These notes summarize the material in §6.1 of [1] presented in lecture.

16.1 Hilbert spaces of functions on the complex upper half plane

Fix a weight $k \in \mathbb{Z}_{\geq 0}$. Let $p \in \mathbb{R}_{\geq 1} \cup \infty$ be an exponent. For $f \in \mathbf{H} \rightarrow \mathbb{C}$ we define

$$
\|f\|_{k}^{p}:=\left\{\begin{array}{ll}
\left(\int_{\mathbf{H}} \mid f(z) \operatorname{Im}(z)^{k / 2} d v(z)\right)^{1 / p} & 1 \leq p<\infty \\
\operatorname{ess}^{\sup } \\
z \in \mathbf{H}
\end{array}|f(z) \operatorname{Im}(z)|^{k / 2} \quad 1 \quad p=\infty, ~ l\right.
$$

where $d v(z)=\frac{d x d y}{y^{2}}$ is the invariant measure on $x+i y=z \in \mathbf{H}$ and "ess sup" denotes the essential supremum, the infimum of the set of essential upper bounds.

If $f: \Omega \rightarrow \mathbb{R}$ is a real-valued function on a topological space Ω equipped with a measure, we call a real number a an essential upper bound of f if the set $\{z \in \Omega: f(z) \geq a\}$ has measure zero. Thus if $\|f\|_{\infty}=a \in \mathbb{R}$ then the set $\left\{z \in \mathbf{H}: \mid f(z) \operatorname{Im}(z)^{k / 2}>a\right\}$ has measure 0 but the sets $\left\{z \in \mathrm{H}:\left|f(z) \operatorname{Im}(z)^{k / 2}\right|: a-\epsilon\right\}$ have nonzero measure for every $\epsilon>0$.

We use $L_{k}^{p}(\mathbf{H})$ to denote the Banach space (complete normed vector space) of all measurable functions $f: \mathbf{H} \rightarrow \mathbb{C}$ satisfying $\|f\|_{p}<\infty$ (recall that a function is measurable if pre-images of measurable sets are measurable). We call exponents $p, q \in \mathbb{R}_{\geq 1} \cup \infty$ conjugate if

$$
\frac{1}{p}+\frac{1}{q}=1
$$

where $\frac{1}{0}:=\infty$ and $\frac{1}{\infty}=0$. For conjugate exponents p, q and functions $f \in L_{k}^{p}(\mathbf{H})$ and $g \in L_{k}^{q}(\mathbf{H})$ we define the pairing

$$
\langle f, g\rangle:=\int_{\mathbf{H}} f(z) \overline{g(z)} \operatorname{Im}(z)^{k} d v(z)
$$

which allows us to identify $g \in L_{k}^{q}(\mathbf{H})$ with an element of the dual space of $L_{k}^{p}(\mathbf{H})$, continuous linear functions on $L_{k}^{p}(\mathbf{H})$, and for $p \neq \infty$ we can view $L_{k}^{q}(\mathbf{H})$ as the dual space of $L_{k}^{p}(\mathbf{H})$. When $p=q=2$ this defines an inner product on $L_{k}^{2}(\mathbf{H})$, making it a Hilbert space (a complete metric space with distance given by the inner product). We use $H_{k}^{p}(\mathbf{H})$ to denote the closed subspace of $L_{k}^{p}(\mathbf{H})$ consisting of holomorphic functions.

For any Hilbert space H of functions $f: X \rightarrow \mathbb{C}$ with inner product $\langle, \cdot, \cdot\rangle$ we call a function $K: X \times X \rightarrow \mathbb{C}$ a kernel function of H if the following hold:

- for every $y \in X$ the function $K_{y}: X \rightarrow \mathbb{C}$ defined by $x \mapsto K(x, y)$ lies in H;
- for every $f \in H$ we have $f(y)=\left\langle f(x), K_{y}(x)\right\rangle$ for all $y \in X$.

