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These notes summarize the material in §6.1 of [1] presented in lecture.

16.1 Hilbert spaces of functions on the complex upper half plane

Fix a weight k ∈ Z≥0. Let p ∈ R≥1 ∪∞ be an exponent. For f ∈ H→ C we define

‖ f ‖p
k :=

(

�

∫

H | f (z) Im(z)
k/2dv(z)

�1/p
1≤ p <∞,

ess supz∈H | f (z) Im(z)|k/2 p =∞,

where dv(z) = d xd y
y2 is the invariant measure on x + i y = z ∈ H and "ess sup" denotes the

essential supremum, the infimum of the set of essential upper bounds.
If f : Ω→ R is a real-valued function on a topological space Ω equipped with a measure, we

call a real number a an essential upper bound of f if the set {z ∈ Ω : f (z) ≥ a} has measure
zero. Thus if ‖ f ‖∞ = a ∈ R then the set {z ∈ H : | f (z) Im(z)k/2 > a} has measure 0 but the sets
{z ∈ H : | f (z) Im(z)k/2| : a− ε} have nonzero measure for every ε > 0.

We use Lp
k(H) to denote the Banach space (complete normed vector space) of all measurable

functions f : H→ C satisfying ‖ f ‖p <∞ (recall that a function is measurable if pre-images of
measurable sets are measurable). We call exponents p, q ∈ R≥1 ∪∞ conjugate if

1
p
+

1
q
= 1,

where 1
0 :=∞ and 1

∞ = 0. For conjugate exponents p, q and functions f ∈ Lp
k(H) and g ∈ Lq

k(H)
we define the pairing

〈 f , g〉 :=

∫

H

f (z)g(z) Im(z)kdv(z),

which allows us to identify g ∈ Lq
k(H) with an element of the dual space of Lp

k(H), continuous
linear functions on Lp

k(H), and for p 6=∞ we can view Lq
k(H) as the dual space of Lp

k(H). When
p = q = 2 this defines an inner product on L2

k(H), making it a Hilbert space (a complete metric
space with distance given by the inner product). We use H p

k (H) to denote the closed subspace
of Lp

k(H) consisting of holomorphic functions.
For any Hilbert space H of functions f : X → C with inner product 〈, ·, ·〉 we call a function

K : X × X → C a kernel function of H if the following hold:

• for every y ∈ X the function Ky : X → C defined by x 7→ K(x , y) lies in H;

• for every f ∈ H we have f (y) = 〈 f (x), Ky(x)〉 for all y ∈ X .

If K is a kernel function then it is conjugate symmetric:

K(x , y) = Ky(x) = 〈Ky , Kx〉= 〈Kx , Ky〉= Kx(y) = K(y, x).

Kernel functions need not exist but are uniquely determined when the do (in which case H is
sometimes called a reproducing kernel Hilbert space or RKHS; we won’t use this terminology).
Indeed, if K and K ′ are both kernel functions of H then for every x , y ∈ X we have

K ′(x , y) = K ′y(x) = 〈K
′
y , Kx〉= 〈Kx , K ′y〉= Kx(y) = K(y, x) = K(x , y).

If H is finite dimensional then it has the kernel function

K(x , y) :=
∑

i

fi(x) fi(y),

Lecture by Andrew V. Sutherland, notes by Andrew V. Sutherland



where f1, . . . , fr is any orthonormal basis of H. Indeed, for y ∈ X the function Ky =
∑

i fi(y) fi
is an element of H, and if we write f ∈ H as f =

∑

i ci fi , then

〈 f , Ky〉=

®

∑

i

ci fi ,
∑

i

fi(y) fi

¸

=
∑

i

ci fi(y) =
∑

i

ci fi(y) = f (y).

