These notes summarize the material in $\S 4.3$, $\S 4.6$ of [3] and $\S 11$ of [1] presented in lecture.
In Lecture 11 we reduced the study of modular forms for congruence subgroups Γ to the study of modular forms for $\Gamma_{0}(N)$ with character $\chi \in X(N)$, where $X(N)$ denotes the group of Dirichlet characters of modulus N. We did this via two standard reductions/decompositions that can be applied to any weight $k \in \mathbb{Z}$ and level $N \in \mathbb{Z}_{\geq 1}$:

- $M_{k}(\Gamma) \subseteq M_{k}\left(\Gamma_{1}\left(N^{2}\right)\right)$, since $\Gamma_{1}\left(N^{2}\right) \subseteq \delta_{N}^{-1} \Gamma(N) \delta_{N}$, where $\delta_{N}:=\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)$,
- $M_{k}\left(\Gamma_{1}(N)\right)=\bigoplus_{\chi \in X(N)} M_{k}\left(\Gamma_{0}(N), \chi\right)$,
both of which preserve cusp forms. To ease notation we define $M_{k}(N, \chi):=M_{k}\left(\Gamma_{0}(N), \chi\right)$ and let $S_{k}(N, \chi) \subseteq M_{k}(N, \chi)$ denote the subspace of cusp forms.

In Lecture 11 we also defined the diamond operator $\langle d\rangle$ defined by $\left.f \mapsto f\right|_{k} \alpha$, where $\alpha=$ $\left(\begin{array}{ll}a & b \\ c & \delta\end{array}\right) \in \Gamma_{0}(N)$ satisfies $\delta \equiv d \bmod N$, and noted that $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$ are χ-eigenspaces of diamond operators, they are the subspaces of $M_{k}\left(\Gamma_{1}(N)\right.$ and $S_{k}\left(\Gamma_{1}(N)\right.$ for which $\langle d\rangle f=\chi(d) f$ for all $d \in(\mathbb{Z} / N \mathbb{Z})^{\times}$.

In Lecture 12 we showed that the Hecke algebra $\mathbb{T}(N):=\mathbb{Z}\left[\Gamma_{0}(N) \backslash \Delta_{0}(N) / \Gamma_{0}(N)\right.$, where

$$
\Delta_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a \perp N, a d-b c>0\right\},
$$

is generated by the Hecke operators

$$
T(l, m):=\Gamma_{0}(N)\left(\begin{array}{ll}
l & 0 \\
0 & m
\end{array}\right) \Gamma_{0}(N)
$$

with $N \perp l \mid m$, and we defined the Hecke operator

$$
T(n):=\sum_{l m=n} T(l, m) .
$$

Recall that each double coset $\Gamma_{0}(N) \alpha \Gamma_{0}(N)$ acts on $f \in M_{k}(\mathrm{~N}, \chi)$ via

$$
\begin{aligned}
\left.f\right|_{k} \Gamma_{0}(N) \alpha \Gamma_{0}(N) & =\left.\operatorname{det}(\alpha)^{k / 2-1} \sum_{i=1}^{r} \bar{\chi}\left(\alpha_{i}\right) f\right|_{k} \alpha_{i}, \\
& =\operatorname{det}(\alpha)^{k-1} \sum_{i=i}^{r} \bar{\chi}\left(\alpha_{i}\right) j\left(\alpha_{i}, z\right)^{-k} f\left(\alpha_{i} z\right),
\end{aligned}
$$

for any $\alpha \in \Delta_{0}(N):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a \perp N, a d-b c>0\right\}$. We then proved that that every Hecke operator in $\mathbb{T}(N)$ is a polynomial in $T(p), T(p, p)$, and $T(q)$, where $p \nmid N$ and $q \mid N$ vary over primes.

In Lecture 12 we proved that $S_{k}(N, \chi)$ has a basis of common eigenfunctions for $T(n)$ and $T(l, m)$ with $l \mid m$ and $l m n \perp N$, equivalently, for $T(p)$ and $T(p, p)$ with $p \nmid N$. This naturally leads to the question of whether there is a basis of common eigenfunctions for all the Hecke operators, including $T(q)$ for primes $q \mid N$.

This is not always true, but it is true if we restrict our attention to the new subspace of $S_{k}(N, \chi)$.