If K is a kernel function then it is conjugate symmetric:

$$
K(x, y)=K_{y}(x)=\left\langle K_{y}, K_{x}\right\rangle=\overline{\left\langle K_{x}, K_{y}\right\rangle}=\overline{K_{x}(y)}=\overline{K(y, x)} .
$$

Kernel functions need not exist but are uniquely determined when the do (in which case H is sometimes called a reproducing kernel Hilbert space or RKHS; we won't use this terminology). Indeed, if K and K^{\prime} are both kernel functions of H then for every $x, y \in X$ we have

$$
K^{\prime}(x, y)=K_{y}^{\prime}(x)=\left\langle K_{y}^{\prime}, K_{x}\right\rangle=\overline{\left\langle K_{x}, K_{y}^{\prime}\right\rangle}=\overline{K_{x}(y)}=\overline{K(y, x)}=K(x, y) .
$$

If H is finite dimensional then it has the kernel function

$$
K(x, y):=\sum_{i} f_{i}(x) \overline{f_{i}(y)}
$$

where f_{1}, \ldots, f_{r} is any orthonormal basis of H. Indeed, for $y \in X$ the function $K_{y}=\sum_{i} \overline{f_{i}(y)} f_{i}$ is an element of H, and if we write $f \in H$ as $f=\sum_{i} c_{i} f_{i}$, then

$$
\left\langle f, K_{y}\right\rangle=\left\langle\sum_{i} c_{i} f_{i}, \sum_{i} \overline{f_{i}(y)} f_{i}\right\rangle=\sum_{i} c_{i} \overline{\overline{f_{i}(y)}}=\sum_{i} c_{i} f_{i}(y)=f(y) .
$$

We now want to compute the kernel function of the Hilbert space $H_{k}^{2}(\mathbf{H})$. It follows from [1, Corollary 2.62] that for any fixed $k \in \mathbb{Z}_{\geq 0}$ and $z_{0} \in \mathbf{H}$ there is a constant c such that

$$
\left|f\left(z_{0}\right)\right| \leq c\|f\|_{k}^{2}
$$

for all $f \in H_{k}^{2}(\mathbf{H})$. Thus for any fixed $z_{0} \in \mathbf{H}$ the map $f \mapsto f\left(z_{0}\right)$ is a continuous linear functional on $H_{k}^{2}(\mathbf{H})$. Since $H_{k}^{2}(\mathbf{H})$ is a Hilbert space (so self-dual), there is therefor a unique $g_{z_{0}} \in H_{k}^{2}(\mathbf{H})$ for which

$$
f\left(z_{0}\right)=\left\langle f, g_{z_{0}}\right\rangle=\int_{\mathbf{H}} f(z) \overline{g_{z_{0}}(z)} \operatorname{Im}(z)^{k} d v(z),
$$

for all $f \in H_{k}^{2}(\mathbf{H})$. We thus may take

$$
K(w, z):=g_{z}(w)
$$

as the kernel function of $H_{k}^{2}(\mathbf{H})$. For any $f \in H_{k}^{2}(\mathbf{H})$ we have $f\left(z_{1}\right)=\left\langle f, g_{z_{1}}\right\rangle=\left\langle f, K_{z_{1}}\right\rangle$ and

$$
f\left(z_{1}\right)=\left\langle f, K_{z_{1}}\right\rangle=\int_{\mathbf{H}} f\left(z_{2}\right) \overline{K\left(z_{2}, z_{1}\right)} \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right)=\int_{\mathbf{H}} K\left(z_{1}, z_{2}\right) f\left(z_{2}\right) \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) .
$$

