18.786 Number theory II Spring 2024
Lecture #16 4/17/2024

These notes summarize the material in §6.1 of [1] presented in lecture.

16.1 Hilbert spaces of functions on the complex upper half plane

Fix a weight k € Z(. Let p € Ry, U 00 be an exponent. For f € H— C we define

P {( [af@Im@)2av(=) " 1<p < oo,
’

esssup,ey If (2)Im(2)[/>  p = oo,

dxdy . . . .
where dv(z) = ’;zy is the invariant measure on x + iy = z € H and "esssup" denotes the

essential supremum, the infimum of the set of essential upper bounds.

If f: Q — R is a real-valued function on a topological space Q equipped with a measure, we
call a real number a an essential upper bound of f if the set {z € Q : f(z) = a} has measure
zero. Thus if ||f||co = a € R then the set {z € H : |f (z) Im(z)*/? > a} has measure 0 but the sets
{zeH:|f(2) Im(z)*/2| : a — €} have nonzero measure for every € > 0.

We use Lllz(H) to denote the Banach space (complete normed vector space) of all measurable
functions f : H — C satisfying ||f ||, < oo (recall that a function is measurable if pre-images of
measurable sets are measurable). We call exponents p,q € Rs; U 00 conjugate if

1 1
+
b q

where % := oo and % = 0. For conjugate exponents p, q and functions f € Li(H) and g € LZ(H)
we define the pairing

(f,g) = f f()g(z) Im(z) dv(2),
H

which allows us to identify g € LZ(H) with an element of the dual space of Li(H), continuous
linear functions on LIIZ(H), and for p # oo we can view Lz(H) as the dual space of LIIZ(H). When
p = q = 2 this defines an inner product on Li(H), making it a Hilbert space (a complete metric
space with distance given by the inner product). We use Hf (H) to denote the closed subspace
of Li (H) consisting of holomorphic functions.

For any Hilbert space H of functions f : X — C with inner product (,-,-) we call a function
K:X x X — C a kernel function of H if the following hold:

* for every y € X the function K, : X — C defined by x — K(x, y) lies in H;
* for every f € H we have f(y) = (f(x),K,(x)) for all y € X.

If K is a kernel function then it is conjugate symmetric:

K(x,y) =Ky(x) = (KyJKx> = (Kx:Ky> :Kx(.y) =K(y,x).

Kernel functions need not exist but are uniquely determined when the do (in which case H is
sometimes called a reproducing kernel Hilbert space or RKHS; we won’t use this terminology).
Indeed, if K and K’ are both kernel functions of H then for every x, y € X we have

K/(X,_)/) ZK;,(X) = (K}//:Kx) = <KX’K;/> :Kx(.y) =K(}’,X) =K(X,}’)-

If H is finite dimensional then it has the kernel function

K(x,y) = Zfi(x)m,
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where f1,..., f, is any orthonormal basis of H. Indeed, for y € X the function K, = > NS
is an element of H, and if we write f € H as f = ), ¢;f;, then

(f,K,) = <Zcifi,ZMfi> =STGF =D i) = £,

i i i

We now want to compute the kernel function of the Hilbert space H ,%(H). It follows from
[1, Corollary 2.62] that for any fixed k € Z and z, € H there is a constant ¢ such that

If o)l < cllf 113

forallf eH %(H). Thus for any fixed z, € H the map f — f(z) is a continuous linear functional
on H ,%(H). Since H E(H) is a Hilbert space (so self-dual), there is therefor a unique g, € H ,%(H)
for which

f(z0) =(f,8z,) ZJ £(2)8.,(2)Im(z) dv(z),
H
for all f € HZ(H). We thus may take

K(w,z) = g,(w)

as the kernel function of HZ(H). For any f € H7(H) we have f(z;) = (f,&,,) = (f,K,,) and

f(z1)= <f7K21> = f f(zz)K(ZZ>Zl)Im(zz)de(Zz) = f K(Zl:zz)f(zz)Im(zz)de(Zz)-
H H

We now want to consider the behavior of K(z;,2,) under the action of @ € SL,(R) on H (via
linear fractional transformations). Recall that for a = (‘CI 3) we define j(a,2) := cz + d, which
satisfies the identities

jlad',z) = j(a,a'z)j(a’,2)

and we have
Im(z) Im(z)

lji(a,2)2 j(a,2)j(a,z)
For any a € SLy(R) and f € H2(H), the function f(a '2)j(a,a 'z)™ = f(a *2)j(a !, 2)" lies
in H,f(H), and we have dv(a~'z) = dv(z) and Im(a'2)j(a~1,2) = Im(2)j(a"t,2)7}, thus

Im(az) =

J K(az, azz)j(a,zl)_kj(a,zz)—kf(zz)Im(zz)kdv(zz)