15.1 Old and new modular forms

For all positive integers $N \mid M$ the inclusion $\Gamma_{0}(M) \subseteq \Gamma_{0}(N)$ implies $M_{k}(N, \chi) \subseteq M_{k}(M, \chi)$ for any $\chi \in X(N)$. But there are many other ways to embed $M_{k}(N, \chi)$ into $M_{k}(M, \chi)$. For every divisor d of M / N we have

$$
f(d z)=\left.d^{-k / 2} f\right|_{k} \delta_{n} \in M_{k}(d N, \chi)
$$

where $\delta_{d}=\left(\begin{array}{ll}d & 0 \\ 0 & 1\end{array}\right)$, which induces a map $\delta_{d}: M_{k}(N, \chi) \rightarrow M_{k}(M, \chi)$ that restricts to a map on cusp forms.
Lemma 15.1. For any $l, n, N \in \mathbb{Z}_{\geq 1}$, if $n \perp l N$ then the map δ_{l} commutes with the action of $T(n)$ on the spaces $M_{k}(N, \chi)$ and $M_{k}(l N, \chi)$.

Proof. It suffices to consider the case where n is a prime $p \perp l N$, and one can check this directly using explicit coset representatives, see [3, Lemma 4.6.2].

The lemma below will be used to prove a key lemma due to Hecke that appears as Lemma 4.6.3 in [3] (the proof in [3] omits some details that are filled in by this lemma).

Lemma 15.2. Let $f \in M_{k}(N, \chi)$ with $k>0$, let $h>1$ be an integer prime to N. Suppose $c f(z)=f(z / h)$ for some nonzero $c \in \mathbb{C}$ (as functions on the upper half plane). Then $f=0$.
Proof. Observe that $f \in M_{k}(N, \chi)$ implies $f(z+1)=f(z)$, and therefore

$$
f((z+1) / h)=c f(z+1)=c f(z)=f(z / h) .
$$

If $f(z)=\sum_{n \geq 0} a(n) e^{2 \pi i n z}$ is the Fourier expansion of f at ∞, comparing coefficients of $e^{2 \pi i n z / h}$ in the Fourier expansions of both sides of the equality above yields

$$
a(n) e^{2 \pi i n / h}=a(n)
$$

for all $n \geq 0$. This implies $a(n)=0$ whenever h does not divide n (because $e^{2 \pi i n / h} \neq 1$).
We now observe that $c^{2} f(z)=c f(z / h)=f\left(z / h^{2}\right)$, and the same argument shows that $a(n)=0$ whenever h^{2} does not divide n. Repeating this argument ad infinitum shows that $a(n)=0$ for all $n>0$. For $k>0$ there are no nonzero constant functions in $M_{k}(N, \chi)$, so we also have $a(0)=0$, Thus $f=0$ as claimed.

Lemma 15.3 (Hecke). Let $f \in M_{k}(N, \chi)$ and let $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Delta_{0}(N)$ satisfy $N \perp \operatorname{det}(\alpha)>1$ and $\operatorname{gcd}(a, b, c, d)=1$. If $\left.f\right|_{k} \alpha \in M_{k}(N, \chi)$ then $f=0$.
Proof. Choose $\gamma_{1}, \gamma_{2} \in \Gamma_{0}(N)$ so that $\gamma_{1} \alpha \gamma_{2}=\left(\begin{array}{ll}l & 0 \\ 0 & m\end{array}\right)$ for some with $l \mid m$ and $l, m>0$. Now

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & m
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & m
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 1 / m \\
0 & 1
\end{array}\right) \notin \Gamma_{0}(N)
$$

so $\alpha \Gamma_{0}(N) \alpha^{-1} \notin \Gamma_{0}(N)$, and we can choose $\gamma \in \Gamma_{0}(N)$ so that $\alpha \gamma \alpha^{-1} \notin \Gamma_{0}(N)$. We have $\operatorname{det}(\alpha) \alpha^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \in \Delta_{0}(N)$, so $\operatorname{det}(\alpha) \alpha \gamma \alpha^{-1} \in \Delta_{0}(N)$, and for some $\gamma_{3}, \gamma_{4} \in \Gamma_{0}(N)$ we have

