These notes summarize the material in §4.3, §4.6 of [3] and §11 of [1] presented in lecture.

In Lecture 11 we reduced the study of modular forms for congruence subgroups Γ to the study of modular forms for $\Gamma_0(N)$ with character $\chi \in X(N)$, where X(N) denotes the group of Dirichlet characters of modulus N. We did this via two standard reductions/decompositions that can be applied to any weight $k \in \mathbb{Z}$ and level $N \in \mathbb{Z}_{>1}$:

• $M_k(\Gamma) \subseteq M_k(\Gamma_1(N^2))$, since $\Gamma_1(N^2) \subseteq \delta_N^{-1}\Gamma(N)\delta_N$, where $\delta_N := \begin{pmatrix} N & 0 \\ 0 & 1 \end{pmatrix}$,

•
$$M_k(\Gamma_1(N)) = \bigoplus_{\chi \in X(N)} M_k(\Gamma_0(N), \chi)$$

both of which preserve cusp forms. To ease notation we define $M_k(N, \chi) := M_k(\Gamma_0(N), \chi)$ and let $S_k(N, \chi) \subseteq M_k(N, \chi)$ denote the subspace of cusp forms.

In Lecture 11 we also defined the diamond operator $\langle d \rangle$ defined by $f \mapsto f|_k \alpha$, where $\alpha = \begin{pmatrix} a & b \\ c & \delta \end{pmatrix} \in \Gamma_0(N)$ satisfies $\delta \equiv d \mod N$, and noted that $M_k(N, \chi)$ and $S_k(N, \chi)$ are χ -eigenspaces of diamond operators, they are the subspaces of $M_k(\Gamma_1(N) \mod S_k(\Gamma_1(N) \text{ for which } \langle d \rangle f = \chi(d) f$ for all $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$.

In Lecture 12 we showed that the Hecke algebra $\mathbb{T}(N) := \mathbb{Z}[\Gamma_0(N) \setminus \Delta_0(N) / \Gamma_0(N)]$, where

$$\Delta_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) : c \equiv 0 \mod N, a \perp N, ad - bc > 0 \right\},\$$

is generated by the Hecke operators

$$T(l,m) := \Gamma_0(N) \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix} \Gamma_0(N)$$

with $N \perp l \mid m$, and we defined the Hecke operator

$$T(n) \coloneqq \sum_{lm=n} T(l,m).$$

Recall that each double coset $\Gamma_0(N) \alpha \Gamma_0(N)$ acts on $f \in M_k(N, \chi)$ via

$$f|_{k}\Gamma_{0}(N)\alpha\Gamma_{0}(N) = \det(\alpha)^{k/2-1}\sum_{i=1}^{r}\overline{\chi}(\alpha_{i})f|_{k}\alpha_{i},$$
$$= \det(\alpha)^{k-1}\sum_{i=i}^{r}\overline{\chi}(\alpha_{i})j(\alpha_{i},z)^{-k}f(\alpha_{i}z),$$

for any $\alpha \in \Delta_0(N) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) : c \equiv 0 \mod N, a \perp N, ad - bc > 0 \}$. We then proved that that every Hecke operator in $\mathbb{T}(N)$ is a polynomial in T(p), T(p,p), and T(q), where $p \nmid N$ and $q \mid N$ vary over primes.

In Lecture 12 we proved that $S_k(N, \chi)$ has a basis of common eigenfunctions for T(n) and T(l,m) with l|m and $lmn \perp N$, equivalently, for T(p) and T(p,p) with $p \nmid N$. This naturally leads to the question of whether there is a basis of common eigenfunctions for all the Hecke operators, including T(q) for primes q|N.

This is not always true, but it is true if we restrict our attention to the new subspace of $S_k(N, \chi)$.

15.1 Old and new modular forms

For all positive integers N|M the inclusion $\Gamma_0(M) \subseteq \Gamma_0(N)$ implies $M_k(N, \chi) \subseteq M_k(M, \chi)$ for any $\chi \in X(N)$. But there are many other ways to embed $M_k(N, \chi)$ into $M_k(M, \chi)$. For every divisor d of M/N we have

$$f(dz) = d^{-k/2} f|_k \delta_n \in M_k(dN, \chi),$$

where $\delta_d = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$, which induces a map $\delta_d : M_k(N, \chi) \to M_k(M, \chi)$ that restricts to a map on cusp forms.

Lemma 15.1. For any $l, n, N \in \mathbb{Z}_{\geq 1}$, if $n \perp lN$ then the map δ_l commutes with the action of T(n) on the spaces $M_k(N, \chi)$ and $M_k(lN, \chi)$.

Proof. It suffices to consider the case where *n* is a prime $p \perp lN$, and one can check this directly using explicit coset representatives, see [3, Lemma 4.6.2].