H

= j(a,zl)_k f K(azl,zz)f(a_lzz)j(a, alz,)k Im(a_lzz)kdv(a_lzz)
H

=j(a,z)* J K(azy,25)f (@ 25)j(a, @ 25)" Im(25)*dv(z,)
H

=j(a,z) " f(a Haz)j(a, a  (az)
=j(a, 21)_kf(21)j(0‘; Zz)k
= f(z1)

ZJ K(21,22)f (25) Im(25) dv(z,).
H
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It follows from the uniqueness of kernel functions that for any a € SLy(R) we have

. —k
K(azy,azy) = K(z1,25)j(a, 21)<j(a, z5)

and
K(azbzz)j(a,zl)_k =K(z, a_lzz)j(a_l,zz)_k-

Applying this to a = (} ?) yields
K(z1+ b,29 + b) =K(21,25)
for all b € R. If we let M := {(z1,2,) € C? : z; € H,z; — 2, € H} and define
h(z1,25) = K(21,21 — 25),

then h(z;,2,) is holomorphic function on M. Now h(z; + b,2,) = h(2,,2,) for b € R, so h(z;,%5)
is actually independent of z;. For any z € H we can pick z; € H so (z1,2) € H and define

P(z) = h(z1,2) = K(2q,21 — 2).
Then P(z) is holomorphic on H and we have
K(21,22) = P(z1 —23)
for all z,,2, € H. If we now consider a = (g a91 ) € SL,(R), we have P(a?z) = a~2*P(z) and
P(iy) =y *P(i)
for all y > 0. Since P(z) is holomorphic on H we must have

Pe)=c(5) "

for some constant ¢, > 0. This yields the following theorem.

Theorem 16.1. HE(H) has kernel function K(z1,2,) = ¢y (le_fz )_k for some ¢, € Ry.
Corollary 16.2. H,%(H) C H°(H).
Proof. Forany f € H ,%(H) and z, € H we have
F (20)P? = 1{f (2), K (z,20))|* < I FIBIIK (2, 20)II5 = 113K (20, 20) = cic Im(z0) ¥IIf 113
50 |f (20) Im(z0)*/?| < /&l f |l for any z, € H, thus f € HZ®(H). O

We now want to compute the constant c; in Theorem 16.1, and for this we need to define
the Fourier transform of f € H ,%(H). For any y € R, we define the function f), :—=R — R via

£, ()= flx +iy).

Since ||f||§ = fH If (x +iy)]?y*2dxdy < oo, we have fy € L?(R) for all y outside a set of
measure zero; let fy(u) = ff:of(x)e_zmuxdx of f, for all such y.
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Theorem 16.3. For each f € H,%(H) there is a function f: R — R such that fy(h) = f(u)e_Z““y
for all y outside a set of measure zero, and f (u) vanishes almost everywhere on R.

Corollary 16.4. If k < 1 then H2(H) = {0}.

We call the function f: R — R of Theorem 16.3 the Fourier transform of f € Hlf(H). We
henceforth assume k > 1, since Hf(H) has dimension zero otherwise; see [1, Corollary 6.1.7].
We now define the function

o0
G(w) = f y* e ™ dy = (mu)' (k- 1),
0

for u > 0, and let G¢(u) :== 0 for u <

< 0. Let PAI,% denote the space of measurable functions
¢ : R — C for which

* ¢ vanishes almost everywhere on R_g;
d f_ozo | (W)?Gy(4u)du < oo.

Then hatH ,f is a Hilbert space with inner product

(¢, ) = J ¢ (w)p(W)Gi(4u)du,
0

and for f € H]%(H) we have
o
1715 = f |f WPG(4w)du = (f,f).
—00
Thus for f e H ,f(H) we have f € A2, and in fact this defines an isomorphism of Hilbert spaces.
Theorem 16.5. The map f — f is an isomorphism from H]f(H) to H,%
Proof. This is Theorem 6.1.6 in [1]. O
For ¢ € H? we define
oo
$(z) = J ¢ (W™ du
—00
Let K(u,z) denote the Fourier transform of K(z,2) as a function of z;, for any fixed z. For

any ¢ € Hi we have

oo

(W), K(u,2)) = ($(2)),K(21,2)) = ¢p(2) = J b (u)e2 4 dz,

0

and we also have

(p(u,K(u,2)) = f ¢ (WK (u,2)G(4u)du,
0

which implies N
K(u,x) = Gy(4u) te 2mue
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for all u € R and z € H. Taking the inverse transform of K(u, ) as a function of u yields
oo
K(21,29) = J Gi(4u) L™ U2 gy
0
and therefore
C (2%) = f Gy (4u)~Le2™ U qy,
0

Applying this with z = 2i yields
k—1
=
and the following theorem.
Theorem 16.6. For k € Z-.; the kernel function ofH]f(H) is

k—1(2—%\F
K(Z1,22)=4—n(f) .
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