$$
\operatorname{det}(\alpha) \gamma_{3} \alpha \gamma \alpha^{-1} \gamma_{4}=\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right),
$$

with $u \mid v$ and $u, v \in \mathbb{Z}_{>0}$. We have $u v=\operatorname{det}(\alpha)^{2}$ with $u \neq v$, otherwise $\alpha \gamma \alpha^{-1}=\gamma_{3}^{-1} \gamma_{4}^{-1} \in \Gamma_{0}(N)$. Therefore $h=u / v \in \mathbb{Z}_{>1}$. Now let $c:=h^{k / 2} \chi\left(\gamma_{3}\right) \chi(\gamma) \chi\left(\gamma_{4}\right)$, and suppose that $\left.f\right|_{k} \alpha \in M_{k}(N, \chi)$. Then $f \in M_{k}\left(\alpha \Gamma_{0}(n) \alpha^{-1}, \chi\right)$, and $f \in M_{k}\left(\gamma_{4}^{-1} \alpha \Gamma_{0}(N) \alpha^{-1} \gamma_{4}\right)$, so we have

$$
\begin{aligned}
c f(z) & =h^{k / 2} \chi\left(\gamma_{3}\right) \chi(\gamma) \chi\left(\gamma_{4}\right) f(z) \\
& =h^{k / 2} \chi\left(\gamma_{3}\right) \chi\left(\gamma_{4}\right)\left(\left.f\right|_{k} \gamma_{4}^{-1} \alpha \gamma \alpha^{-1} \gamma_{4}\right)(z) \\
& =h^{k / 2} \chi\left(\gamma_{3}\right)\left(\left.f\right|_{k} \alpha \gamma \alpha^{-1} \gamma_{4}\right)(z) \\
& =h^{k / 2} \chi\left(\gamma_{3}\right)\left(\left.f\right|_{k} \gamma_{3}^{-1}\left(\begin{array}{c}
u \\
0 \\
0
\end{array}\right)\right)(z) \\
& =h^{k / 2}\left(\left.f\right|_{k}\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)(z)\right. \\
& =h^{k / 2}(u v)^{k / 2} v^{-k} f(z / h)=f(z / h) .
\end{aligned}
$$

Thus $c f(z)=f(z / h)$, with $c \neq 0$, and Lemma 15.2 then implies $f=0$.

Definition 15.4. Let χ be a Dirichlet character of modulus N and conductor m. We define the space of old cusp forms $S_{k}^{\text {old }}(N, \chi)$ to be the subspace of $S_{k}(N, \chi)$ spanned by the set

$$
\bigcup_{M} \bigcup_{l}\left\{f(l z) \mid f(z) \in S_{k}(M, \chi)\right\}
$$

where M ranges over proper divisors of N divisible by m and l ranges over divisors of N / M. We define the space of new cusp forms $S_{k}^{\text {new }}(N, \chi)$ to be the orthogonal complement of $S_{k}^{\text {old }}(N, \chi)$ with respect to the Petersson inner product.

Lemma 15.5. The spaces $S_{k}^{\text {old }}(N, \chi)$ and $S_{k}^{\text {new }}(N, \chi)$ are stable under the action of $T(n)$ for all $n \perp N$.

The lemma implies that the old and new subspaces of $S_{k}(N \chi)$ each have bases of common eigenfunctions for the Hecke operators $T(n)$ with $n \perp N$. Moreover, each eigenfunction generates a one-dimensional subspace that is uniquely determined by the eigenvalues of the Hecke operators $T(n)$ for all $n \perp N$, or more generally for all $n \perp L$, for any integer L.

Theorem 15.6. Fix $L \in \mathbb{Z}$. If $f \in S_{k}^{\text {new }}(N, \chi)$ and $g \in S_{k}(N, \chi)$ are common eigenfunctions of $T(n)$ with the same eigenvalue for $n \perp L$ then g is a multiple of f, and in particular, $g \in S_{k}^{\text {new }}(N, \chi)$.

