fixed point of a and we put p = G :ﬁg) then pap™! = (g 2), where 7, { are
the eignevalues of a, and if we put w = pz = re'? then one finds that

By (RLCA |
k(a,z) = 4 (M8 x(a) (1_(n/§)r2)

and using dv(w) = 4r(1 —r2)"2drd 6 we obtain

1 T
f k(a,z)dv(z) = k;lnk_lf(a)f J 4r(1—r*) 21— (n/Or*) *drdo
T(a)\H 4ng 0o Jo

_ (k=117 (@)
[[(a) : Z(D)]¢

_ (k=Dn"7(a)
~[M(@):2(D
A C)

[[(a): Z(D)] (S —n)

1
f (1— 21— (n/Ot) *dt
0

((k=1)A—=n/N7"

k—1

18.786 Spring 2024, Lecture #17, Page 5



17.2.3 Hyperbolic case with no fixed cusps

In this case one finds that

k(a,z)dv(z) =0.
T(a)\H

17.2.4 Hyperbolic case with a fixed cusp

In this case one finds that

min(|n}, |g)*

T Ok

J k(a,z)dv(z) =—x(a
I(a)\H

17.2.5 Parabolic case

Let x be the fixed point of a; then x is a cusp of I' and I'(a) = I}; see the argument in [1].
Choose o0 € SILy(R) so that ox = o0, and let cac = (g ?) Let TP be the set of parabolic
elements in T, and for each cusp x of T let T := TP N T,. Then | J,cp\p, Tx is @ complete

set of representatives for conjp(T?). Let £oT,0~! = (((1) }11)) with h > 0, and for a € TZ, put
h(a) := A/ and let sgn(a) = sgn({). Then

s—0*

lim f K(a,2,%)dv(s) = lim 5 Z 7 (@) sgn(a)* det(a)/*> 1 (ih/h(a))'**.
act? JT(@\H 0

aET,I:

17.3 The trace formula

Let T < SL,(R) be a lattice, let A be a semigroup with ' < A < T, let y be a finite order
character of T with y(—1) = (—1)* if —1 €T, extended to A so that y (aya™') = y(y) fora € A
and y €T, and let T € Z[T'\A/I'] be a sum of I'-double cosets viewed as a subset of A.

Define Z(T) = TNR*, let T® be the subset of elliptic & € T, let T" be the subset of hyperbolic
a € T whose fixed points are cusps of T, let T" be the subset of hyperbolic @ € T whose fixed
points are not cusps of T', and let T? be the subset of parabolic @ € T whose fixed points are
cusps of T, so that

T=Z(T)uTeuTuTY LTP.

For a € T letn, and ¢, denote the eigenvalues of a, with 1, = re® and ¢, = re™'% if a is elliptic

with caoc™ ! =r (f‘s’fneg gg;g ) For non-elliptic a let sgn(a) := sgn({,), and for parabolic a let

m(a) = A/(h¢,) where £oT(a)o™ = £(({ 1)).
Theorem 17.9. The trace of T acting on Si(T, x) is

tr(T) = to + t, + ty + tp,
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where

_ (k=1)v(I"\H)

0= > Z(@)sgn(a) det(a)/> 7,

4n#Z(T) woZtr)
- Z 7(01)7)](;—1
e — 7 N7 N

wecom (T*) IT(@)(ng — &)

1 _ min(|,], k=1
th, = _#Z_(F) Z X(a) sgn(a)k (||§’a|_|na||) ,
acconjp(Th) a™ Na

p=lim s D Tl@)san(a) der(@) (i /m(a)'

acconjp(TP)
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