These notes summarize the material in §6.1 of [1] presented in lecture.

16.1 Hilbert spaces of functions on the complex upper half plane

Fix a weight $k \in \mathbb{Z}_{\geq 0}$. Let $p \in \mathbb{R}_{\geq 1} \cup \infty$ be an exponent. For $f \in \mathbf{H} \to \mathbb{C}$ we define

$$\|f\|_{k}^{p} \coloneqq \begin{cases} \left(\int_{\mathbf{H}} |f(z)\operatorname{Im}(z)^{k/2}d\nu(z)\right)^{1/p} & 1 \le p < \infty, \\ \operatorname{ess\,sup}_{z \in \mathbf{H}} |f(z)\operatorname{Im}(z)|^{k/2} & p = \infty, \end{cases}$$

where $dv(z) = \frac{dxdy}{y^2}$ is the invariant measure on $x + iy = z \in \mathbf{H}$ and "ess sup" denotes the essential supremum, the infimum of the set of essential upper bounds.

If $f: \Omega \to \mathbb{R}$ is a real-valued function on a topological space Ω equipped with a measure, we call a real number a an essential upper bound of f if the set $\{z \in \Omega : f(z) \ge a\}$ has measure zero. Thus if $||f||_{\infty} = a \in \mathbb{R}$ then the set $\{z \in \mathbf{H} : |f(z) \operatorname{Im}(z)^{k/2} > a\}$ has measure 0 but the sets $\{z \in \mathbf{H} : |f(z) \operatorname{Im}(z)^{k/2} | : a - \epsilon\}$ have nonzero measure for every $\epsilon > 0$.

We use $L_k^p(\mathbf{H})$ to denote the Banach space (complete normed vector space) of all measurable functions $f : \mathbf{H} \to \mathbb{C}$ satisfying $||f||_p < \infty$ (recall that a function is measurable if pre-images of measurable sets are measurable). We call exponents $p, q \in \mathbb{R}_{\geq 1} \cup \infty$ conjugate if

$$\frac{1}{p} + \frac{1}{q} = 1$$

where $\frac{1}{0} := \infty$ and $\frac{1}{\infty} = 0$. For conjugate exponents p, q and functions $f \in L_k^p(\mathbf{H})$ and $g \in L_k^q(\mathbf{H})$ we define the pairing

$$\langle f,g\rangle := \int_{\mathbf{H}} f(z)\overline{g(z)} \operatorname{Im}(z)^k d\nu(z),$$

which allows us to identify $g \in L_k^q(\mathbf{H})$ with an element of the dual space of $L_k^p(\mathbf{H})$, continuous linear functions on $L_k^p(\mathbf{H})$, and for $p \neq \infty$ we can view $L_k^q(\mathbf{H})$ as the dual space of $L_k^p(\mathbf{H})$. When p = q = 2 this defines an inner product on $L_k^2(\mathbf{H})$, making it a Hilbert space (a complete metric space with distance given by the inner product). We use $H_k^p(\mathbf{H})$ to denote the closed subspace of $L_k^p(\mathbf{H})$ consisting of holomorphic functions.

For any Hilbert space *H* of functions $f : X \to \mathbb{C}$ with inner product $\langle, \cdot, \cdot \rangle$ we call a function $K : X \times X \to \mathbb{C}$ a kernel function of *H* if the following hold:

- for every $y \in X$ the function $K_y : X \to \mathbb{C}$ defined by $x \mapsto K(x, y)$ lies in H;
- for every $f \in H$ we have $f(y) = \langle f(x), K_y(x) \rangle$ for all $y \in X$.

If *K* is a kernel function then it is conjugate symmetric:

$$K(x, y) = K_y(x) = \langle K_y, K_x \rangle = \overline{\langle K_x, K_y \rangle} = \overline{K_x(y)} = \overline{K(y, x)}.$$

Kernel functions need not exist but are uniquely determined when the do (in which case *H* is sometimes called a reproducing kernel Hilbert space or RKHS; we won't use this terminology). Indeed, if *K* and K' are both kernel functions of *H* then for every $x, y \in X$ we have

$$K'(x,y) = K'_{y}(x) = \langle K'_{y}, K_{x} \rangle = \overline{\langle K_{x}, K'_{y} \rangle} = \overline{K_{x}(y)} = \overline{K(y,x)} = K(x,y).$$