Proof. This is Theorem 4.6.12 in [3].
For each proper divisor N_{i} of N and divisor d of N_{i} the map $\delta_{d}: S_{k}\left(N_{i}, \chi\right) \rightarrow S_{k}(N, \chi)$ defined by $f(z) \mapsto f(d z)$ sends the new subspace of $S_{k}\left(N_{i}, \chi\right)$ to the old subspace of $S_{k}(N, \chi)$. The images of these maps give us a complete decomposition of $S_{k}(N, \chi)$ into new subspaces

$$
S_{k}(N, \chi) \simeq \underset{\operatorname{cond}(\chi)\left|N_{i}\right| N}{ } S_{k}^{\text {new }}\left(N_{i}, \chi\right)^{\oplus m_{i}}
$$

where m_{i} is the number of divisors of N / N_{i}. As usual when we write $S_{k}(M, \chi)$ for an integer M divisible by cond (χ) we understand χ to denote the unique Dirichlet character of modulus M induced by the primitive character χ_{0} of modulus cond (χ) that induces χ.

Definition 15.7. We call $f \in S_{k}^{\text {new }}(N, \chi)$ a newform if f is a common eigenfunction of $T(n)$ for all $n \perp N$ with $a_{1}(f)=1$.

Theorem 15.8. The newforms in $S_{k}^{\text {new }}(N, \chi)$ are common eigenfunctions of $\mathbb{T}(N) \cup \mathbb{T}^{*}(N)$ and form a basis for $S_{k}^{\text {new }}(N, \chi)$.

Proof. We have $\left.f\right|_{k} T(n)=a_{n} f$ for all $n \perp N$. Consider $T \in \mathbb{T}(N)$ and $T^{*} \in \mathbb{T}^{*}(N)$. Now $\mathbb{T}(N)$ is commutative, so T commutes with all the $T(n)$, and similarly, T^{*} commutes with all the $T^{*}(n)$. We have

$$
\left.f\right|_{k} T(n)=\left.\chi(N) f\right|_{k} T^{*}(n)
$$

to T^{*} also commutes with $T(n)$ for all $n \perp N$, and $\left.f\right|_{k} T$ and $\left.f\right|_{k} T^{*}$ are common eigenfunctions of $T(n)$ with the same eigenvalue a_{n} for all $n \perp N$. It follows that $\left.f\right|_{k} T$ and $\left.f\right|_{k} T^{*}$ must be multiples of f, thus f is en eigenfunctions for T and T^{*}.

We have already shown that $S_{k}(N, \chi)$ has a basis of common eigenfunctions for $T(n)$ with $n \perp N$, a subset of which form a basis for $S_{k}^{\text {new }}(N, \chi)$, and it follows that if we normalize these so that $a_{1}(f)=1$ we obtain a basis of newforms.

Corollary 15.9. If $f \in S_{k}(N, \chi)$ is an eigenfunction of $T(n)$ with eigenvalue $a_{n}(f)$ for all $n \perp N$ there is a divisors $M \mid N$ divisible by the conductor of χ and a newform $g \in S_{k}^{\text {new }}(M, \chi)$ for which $\left.g\right|_{k} T(n)=a_{n}(f) g$ for all $n \perp N$. Moreover, if $f \notin S_{k}^{\text {new }}(N, \chi)$ then $M<N$.

It follows from the theorem that for newforms $f \in S_{k}^{\text {new }}(N, \chi)$ we have $\left.f\right|_{k} T(n)=a_{n} f$ for all n, not just for $n \perp N$, and the adjointness of $T(n)$ and $T^{*}(n)$ implies that $\left.f\right|_{k} T^{*}(n)=\bar{a}_{n}(f) f$. Moreover, if we put $\omega_{N}:=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$ then

$$
\begin{aligned}
\left.\left(\left.f\right|_{k} \omega_{N}\right)\right|_{k} T(n) & =\bar{a}_{n}\left(\left.f\right|_{k} \omega_{N}\right) \\
\left.\left(\left.f\right|_{k} \omega_{N}\right)\right|_{k} T^{*}(n) & =a_{n}\left(\left.f\right|_{k} \omega_{N}\right)
\end{aligned}
$$

for all $n \in \mathbb{Z}$, and this implies the following theorem.
Theorem 15.10. The action of ω_{N} induces an isomorphism between $S_{k}^{\text {new }}(N, \chi)$ and $S_{k}^{\text {new }}(N, \bar{\chi})$, and also between $S_{k}^{\text {old }}(N, \chi)$ and $S_{k}^{\text {old }}(N, \bar{\chi})$.