We now want to consider the behavior of $K\left(z_{1}, z_{2}\right)$ under the action of $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ on \mathbf{H} (via linear fractional transformations). Recall that for $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we define $j(\alpha, z):=c z+d$, which satisfies the identities

$$
j\left(\alpha \alpha^{\prime}, z\right)=j\left(\alpha, \alpha^{\prime} z\right) j\left(\alpha^{\prime}, z\right)
$$

and we have

$$
\operatorname{Im}(\alpha z)=\frac{\operatorname{Im}(z)}{|j(\alpha, z)|^{2}}=\frac{\operatorname{Im}(z)}{j(\alpha, z) \overline{j(\alpha, z)}} .
$$

For any $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ and $f \in H_{k}^{2}(\mathbf{H})$, the function $f\left(\alpha^{-1} z\right) j\left(\alpha, \alpha^{-1} z\right)^{-k}=f\left(\alpha^{-1} z\right) j\left(\alpha^{-1}, z\right)^{k}$ lies in $H_{k}^{2}(\mathbf{H})$, and we have $d v\left(\alpha^{-1} z\right)=d v(z)$ and $\operatorname{Im}\left(\alpha^{-1} z\right) \overline{j\left(\alpha^{-1}, z\right)}=\operatorname{Im}(z) j\left(\alpha^{-1}, z\right)^{-1}$, thus

$$
\begin{aligned}
& \int_{H} K\left(\alpha z_{1}, \alpha z_{2}\right) j\left(\alpha, z_{1}\right)^{-k} \overline{j\left(\alpha, z_{2}\right)^{-k}} f\left(z_{2}\right) \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) \\
& =j\left(\alpha, z_{1}\right)^{-k} \int_{\mathbf{H}} K\left(\alpha z_{1}, z_{2}\right) f\left(\alpha^{-1} z_{2}\right) \overline{j\left(\alpha, \alpha^{-1} z_{2}\right)^{-k}} \operatorname{Im}\left(\alpha^{-1} z_{2}\right)^{k} d v\left(\alpha^{-1} z_{2}\right) \\
& =j\left(\alpha, z_{1}\right)^{-k} \int_{\mathbf{H}} K\left(\alpha z_{1}, z_{2}\right) f\left(\alpha^{-1} z_{2}\right) j\left(\alpha, \alpha^{-1} z_{2}\right)^{k} \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) \\
& =j\left(\alpha, z_{1}\right)^{-k} f\left(\alpha^{-1}\left(\alpha z_{1}\right) j\left(\alpha, \alpha^{-1}\left(\alpha z_{1}\right)\right)^{k}\right. \\
& =j\left(\alpha, z_{1}\right)^{-k} f\left(z_{1}\right) j\left(\alpha, z_{2}\right)^{k} \\
& =f\left(z_{1}\right) \\
& =\int_{\mathbf{H}} K\left(z_{1}, z_{2}\right) f\left(z_{2}\right) \operatorname{Im}\left(z_{2}\right)^{k} d v\left(z_{2}\right) .
\end{aligned}
$$

It follows from the uniqueness of kernel functions that for any $\alpha \in \mathrm{SL}_{2}(\mathbb{R})$ we have

$$
K\left(\alpha z_{1}, \alpha z_{2}\right)=K\left(z_{1}, z_{2}\right) j\left(\alpha, z_{1}\right)^{k}{\overline{j\left(\alpha, z_{2}\right)}}^{k}
$$

and

$$
K\left(\alpha z_{1}, z_{2}\right) j\left(\alpha, z_{1}\right)^{-k}=K\left(z_{1}, \alpha^{-1} z_{2}\right) \overline{j\left(\alpha^{-1}, z_{2}\right)^{-k}} .
$$

