18.786 Number theory II Spring 2024
Lecture #14 4/3/2024

These notes summarize the material in §4.3 of [1] presented in lecture.

14.1 Nice holomorphic functions

We now recall some facts from complex analysis about the growth rate of the coefficients a,, that

can appear in the Fourier expansions f (z) = Z:ﬁ 0 a,e?™™ of holomorphic functions f : H— C.

We omit the proofs, which can be found in [1].
For z € C we put 2 = x + iy, with x, y € R (so x and y are implicitly functions of z).

Lemma 14.1. Fix 0 € R. If f(z) is a holomorphic function on H whose Fourier expansion
Z:io a,e?™ ™ converges absolutely and uniformly on H with f(z) = O(y™°) as y — 0, then
la,| =0(n?) as n — oo.

Proof. See Corollary 2.1.6 in [1]. O

Lemma 14.2. Let {a,},>¢ be a sequence of complex numbers, let

(o)

f(Z) — Zanezmnz.

n=0
If la,| = 0(n?) as n — oo, for some o > 0, then the following hold:

* the sum defining f (z) converges absolutely and uniformly on every compact subset of H;
* the function f(z) is holomorphic on H;

c If@I=0("Nasy—0;

* |f(z)—aol =0(e*™) as y — oo.

Proof. This is Lemma 4.3.3 in [1]. O

Finally, we note the following lemma, which allows us to extend bounds on a holomorphic
function that hold at the edges of a vertical strip to the interior of the strip.

Lemma 14.3. Let 01,04,a,c € R with a,c > 0, and let ¢ (2)| be a function that is holomorphic
on an open set containing a vertical strip S bounded by the lines x = 0 and x = 0.

Suppose |p(2)| = O(ema) uniformly on S, with |¢(2)| = O(]y|°) on the lines x = o, and
X =0y, as |y| = oo. Then |¢(2)| = O(|y|°) uniformly on S.

Proof. This is Lemma 4.3.4 in [1]. O

Now suppose f is a holomorphic on H with a Fourier expansion f(z) = Y, a,e?™™ that
converges absolutely and uniformly on H, such that |f(z)| =0(y ) as y — 0, for some o > 0.
Then we also have a,, = 0(n°) and |f (2) — ag| = O(e~2™), by the first two lemmas above. Let
us call such f(z) nice holomorphic functions.

To each nice holomorphic function f(z) = ano a,e?™™ we associate the Dirichlet series

oo

L(f,s) = Zann_s,

n=1

which converges absolutely and uniformly on Re(s) > o + 1 and is holomorphic on this right
half plane. For each positive integer N we define the completed L-function

Ayn(f,s) = N*"2(2n) =T (s)L(f,s).
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The motivation for this definition is that when ay = 0 (as when f is a cusp form, for example),
then N™*/2Ay(f,s) is the Mellin transform of the function f (it): R., — C, which we expect to
lead to a functional equation as in the proof for the Riemann zeta function.

Theorem 14.4 (Hecke). Let f = >, - a,e*™™ and g(z) = 3.,50 bne*™™ be nice holomorphic
functions, and let k and N be positive integers. The following are equivalent:

A g(z) = (=ivVNz) *f(—5;).
(B) The completed L-functions Ay(f,s) and Ay(g,s) can be analytically continued to C, satisfy
AN(fas) = AN(g:k_S)’
with Ay (f,s)+ % + % and An(s; g)+ % + % holomorphic and bounded on vertical strips.

Proof. (A)=(B): We have |a,| = 0(n?) and |b,| = O(n?) for some o > 0, which implies that

Z |Cl |e—2nnt/\/ﬁ
n

n>1

converges for t > 0, and that an1 fooo |an|tce_2“"t/‘/ﬁt_1dt converges on ¢ > o + 1, and
similarly for the b,,. Thus for Re(s) > o + 1 we have

AN(f,s) =Zan(2nn/m)_sj et ldt
0

n>1
1)
— ZJ ane—ZTrnt/\/Nts—ldt
n>1J0
oo
— J (Z ane—Znnt/«/ﬁ) 514t
0 n>1

=J (f(it/VN)—ap) 5 de
0

where the second line uses the change of variable t — (27n/+/N)t, the sum-integral swap in
the third line is justified by the convergence noted above, and the fourth line simply applies the
definition of f(2) = 5 a,e*™. This implies

oo

AN(f’S):_%JFJ f(ﬁ)t_s_ld“rf (f(j—%)—ao)ts_ldt
1 1

—o - [ etV - bo) e [ (e v —ao)
=] 1

N

where the change of variable t — ¢! gives the middle term in the first line, and (A) implies

g(it/VN) = (—ivVN(it/VN)*f (—05) = t *f (%),

which we used in the second line. The fact that f and g are nice implies |f (it) —ao| = O(e ™)
and |g(it) — by| = O(e™™) as t — 00, so the two integrals in the last displayed equation
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converge absolutely and uniformly on any vertical strip, and are therefore holomorphic on C.
It follows that Ay(f,s) has a meromorphic continuation to C and that

b
An(f,s)+ 2 4 20
s k-—s

is holomorphic on C and bounded on every vertical strip. Applying the exact same calculation
to Ay(g,k —s) yields the desired identity Ay (f,s) = Ay(g,k —s) of meromorphic functions.