We now want to compute the kernel function of the Hilbert space H2
k(H). It follows from

[1, Corollary 2.62] that for any fixed k ∈ Z≥0 and z0 ∈ H there is a constant c such that

| f (z0)| ≤ c‖ f ‖2k

for all f ∈ H2
k(H). Thus for any fixed z0 ∈ H the map f 7→ f (z0) is a continuous linear functional

on H2
k(H). Since H2

k(H) is a Hilbert space (so self-dual), there is therefor a unique gz0
∈ H2

k(H)
for which

f (z0) = 〈 f , gz0
〉=

∫

H

f (z)gz0
(z) Im(z)kdv(z),

for all f ∈ H2
k(H). We thus may take

K(w, z) := gz(w)

as the kernel function of H2
k(H). For any f ∈ H2

k(H) we have f (z1) = 〈 f , gz1
〉= 〈 f , Kz1

〉 and

f (z1) = 〈 f , Kz1
〉=

∫

H

f (z2)K(z2, z1) Im(z2)
kdv(z2) =

∫

H

K(z1, z2) f (z2) Im(z2)
kdv(z2).

We now want to consider the behavior of K(z1, z2) under the action of α ∈ SL2(R) on H (via
linear fractional transformations). Recall that for α =

�

a b
c d

�

we define j(α, z) := cz + d, which
satisfies the identities

j(αα′, z) = j(α,α′z) j(α′, z)

and we have

Im(αz) =
Im(z)
| j(α, z)|2

=
Im(z)

j(α, z) j(α, z)
.

For any α ∈ SL2(R) and f ∈ H2
k(H), the function f (α−1z) j(α,α−1z)−k = f (α−1z) j(α−1, z)k lies

in H2
k(H), and we have dv(α−1z) = dv(z) and Im(α−1z) j(α−1, z) = Im(z) j(α−1, z)−1, thus

∫

H
K(αz1,αz2) j(α, z1)

−k j(α, z2)−k f (z2) Im(z2)
kdv(z2)

= j(α, z1)
−k

∫

H

K(αz1, z2) f (α
−1z2) j(α,α−1z2)−k Im(α−1z2)

kdv(α−1z2)

= j(α, z1)
−k

∫

H

K(αz1, z2) f (α
−1z2) j(α,α−1z2)

k Im(z2)
kdv(z2)

= j(α, z1)
−k f (α−1(αz1) j(α,α−1(αz1))

k

= j(α, z1)
−k f (z1) j(α, z2)

k

= f (z1)

=

∫

H

K(z1, z2) f (z2) Im(z2)
kdv(z2).
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It follows from the uniqueness of kernel functions that for any α ∈ SL2(R) we have

K(αz1,αz2) = K(z1, z2) j(α, z1)
k j(α, z2)

k

and
K(αz1, z2) j(α, z1)

−k = K(z1,α−1z2) j(α−1, z2)−k.

Applying this to α=
�

1 b
0 1

�

yields

K(z1 + b, z2 + b) = K(z1, z2)

for all b ∈ R. If we let M :=
�

(z1, z2) ∈ C2 : z1 ∈ H, z1 − z2 ∈ H
	

and define

h(z1, z2) := K(z1, z1 − z2),

then h(z1, z2) is holomorphic function on M . Now h(z1+ b, z2) = h(z1, z2) for b ∈ R, so h(z1, z2)
is actually independent of z1. For any z ∈ H we can pick z1 ∈ H so (z1, z) ∈ H and define

P(z) := h(z1, z) = K(z1, z1 − z).

Then P(z) is holomorphic on H and we have

K(z1, z2) = P(z1 − z2)

for all z1, z2 ∈ H. If we now consider α=
� a 0

0 a−1

�

∈ SL2(R), we have P(a2z) = a−2kP(z) and

P(i y) = y−kP(i)

for all y > 0. Since P(z) is holomorphic on H we must have

P(z) = ck

� z
2i

�−k

for some constant ck > 0. This yields the following theorem.

Theorem 16.1. H2
k(H) has kernel function K(z1, z2) = ck

�

z1−z̄2
2i

�−k
for some ck ∈ R>0.

Corollary 16.2. H2
k(H) ⊆ H∞k (H).