If H is finite dimensional then it has the kernel function

$$K(x,y) \coloneqq \sum_{i} f_i(x) \overline{f_i(y)},$$

where f_1, \ldots, f_r is any orthonormal basis of *H*. Indeed, for $y \in X$ the function $K_y = \sum_i \overline{f_i(y)} f_i$ is an element of *H*, and if we write $f \in H$ as $f = \sum_i c_i f_i$, then

$$\langle f, K_y \rangle = \left\langle \sum_i c_i f_i, \sum_i \overline{f_i(y)} f_i \right\rangle = \sum_i c_i \overline{f_i(y)} = \sum_i c_i f_i(y) = f(y).$$

We now want to compute the kernel function of the Hilbert space $H_k^2(\mathbf{H})$. It follows from [1, Corollary 2.62] that for any fixed $k \in \mathbb{Z}_{\geq 0}$ and $z_0 \in \mathbf{H}$ there is a constant *c* such that

$$|f(z_0)| \le c ||f||_k^2$$

for all $f \in H_k^2(\mathbf{H})$. Thus for any fixed $z_0 \in \mathbf{H}$ the map $f \mapsto f(z_0)$ is a continuous linear functional on $H_k^2(\mathbf{H})$. Since $H_k^2(\mathbf{H})$ is a Hilbert space (so self-dual), there is therefor a unique $g_{z_0} \in H_k^2(\mathbf{H})$ for which

$$f(z_0) = \langle f, g_{z_0} \rangle = \int_{\mathbf{H}} f(z) \overline{g_{z_0}(z)} \operatorname{Im}(z)^k d\nu(z),$$

for all $f \in H_k^2(\mathbf{H})$. We thus may take

$$K(w,z) \coloneqq g_z(w)$$

as the kernel function of $H_k^2(\mathbf{H})$. For any $f \in H_k^2(\mathbf{H})$ we have $f(z_1) = \langle f, g_{z_1} \rangle = \langle f, K_{z_1} \rangle$ and

$$f(z_1) = \langle f, K_{z_1} \rangle = \int_{\mathbf{H}} f(z_2) \overline{K(z_2, z_1)} \operatorname{Im}(z_2)^k d\nu(z_2) = \int_{\mathbf{H}} K(z_1, z_2) f(z_2) \operatorname{Im}(z_2)^k d\nu(z_2).$$

We now want to consider the behavior of $K(z_1, z_2)$ under the action of $\alpha \in SL_2(\mathbb{R})$ on **H** (via linear fractional transformations). Recall that for $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we define $j(\alpha, z) \coloneqq cz + d$, which satisfies the identities

$$j(\alpha \alpha', z) = j(\alpha, \alpha' z) j(\alpha', z)$$

and we have

$$\operatorname{Im}(\alpha z) = \frac{\operatorname{Im}(z)}{|j(\alpha, z)|^2} = \frac{\operatorname{Im}(z)}{j(\alpha, z)\overline{j(\alpha, z)}}.$$

For any $\alpha \in SL_2(\mathbb{R})$ and $f \in H_k^2(\mathbb{H})$, the function $f(\alpha^{-1}z)j(\alpha, \alpha^{-1}z)^{-k} = f(\alpha^{-1}z)j(\alpha^{-1}, z)^k$ lies in $H_k^2(\mathbb{H})$, and we have $d\nu(\alpha^{-1}z) = d\nu(z)$ and $Im(\alpha^{-1}z)\overline{j(\alpha^{-1}, z)} = Im(z)j(\alpha^{-1}, z)^{-1}$, thus

$$\begin{split} &\int_{H} K(az_{1}, az_{2})j(a, z_{1})^{-k} \overline{j(a, z_{2})^{-k}} f(z_{2}) \operatorname{Im}(z_{2})^{k} d\nu(z_{2}) \\ &= j(a, z_{1})^{-k} \int_{H} K(az_{1}, z_{2}) f(a^{-1}z_{2}) \overline{j(a, a^{-1}z_{2})^{-k}} \operatorname{Im}(a^{-1}z_{2})^{k} d\nu(a^{-1}z_{2}) \\ &= j(a, z_{1})^{-k} \int_{H} K(az_{1}, z_{2}) f(a^{-1}z_{2}) j(a, a^{-1}z_{2})^{k} \operatorname{Im}(z_{2})^{k} d\nu(z_{2}) \\ &= j(a, z_{1})^{-k} f(a^{-1}(az_{1}) j(a, a^{-1}(az_{1}))^{k} \\ &= j(a, z_{1})^{-k} f(z_{1}) j(a, z_{2})^{k} \\ &= f(z_{1}) \\ &= \int_{H} K(z_{1}, z_{2}) f(z_{2}) \operatorname{Im}(z_{2})^{k} d\nu(z_{2}). \end{split}$$