(B)= (A): Applying the inverse Mellin transform to the Mellin transform I'(s) of e~ yields
—t 1 —s
et = — ['(s)t™ds,
2mi Re(s)=a
valid for any a > 0. Applying this to all but the first term of f(iy) = ano a,e 2™ yields

Fliy) = o Zanf r(s)(2mny)*ds +ag
R«

21 n>1 e(s)=a

For a > o + 1 the function L(f,s) = anl a,n* is absolutely convergent and bounded on
Re(s) = a, which implies we can swap the order of summation/integration to obtain

fliy)= 1 f (VY )™ An(F,s)ds +ao. a
Re

271 5)=at
Since L(f,s) is bounded on Re(s) = a, for any ¢ > 0 we have
|An(f,$)I = O(|Im(s)| ™) 2)

as |y| — oo on x = a, and applying a similar argument using k — 3 > o + 1 yields
AN (f,8)l = |An(g, k—s)[ = O(|Im(s)| ™)

as | Im(s)| — oo on Re(s) = 3. Now (B) implies AN(f,s)+i—°+% isbounded on 8 < Re(s) < a,
so Lemma 14.3 implies that (2) holds uniformly on the vertical strip < Re(s) < a. We may
choose a > k and 3 < 0. By (B), the function (v/Ny)Ay(f,s) has simple poles at s = 0 and
s = k with residues —a, and (v/Ny)*by, respectively, which lie in the strip f < Re(s) < a, so
if we shift the path of integration from Re(s) = a to Re(s) = 8 in (1) we obtain

. 1 - _
fiy)=5— | (VNy) " Ay(f.9)ds+(VNy) bo.
Tt JRe(s)=p
Now the functional equation given by (B) implies
. 1 - -
fliy)= —f (VNy) ™ Ay(k—s;g)ds + (VNy) b,
2mi Re(s)=p

= («/Ny)s_k AN(s;g)ds+(1/Ny)_kb0
270 J pe(s)=k—p

=(VNy)*g (7).

The functions f(z) and g(z) are holomorphic on H, so this implies f(z) = (vNz/i) *g(52),
which is equivalent to (A): g(z) = (—ivNz)*f (32). -

1
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14.2 Analytic continuation and functional equation for cusp forms

Let N be a positive integer and y a Dirichlet character of modulus N. As in Lecture 11 (see
Lemma 11.6), if we define w(N) := (19] 3)e GL; (Q) with N € Z,, then themap f — f[yw(N)
gives an isomorphism S (N, y) ~ S;.(N, y).

We now observe that any cusp form f € Si (N, y) is a nice holomorphic function, as is
g = flxw(N) € Si.(N,7). Applying Theorem 14.4 to f and g, with ay, = b, = 0 yields the
following corollary.

Corollary 14.5. For any cusp form f € Si (N y) the function Ax(f,s) is entire and satisfies

An(f,s) = i*Ay(f lrw(N), k —s).

When N = 1 the character y is trivial, and f|,w(1) = f, since w(1) = (9 ') € (1) = SLy(Z),
so the functional equation becomes

AN(f:S) = ikAN(f:k_s)~

For N > 1, if y is trivial (in which case we should assume k is even), for f € S;(N) we still have
flrw(N) € Si(N), but we do not quite have f |, w(N) = f, since w(N) & I,(N). But in fact, up
to a sign the functional equation above still holds provided that f is an eigenfunction for the
Fricke involution wy, the linear operator defined by f — f|,w(N). Note that

(flewn)(@) =N f (7)),
SO
((flkeon)lkon)(@) = N2 NG (2) = (1) f (2) = f (=),

where the last equality follows from the fact that for f € Si(N), either k is even or f = O.
Thus wy is an involution, and its eigenvalues are £1. We will see later that if f € S;.(N) is an
eigenform for all the Hecke operators, then it is automatically an eigenfunction for the Fricke
involution, but in any case, for any f € S;(N) that is an eigenfunction for wy we have the
functional equation

An(f,5) = £i*Ay(f, k—s).

More generally, if f € S (N, yx) is an eigenform for all the Hecke operators, we will always have
a functional equation of the form

AN(fJS) = gikKN(f:k_s))

where ¢ is a root of unity.
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