Proof. For any f ∈ H2
k(H) and z0 ∈ H we have

| f (z0)|2 = |〈 f (z), K(z, z0)〉|2 ≤ ‖ f ‖22‖K(z, z0)‖22 = ‖ f ‖22K(z0, z0) = ck Im(z0)
−k‖ f ‖22

so | f (z0) Im(z0)k/2| ≤
p

ck‖ f ‖2 for any z0 ∈ H, thus f ∈ H∞k (H).

We now want to compute the constant ck in Theorem 16.1, and for this we need to define
the Fourier transform of f ∈ H2

k(H). For any y ∈ R>0 we define the function f y :− R→ R via

f y(x) := f (x + i y).

Since ‖ f ‖22 =
∫

H | f (x + i y)|2 yk−2d xd y <∞, we have f y ∈ L2(R) for all y outside a set of

measure zero; let f̂ y(u) :=
∫∞
−∞ f (x)e−2πiux d x of f y for all such y .
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Theorem 16.3. For each f ∈ H2
k(H) there is a function f̂ : R→ R such that f̂ y(h) = f̂ (u)e−2πuy

for all y outside a set of measure zero, and f̂ (u) vanishes almost everywhere on R.

Corollary 16.4. If k ≤ 1 then H2
k(H) = {0}.

We call the function f̂ : R → R of Theorem 16.3 the Fourier transform of f ∈ H2
k(H). We

henceforth assume k > 1, since H2
k(H) has dimension zero otherwise; see [1, Corollary 6.1.7].

We now define the function

Gk(u) :=

∫ ∞

0

yk−2e−πuy d y = (πu)1−kΓ (k− 1),

for u > 0, and let Gk(u) := 0 for u ≤ 0. Let Ĥ2
k denote the space of measurable functions

φ : R→ C for which

• φ vanishes almost everywhere on R<0;

•
∫∞
−∞ |φ(u)|

2Gk(4u)du<∞.

Then hatH2
k is a Hilbert space with inner product

〈φ,ϕ〉 :=

∫ ∞

0

φ(u)ϕ(u)Gk(4u)du,

and for f ∈ H2
k(H) we have

‖ f ‖22 =
∫ ∞

−∞
| f̂ (u)|2Gk(4u)du= 〈 f̂ , f̂ 〉.

Thus for f ∈ H2
k(H) we have f̂ ∈ Ĥ2

k , and in fact this defines an isomorphism of Hilbert spaces.

Theorem 16.5. The map f 7→ f̂ is an isomorphism from H2
k(H) to Ĥ2

k .

Proof. This is Theorem 6.1.6 in [1].

For φ ∈ Ĥ2
k we define

φ̂(z) :=

∫ ∞

−∞
φ(u)e2πiuzdu

Let K̂(u, z) denote the Fourier transform of K(z1, z) as a function of z1, for any fixed z. For
any φ ∈ Ĥ2

k we have

〈φ(u), K̂(u, z)〉= 〈φ̂(z1), K(z1, z)〉= φ̂(z) =
∫ ∞

0

φ(u)e2πiuzdz,

and we also have

〈φ(u, K̂(u, z)〉=
∫ ∞

0

φ(u)K̂(u, z)Gk(4u)du,

which implies
K̂(u, x) = Gk(4u)−1e−2πiuz̄
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for all u ∈ R and z ∈ H. Taking the inverse transform of K̂(u, z) as a function of u yields

K(z1, z2) =

∫ ∞

0

Gk(4u)−1e2πiu(z1−z̄2)du,

and therefore

ck

� z
2i

�−k
=

∫ ∞

0

Gk(4u)−1e2πiuzdu.

Applying this with z = 2i yields

ck =
k− 1
4π

and the following theorem.

Theorem 16.6. For k ∈ Z>1 the kernel function of H2
k(H) is

K(z1, z2) =
k− 1
4π

�

z1 − z̄2

2i

�−k

.
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