Applying this to $\alpha=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ yields

$$
K\left(z_{1}+b, z_{2}+b\right)=K\left(z_{1}, z_{2}\right)
$$

for all $b \in \mathbb{R}$. If we let $M:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: z_{1} \in \mathbf{H}, \overline{z_{1}-z_{2}} \in \mathbf{H}\right\}$ and define

$$
h\left(z_{1}, z_{2}\right):=K\left(z_{1}, \overline{z_{1}-z_{2}}\right),
$$

then $h\left(z_{1}, z_{2}\right)$ is holomorphic function on M. Now $h\left(z_{1}+b, z_{2}\right)=h\left(z_{1}, z_{2}\right)$ for $b \in \mathbb{R}$, so $h\left(z_{1}, z_{2}\right)$ is actually independent of z_{1}. For any $z \in \mathbf{H}$ we can pick $z_{1} \in \mathbf{H}$ so $\left(z_{1}, z\right) \in \mathbf{H}$ and define

$$
P(z):=h\left(z_{1}, z\right)=K\left(z_{1}, \overline{z_{1}-z}\right) .
$$

Then $P(z)$ is holomorphic on \mathbf{H} and we have

$$
K\left(z_{1}, z_{2}\right)=P\left(z_{1}-\bar{z}_{2}\right)
$$

for all $z_{1}, z_{2} \in \mathrm{H}$. If we now consider $\alpha=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$, we have $P\left(a^{2} z\right)=a^{-2 k} P(z)$ and

$$
P(i y)=y^{-k} P(i)
$$

for all $y>0$. Since $P(z)$ is holomorphic on \mathbf{H} we must have

$$
P(z)=c_{k}\left(\frac{z}{2 i}\right)^{-k}
$$

for some constant $c_{k}>0$. This yields the following theorem.
Theorem 16.1. $H_{k}^{2}(\mathbf{H})$ has kernel function $K\left(z_{1}, z_{2}\right)=c_{k}\left(\frac{z_{1}-\bar{z}_{2}}{2 i}\right)^{-k}$ for some $c_{k} \in \mathbb{R}_{>0}$.
Corollary 16.2. $H_{k}^{2}(\mathbf{H}) \subseteq H_{k}^{\infty}(\mathbf{H})$.
Proof. For any $f \in H_{k}^{2}(\mathbf{H})$ and $z_{0} \in \mathbf{H}$ we have

$$
\left|f\left(z_{0}\right)\right|^{2}=\left|\left\langle f(z), K\left(z, z_{0}\right)\right\rangle\right|^{2} \leq\|f\|_{2}^{2}\left\|K\left(z, z_{0}\right)\right\|_{2}^{2}=\|f\|_{2}^{2} K\left(z_{0}, z_{0}\right)=c_{k} \operatorname{Im}\left(z_{0}\right)^{-k}\|f\|_{2}^{2}
$$

so $\left|f\left(z_{0}\right) \operatorname{Im}\left(z_{0}\right)^{k / 2}\right| \leq \sqrt{c_{k}}\|f\|_{2}$ for any $z_{0} \in \mathbf{H}$, thus $f \in H_{k}^{\infty}(\mathbf{H})$.
We now want to compute the constant c_{k} in Theorem 16.1, and for this we need to define the Fourier transform of $f \in H_{k}^{2}(\mathbf{H})$. For any $y \in \mathbb{R}_{>0}$ we define the function $f_{y}:-\mathbb{R} \rightarrow \mathbb{R}$ via

$$
f_{y}(x):=f(x+i y) .
$$

Since $\|f\|_{2}^{2}=\int_{\mathbf{H}}|f(x+i y)|^{2} y^{k-2} d x d y<\infty$, we have $f_{y} \in L^{2}(\mathbb{R})$ for all y outside a set of measure zero; let $\hat{f}_{y}(u):=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i u x} d x$ of f_{y} for all such y.

Theorem 16.3. For each $f \in H_{k}^{2}(\mathbf{H})$ there is a function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\hat{f}_{y}(h)=\hat{f}(u) e^{-2 \pi u y}$ for all y outside a set of measure zero, and $\hat{f}(u)$ vanishes almost everywhere on \mathbb{R}.

Corollary 16.4. If $k \leq 1$ then $H_{k}^{2}(\mathbf{H})=\{0\}$.
We call the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}$ of Theorem 16.3 the Fourier transform of $f \in H_{k}^{2}(\mathbf{H})$. We henceforth assume $k>1$, since $H_{k}^{2}(\mathbf{H})$ has dimension zero otherwise; see [1, Corollary 6.1.7].