It follows from the uniqueness of kernel functions that for any $\alpha \in SL_2(\mathbb{R})$ we have

$$K(\alpha z_1, \alpha z_2) = K(z_1, z_2) j(\alpha, z_1)^k \overline{j(\alpha, z_2)}^k$$

and

$$K(\alpha z_1, z_2)j(\alpha, z_1)^{-k} = K(z_1, \alpha^{-1} z_2)\overline{j(\alpha^{-1}, z_2)^{-k}}$$

Applying this to $\alpha = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ yields

$$K(z_1 + b, z_2 + b) = K(z_1, z_2)$$

for all $b \in \mathbb{R}$. If we let $M := \{(z_1, z_2) \in \mathbb{C}^2 : z_1 \in \mathbf{H}, \overline{z_1 - z_2} \in \mathbf{H}\}$ and define

$$h(z_1,z_2) := K(z_1,\overline{z_1-z_2}),$$

then $h(z_1, z_2)$ is holomorphic function on M. Now $h(z_1 + b, z_2) = h(z_1, z_2)$ for $b \in \mathbb{R}$, so $h(z_1, z_2)$ is actually independent of z_1 . For any $z \in \mathbf{H}$ we can pick $z_1 \in \mathbf{H}$ so $(z_1, z) \in \mathbf{H}$ and define

$$P(z) := h(z_1, z) = K(z_1, \overline{z_1 - z}).$$

Then P(z) is holomorphic on **H** and we have

$$K(z_1, z_2) = P(z_1 - \overline{z}_2)$$

for all $z_1, z_2 \in \mathbf{H}$. If we now consider $\alpha = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in SL_2(\mathbb{R})$, we have $P(a^2 z) = a^{-2k} P(z)$ and

$$P(iy) = y^{-k}P(i)$$

for all y > 0. Since P(z) is holomorphic on **H** we must have

$$P(z) = c_k \left(\frac{z}{2i}\right)^{-k}$$

for some constant $c_k > 0$. This yields the following theorem.

Theorem 16.1. $H_k^2(\mathbf{H})$ has kernel function $K(z_1, z_2) = c_k \left(\frac{z_1 - \bar{z}_2}{2i}\right)^{-k}$ for some $c_k \in \mathbb{R}_{>0}$.

Corollary 16.2. $H_k^2(\mathbf{H}) \subseteq H_k^{\infty}(\mathbf{H})$.

Proof. For any $f \in H^2_k(\mathbf{H})$ and $z_0 \in \mathbf{H}$ we have

$$|f(z_0)|^2 = |\langle f(z), K(z, z_0) \rangle|^2 \le ||f||_2^2 ||K(z, z_0)||_2^2 = ||f||_2^2 K(z_0, z_0) = c_k \operatorname{Im}(z_0)^{-k} ||f||_2^2$$

so $|f(z_0)\operatorname{Im}(z_0)^{k/2}| \le \sqrt{c_k} ||f||_2$ for any $z_0 \in \mathbf{H}$, thus $f \in H_k^{\infty}(\mathbf{H})$.

We now want to compute the constant c_k in Theorem 16.1, and for this we need to define the Fourier transform of $f \in H^2_k(\mathbf{H})$. For any $y \in \mathbb{R}_{>0}$ we define the function $f_y := \mathbb{R} \to \mathbb{R}$ via

$$f_y(x) \coloneqq f(x+iy).$$

Since $||f||_2^2 = \int_{\mathbf{H}} |f(x+iy)|^2 y^{k-2} dx dy < \infty$, we have $f_y \in L^2(\mathbb{R})$ for all y outside a set of measure zero; let $\hat{f}_y(u) \coloneqq \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$ of f_y for all such y.