The lemma below will be used to prove a key lemma due to Hecke that appears as Lemma 4.6.3 in [3] (the proof in [3] omits some details that are filled in by this lemma).

Lemma 15.2. Let $f \in M_k(N, \chi)$ with k > 0, let h > 1 be an integer prime to N. Suppose cf(z) = f(z/h) for some nonzero $c \in \mathbb{C}$ (as functions on the upper half plane). Then f = 0.

Proof. Observe that $f \in M_k(N, \chi)$ implies f(z + 1) = f(z), and therefore

$$f((z+1)/h) = cf(z+1) = cf(z) = f(z/h).$$

If $f(z) = \sum_{n \ge 0} a(n)e^{2\pi i n z}$ is the Fourier expansion of f at ∞ , comparing coefficients of $e^{2\pi i n z/h}$ in the Fourier expansions of both sides of the equality above yields

$$a(n)e^{2\pi i n/h} = a(n)$$

for all $n \ge 0$. This implies a(n) = 0 whenever *h* does not divide *n* (because $e^{2\pi i n/h} \ne 1$).

We now observe that $c^2 f(z) = cf(z/h) = f(z/h^2)$, and the same argument shows that a(n) = 0 whenever h^2 does not divide n. Repeating this argument ad infinitum shows that a(n) = 0 for all n > 0. For k > 0 there are no nonzero constant functions in $M_k(N, \chi)$, so we also have a(0) = 0, Thus f = 0 as claimed.

Lemma 15.3 (Hecke). Let $f \in M_k(N, \chi)$ and let $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta_0(N)$ satisfy $N \perp \det(\alpha) > 1$ and gcd(a, b, c, d) = 1. If $f|_k \alpha \in M_k(N, \chi)$ then f = 0.

Proof. Choose $\gamma_1, \gamma_2 \in \Gamma_0(N)$ so that $\gamma_1 \alpha \gamma_2 = \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix}$ for some with l|m and l, m > 0. Now

$$\begin{pmatrix} 1 & 0 \\ 0 & m \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & m \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1/m \\ 0 & 1 \end{pmatrix} \notin \Gamma_0(N)$$

so $\alpha \Gamma_0(N) \alpha^{-1} \notin \Gamma_0(N)$, and we can choose $\gamma \in \Gamma_0(N)$ so that $\alpha \gamma \alpha^{-1} \notin \Gamma_0(N)$. We have $\det(\alpha) \alpha^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \Delta_0(N)$, so $\det(\alpha) \alpha \gamma \alpha^{-1} \in \Delta_0(N)$, and for some $\gamma_3, \gamma_4 \in \Gamma_0(N)$ we have

$$\det(\alpha)\gamma_3\alpha\gamma\alpha^{-1}\gamma_4 = \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix},$$

with u|v and $u, v \in \mathbb{Z}_{>0}$. We have $uv = \det(\alpha)^2$ with $u \neq v$, otherwise $\alpha \gamma \alpha^{-1} = \gamma_3^{-1} \gamma_4^{-1} \in \Gamma_0(N)$. Therefore $h = u/v \in \mathbb{Z}_{>1}$. Now let $c := h^{k/2} \chi(\gamma_3) \chi(\gamma) \chi(\gamma_4)$, and suppose that $f|_k \alpha \in M_k(N, \chi)$. Then $f \in M_k(\alpha \Gamma_0(n) \alpha^{-1}, \chi)$, and $f \in M_k(\gamma_4^{-1} \alpha \Gamma_0(N) \alpha^{-1} \gamma_4)$, so we have

$$cf(z) = h^{k/2} \chi(\gamma_3) \chi(\gamma) \chi(\gamma_4) f(z)$$

= $h^{k/2} \chi(\gamma_3) \chi(\gamma_4) (f|_k \gamma_4^{-1} \alpha \gamma \alpha^{-1} \gamma_4) (z)$
= $h^{k/2} \chi(\gamma_3) (f|_k \alpha \gamma \alpha^{-1} \gamma_4) (z)$
= $h^{k/2} \chi(\gamma_3) (f|_k \gamma_3^{-1} \begin{pmatrix} u & 0 \\ 0 & \nu \end{pmatrix}) (z)$
= $h^{k/2} (f|_k \begin{pmatrix} u & 0 \\ 0 & \nu \end{pmatrix}) (z)$
= $h^{k/2} (uv)^{k/2} v^{-k} f(z/h) = f(z/h).$

Thus cf(z) = f(z/h), with $c \neq 0$, and Lemma 15.2 then implies f = 0.