We conclude this section with two important theorems about newforms. The first is a strong multiplicity one result, which implies that any newform f is uniquely determined by any subset of its Fourier coefficients (equivalently, Hecke eigenvalues) $a_{n}(f)$ that includes all n coprime to some integer L that we are free to choose.

Theorem 15.11. Fix $L \in \mathbb{Z}$, let $f \in S_{k}^{\text {new }}(N, \chi)$ be a newform and let $g \in S_{k}(M, \psi)$. If g is a common eigenfunction of $\mathbb{T}(M) \cup \mathbb{T}^{*}(M)$ with $a_{n}(g)=a_{n}(f)$ for all $n \perp L$ then $M=N$ and $g=f$.

Proof. See Theorem 4.6.19 in [3].
The second theorem characterizes the multiplicative relations between the Fourier coefficients of a newform, which together with the theorem above imply that every newform f is uniquely determined by its Fourier coefficients $a_{p}(f)$ at almost all primes p.

Theorem 15.12. Let $f \in M_{k}(N, \chi)$. Then f is a newform if and only if the following hold:

- $a_{1}(f)=1$;
- $a_{p^{r}}(f)=a_{p}(f) a_{p^{r-1}}(f)-\chi(p) p^{k-1} a_{p^{r-2}}(f)$ for all primes p and $r \geq 2$;
- $a_{m n}(f)=a_{m}(f) a_{n}(f)$ for all integers $m \perp n$.

Proof. See Proposition 5.8.5 in [2].

15.2 Twisting newforms

Definition 15.13. For a modular form $f(z)=\sum_{n \geq 0} a_{n} e^{2 \pi i n z} \in M_{k}(N, \chi)$ and a Dirichlet character ψ we define the twist of $f \otimes \psi$ by the Dirichlet series

$$
(f \otimes \psi)(z):=\sum_{n \geq 0} \psi(n) a_{n} e^{2 \pi n z}
$$

Lemma 15.14. Let $f \in M_{k}(N, \chi)$ and let ψ be a Dirichlet character. Then $f \otimes \psi \in M_{k}\left(M, \chi \psi^{2}\right)$, where $M=\operatorname{lcm}\left(N\right.$, cond $(\psi)^{2}$, cond $(\psi) \operatorname{cond}(\chi)$, and if f is a cusp form, so is $f \otimes \psi$.
Proof. See Lemma 4.3.10 in [3].
For newforms $f \in S_{k}^{\text {new }}(N, \chi)$ one can take $M=\operatorname{lcm}(N, \operatorname{cond}(\psi) \operatorname{cond}(\chi \psi))$ in the lemma above; see [1, Lemma 11.2.1].

Definition 15.15. Let $f \in S_{k}^{\text {new }}(N, \chi)$ be a newform, and let ψ be a Dirichlet character. If $f \otimes \psi=f$, we say that $f \otimes \psi$ is a self-twist of ψ.

The set $\operatorname{SelfTw}(f):=\{\psi: f \otimes \psi=f\}$ is a group (under multiplication of Dirichlet characters). For $\psi \in \operatorname{SelfTw}(f)$ we must have $\operatorname{cond}(\psi) \mid N$ and $\psi^{2}=1$, so it is a finite elementary abelian 2 -group. The theory of complex multiplication implies that for $k \geq 2$ the group $\operatorname{SelfTw}(f)$ is cyclic, and if it is nontrivial it is generated by the Kronecker symbol of an imaginary quadratic field; see [4, Thm. 4.5]. In this case we say that f has complex multiplication (CM).

For $k=1$, the group $\operatorname{SelfTw}(f)$ is isomorphic to a subgroup of $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and may contain Kronecker symbols of both real and imaginary fields.

References

[1] A.J. Best, J. Bober, A.R. Booker, E. Costa, J. Cremona, M. Derickx, M. Lee, D. Lowry-Duda, D. Roe, A.V. Sutherland, and J. Voight, Computing classical modular forms, Arithmetic Geometry, Number Theory, and Computation, Simons Symposia (2021), 123-213.
[2] Fred Diamond and Jerry Shurman, A first course in modular forms, Springer, 2005.
[3] Toshitsune Miyake, Modular forms, Springer, 2006.
[4] Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), 43-62.