Theorem 16.3. For each $f \in H^2_k(\mathbf{H})$ there is a function $\hat{f} : \mathbb{R} \to \mathbb{R}$ such that $\hat{f}_y(h) = \hat{f}(u)e^{-2\pi u y}$ for all y outside a set of measure zero, and $\hat{f}(u)$ vanishes almost everywhere on \mathbb{R} .

Corollary 16.4. *If* $k \le 1$ *then* $H_k^2(\mathbf{H}) = \{0\}$ *.*

We call the function $\hat{f} : \mathbb{R} \to \mathbb{R}$ of Theorem 16.3 the Fourier transform of $f \in H_k^2(\mathbf{H})$. We henceforth assume k > 1, since $H_k^2(\mathbf{H})$ has dimension zero otherwise; see [1, Corollary 6.1.7].

We now define the function

$$G_k(u) \coloneqq \int_0^\infty y^{k-2} e^{-\pi u y} dy = (\pi u)^{1-k} \Gamma(k-1),$$

for u > 0, and let $G_k(u) := 0$ for $u \le 0$. Let \hat{H}_k^2 denote the space of measurable functions $\phi : \mathbb{R} \to \mathbb{C}$ for which

- ϕ vanishes almost everywhere on $\mathbb{R}_{<0}$;
- $\int_{-\infty}^{\infty} |\phi(u)|^2 G_k(4u) du < \infty.$

Then $hat H_k^2$ is a Hilbert space with inner product

$$\langle \phi, \varphi \rangle := \int_0^\infty \phi(u) \overline{\varphi(u)} G_k(4u) du,$$

and for $f \in H_k^2(\mathbf{H})$ we have

$$||f||_2^2 = \int_{-\infty}^{\infty} |\hat{f}(u)|^2 G_k(4u) du = \langle \hat{f}, \hat{f} \rangle.$$

Thus for $f \in H_k^2(\mathbf{H})$ we have $\hat{f} \in \hat{H}_k^2$, and in fact this defines an isomorphism of Hilbert spaces.

Theorem 16.5. The map $f \mapsto \hat{f}$ is an isomorphism from $H_k^2(\mathbf{H})$ to \hat{H}_k^2 .

Proof. This is Theorem 6.1.6 in [1].

For
$$\phi \in \hat{H}_k^2$$
 we define

$$\hat{\phi}(z) \coloneqq \int_{-\infty}^{\infty} \phi(u) e^{2\pi i u z} du$$

Let $\hat{K}(u, z)$ denote the Fourier transform of $K(z_1, z)$ as a function of z_1 , for any fixed z. For any $\phi \in \hat{H}_k^2$ we have

$$\langle \phi(u), \hat{K}(u,z) \rangle = \langle \hat{\phi}(z_1), K(z_1,z) \rangle = \hat{\phi}(z) = \int_0^\infty \phi(u) e^{2\pi i u z} dz,$$

and we also have

$$\langle \phi(u, \hat{K}(u, z)) \rangle = \int_0^\infty \phi(u) \overline{\hat{K}(u, z)} G_k(4u) du,$$

 \sim

which implies

$$\hat{K}(u,x) = G_k(4u)^{-1}e^{-2\pi i u \bar{z}}$$

for all $u \in \mathbb{R}$ and $z \in \mathbf{H}$. Taking the inverse transform of $\hat{K}(u, z)$ as a function of u yields

$$K(z_1, z_2) = \int_0^\infty G_k(4u)^{-1} e^{2\pi i u(z_1 - \bar{z}_2)} du,$$

and therefore

$$c_k\left(\frac{z}{2i}\right)^{-k} = \int_0^\infty G_k(4u)^{-1} e^{2\pi i u z} du.$$

Applying this with z = 2i yields

$$c_k = \frac{k-1}{4\pi}$$

and the following theorem.

Theorem 16.6. For $k \in \mathbb{Z}_{>1}$ the kernel function of $H_k^2(\mathbf{H})$ is

$$K(z_1, z_2) = \frac{k - 1}{4\pi} \left(\frac{z_1 - \bar{z}_2}{2i} \right)^{-k}.$$

References

[1] Toshitsune Miyake, *Modular forms*, Springer, 2006.