Definition 15.4. Let χ be a Dirichlet character of modulus *N* and conductor *m*. We define the space of old cusp forms $S_k^{\text{old}}(N, \chi)$ to be the subspace of $S_k(N, \chi)$ spanned by the set

$$\bigcup_{M} \bigcup_{l} \{f(lz) | f(z) \in S_k(M, \chi)\}$$

where *M* ranges over proper divisors of *N* divisible by *m* and *l* ranges over divisors of *N*/*M*. We define the space of new cusp forms $S_k^{\text{new}}(N, \chi)$ to be the orthogonal complement of $S_k^{\text{old}}(N, \chi)$ with respect to the Petersson inner product.

Lemma 15.5. The spaces $S_k^{\text{old}}(N, \chi)$ and $S_k^{\text{new}}(N, \chi)$ are stable under the action of T(n) for all $n \perp N$.

The lemma implies that the old and new subspaces of $S_k(N\chi)$ each have bases of common eigenfunctions for the Hecke operators T(n) with $n \perp N$. Moreover, each eigenfunction generates a one-dimensional subspace that is uniquely determined by the eigenvalues of the Hecke operators T(n) for all $n \perp N$, or more generally for all $n \perp L$, for any integer L.

Theorem 15.6. Fix $L \in \mathbb{Z}$. If $f \in S_k^{\text{new}}(N, \chi)$ and $g \in S_k(N, \chi)$ are common eigenfunctions of T(n) with the same eigenvalue for $n \perp L$ then g is a multiple of f, and in particular, $g \in S_k^{\text{new}}(N, \chi)$.

Proof. This is Theorem 4.6.12 in [3].

For each proper divisor N_i of N and divisor d of N_i the map $\delta_d : S_k(N_i, \chi) \to S_k(N, \chi)$ defined by $f(z) \mapsto f(dz)$ sends the new subspace of $S_k(N_i, \chi)$ to the old subspace of $S_k(N, \chi)$. The images of these maps give us a complete decomposition of $S_k(N, \chi)$ into new subspaces

$$S_k(N,\chi) \simeq \bigoplus_{\operatorname{cond}(\chi)|N_i|N} S_k^{\operatorname{new}}(N_i,\chi)^{\oplus m_i}$$

where m_i is the number of divisors of N/N_i . As usual when we write $S_k(M, \chi)$ for an integer M divisible by cond(χ) we understand χ to denote the unique Dirichlet character of modulus M induced by the primitive character χ_0 of modulus cond(χ) that induces χ .

Definition 15.7. We call $f \in S_k^{\text{new}}(N, \chi)$ a newform if f is a common eigenfunction of T(n) for all $n \perp N$ with $a_1(f) = 1$.

Theorem 15.8. The newforms in $S_k^{\text{new}}(N, \chi)$ are common eigenfunctions of $\mathbb{T}(N) \cup \mathbb{T}^*(N)$ and form a basis for $S_k^{\text{new}}(N, \chi)$.

Proof. We have $f|_k T(n) = a_n f$ for all $n \perp N$. Consider $T \in \mathbb{T}(N)$ and $T^* \in \mathbb{T}^*(N)$. Now $\mathbb{T}(N)$ is commutative, so *T* commutes with all the T(n), and similarly, T^* commutes with all the $T^*(n)$. We have

$$f|_k T(n) = \chi(N) f|_k T^*(n)$$

to T^* also commutes with T(n) for all $n \perp N$, and $f|_k T$ and $f|_k T^*$ are common eigenfunctions of T(n) with the same eigenvalue a_n for all $n \perp N$. It follows that $f|_k T$ and $f|_k T^*$ must be multiples of f, thus f is en eigenfunctions for T and T^* .

We have already shown that $S_k(N, \chi)$ has a basis of common eigenfunctions for T(n) with $n \perp N$, a subset of which form a basis for $S_k^{\text{new}}(N, \chi)$, and it follows that if we normalize these so that $a_1(f) = 1$ we obtain a basis of newforms.

Corollary 15.9. If $f \in S_k(N, \chi)$ is an eigenfunction of T(n) with eigenvalue $a_n(f)$ for all $n \perp N$ there is a divisors M|N divisible by the conductor of χ and a newform $g \in S_k^{\text{new}}(M, \chi)$ for which $g|_k T(n) = a_n(f)g$ for all $n \perp N$. Moreover, if $f \notin S_k^{\text{new}}(N, \chi)$ then M < N.

It follows from the theorem that for newforms $f \in S_k^{\text{new}}(N, \chi)$ we have $f|_k T(n) = a_n f$ for all n, not just for $n \perp N$, and the adjointness of T(n) and $T^*(n)$ implies that $f|_k T^*(n) = \bar{a}_n(f)f$. Moreover, if we put $\omega_N := \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$ then

$$(f|_k\omega_N)|_kT(n) = \bar{a}_n(f|_k\omega_N)$$

$$(f|_k\omega_N)|_kT^*(n) = a_n(f|_k\omega_N)$$

for all $n \in \mathbb{Z}$, and this implies the following theorem.