We now define the function

$$
G_{k}(u):=\int_{0}^{\infty} y^{k-2} e^{-\pi u y} d y=(\pi u)^{1-k} \Gamma(k-1)
$$

for $u>0$, and let $G_{k}(u):=0$ for $u \leq 0$. Let \hat{H}_{k}^{2} denote the space of measurable functions $\phi: \mathbb{R} \rightarrow \mathbb{C}$ for which

- ϕ vanishes almost everywhere on $\mathbb{R}_{<0}$;
- $\int_{-\infty}^{\infty}|\phi(u)|^{2} G_{k}(4 u) d u<\infty$.

Then $h a t H_{k}^{2}$ is a Hilbert space with inner product

$$
\langle\phi, \varphi\rangle:=\int_{0}^{\infty} \phi(u) \overline{\varphi(u)} G_{k}(4 u) d u
$$

and for $f \in H_{k}^{2}(\mathbf{H})$ we have

$$
\|f\|_{2}^{2}=\int_{-\infty}^{\infty}|\hat{f}(u)|^{2} G_{k}(4 u) d u=\langle\hat{f}, \hat{f}\rangle
$$

Thus for $f \in H_{k}^{2}(\mathbf{H})$ we have $\hat{f} \in \hat{H}_{k}^{2}$, and in fact this defines an isomorphism of Hilbert spaces.
Theorem 16.5. The map $f \mapsto \hat{f}$ is an isomorphism from $H_{k}^{2}(\mathbf{H})$ to \hat{H}_{k}^{2}.
Proof. This is Theorem 6.1.6 in [1].
For $\phi \in \hat{H}_{k}^{2}$ we define

$$
\hat{\phi}(z):=\int_{-\infty}^{\infty} \phi(u) e^{2 \pi i u z} d u
$$

Let $\hat{K}(u, z)$ denote the Fourier transform of $K\left(z_{1}, z\right)$ as a function of z_{1}, for any fixed z. For any $\phi \in \hat{H}_{k}^{2}$ we have

$$
\langle\phi(u), \hat{K}(u, z)\rangle=\left\langle\hat{\phi}\left(z_{1}\right), K\left(z_{1}, z\right)\right\rangle=\hat{\phi}(z)=\int_{0}^{\infty} \phi(u) e^{2 \pi i u z} d z
$$

and we also have

$$
\left\langle\phi(u, \hat{K}(u, z)\rangle=\int_{0}^{\infty} \phi(u) \overline{\hat{K}(u, z)} G_{k}(4 u) d u\right.
$$

which implies

$$
\hat{K}(u, x)=G_{k}(4 u)^{-1} e^{-2 \pi i u \bar{z}}
$$

for all $u \in \mathbb{R}$ and $z \in \mathbf{H}$. Taking the inverse transform of $\hat{K}(u, z)$ as a function of u yields

$$
K\left(z_{1}, z_{2}\right)=\int_{0}^{\infty} G_{k}(4 u)^{-1} e^{2 \pi i u\left(z_{1}-\bar{z}_{2}\right)} d u
$$

and therefore

$$
c_{k}\left(\frac{z}{2 i}\right)^{-k}=\int_{0}^{\infty} G_{k}(4 u)^{-1} e^{2 \pi i u z} d u
$$

Applying this with $z=2 i$ yields

$$
c_{k}=\frac{k-1}{4 \pi}
$$

and the following theorem.
Theorem 16.6. For $k \in \mathbb{Z}_{>1}$ the kernel function of $H_{k}^{2}(\mathbf{H})$ is

$$
K\left(z_{1}, z_{2}\right)=\frac{k-1}{4 \pi}\left(\frac{z_{1}-\bar{z}_{2}}{2 i}\right)^{-k} .
$$

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