Theorem 15.10. The action of ω_N induces an isomorphism between $S_k^{\text{new}}(N, \chi)$ and $S_k^{\text{new}}(N, \overline{\chi})$, and also between $S_k^{\text{old}}(N, \chi)$ and $S_k^{\text{old}}(N, \overline{\chi})$.

We conclude this section with two important theorems about newforms. The first is a strong multiplicity one result, which implies that any newform f is uniquely determined by any subset of its Fourier coefficients (equivalently, Hecke eigenvalues) $a_n(f)$ that includes all n coprime to some integer L that we are free to choose.

Theorem 15.11. Fix $L \in \mathbb{Z}$, let $f \in S_k^{\text{new}}(N, \chi)$ be a newform and let $g \in S_k(M, \psi)$. If g is a common eigenfunction of $\mathbb{T}(M) \cup \mathbb{T}^*(M)$ with $a_n(g) = a_n(f)$ for all $n \perp L$ then M = N and g = f.

Proof. See Theorem 4.6.19 in [3].

The second theorem characterizes the multiplicative relations between the Fourier coefficients of a newform, which together with the theorem above imply that every newform f is uniquely determined by its Fourier coefficients $a_p(f)$ at almost all primes p.

Theorem 15.12. Let $f \in M_k(N, \chi)$. Then f is a newform if and only if the following hold:

- $a_1(f) = 1;$
- $a_{p^r}(f) = a_p(f)a_{p^{r-1}}(f) \chi(p)p^{k-1}a_{p^{r-2}}(f)$ for all primes p and $r \ge 2$;
- $a_{mn}(f) = a_m(f)a_n(f)$ for all integers $m \perp n$.

Proof. See Proposition 5.8.5 in [2].

15.2 Twisting newforms

Definition 15.13. For a modular form $f(z) = \sum_{n \ge 0} a_n e^{2\pi i n z} \in M_k(N, \chi)$ and a Dirichlet character ψ we define the twist of $f \otimes \psi$ by the Dirichlet series

$$(f \otimes \psi)(z) \coloneqq \sum_{n \ge 0} \psi(n) a_n e^{2\pi n z}.$$

Lemma 15.14. Let $f \in M_k(N, \chi)$ and let ψ be a Dirichlet character. Then $f \otimes \psi \in M_k(M, \chi \psi^2)$, where $M = \text{lcm}(N, \text{cond}(\psi)^2, \text{cond}(\psi) \text{cond}(\chi))$, and if f is a cusp form, so is $f \otimes \psi$.

Proof. See Lemma 4.3.10 in [3].

For newforms $f \in S_k^{\text{new}}(N, \chi)$ one can take $M = \text{lcm}(N, \text{cond}(\psi) \text{cond}(\chi \psi))$ in the lemma above; see [1, Lemma 11.2.1].

Definition 15.15. Let $f \in S_k^{\text{new}}(N, \chi)$ be a newform, and let ψ be a Dirichlet character. If $f \otimes \psi = f$, we say that $f \otimes \psi$ is a self-twist of ψ .

The set SelfTw(f) := { ψ : $f \otimes \psi = f$ } is a group (under multiplication of Dirichlet characters). For $\psi \in$ SelfTw(f) we must have cond(ψ)|N and $\psi^2 = 1$, so it is a finite elementary abelian 2-group. The theory of complex multiplication implies that for $k \ge 2$ the group SelfTw(f) is cyclic, and if it is nontrivial it is generated by the Kronecker symbol of an imaginary quadratic field; see [4, Thm. 4.5]. In this case we say that f has complex multiplication (CM).

For k = 1, the group SelfTw(f) is isomorphic to a subgroup of $(\mathbb{Z}/2\mathbb{Z})^2$ and may contain Kronecker symbols of both real and imaginary fields.

References

- A.J. Best, J. Bober, A.R. Booker, E. Costa, J. Cremona, M. Derickx, M. Lee, D. Lowry-Duda, D. Roe, A.V. Sutherland, and J. Voight, *Computing classical modular forms*, Arithmetic Geometry, Number Theory, and Computation, Simons Symposia (2021), 123–213.
- [2] Fred Diamond and Jerry Shurman, A first course in modular forms, Springer, 2005.
- [3] Toshitsune Miyake, *Modular forms*, Springer, 2006.
- [4] Kenneth A. Ribet, *Twists of modular forms and endomorphisms of abelian varieties*, Math. Ann. **253** (1980), 43–62.