These notes summarize the material in §4.3 of [1] presented in lecture.

14.1 Nice holomorphic functions

We now recall some facts from complex analysis about the growth rate of the coefficients a_n that can appear in the Fourier expansions $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$ of holomorphic functions $f: \mathbf{H} \to \mathbb{C}$. We omit the proofs, which can be found in [1].

For $z \in \mathbb{C}$ we put z = x + iy, with $x, y \in \mathbb{R}$ (so x and y are implicitly functions of z).

Lemma 14.1. Fix $\sigma \in \mathbb{R}$. If f(z) is a holomorphic function on **H** whose Fourier expansion $\sum_{n=0}^{\infty} a_n e^{2\pi i n z}$ converges absolutely and uniformly on **H** with $f(z) = O(y^{-\sigma})$ as $y \to 0$, then $|a_n| = O(n^{\sigma})$ as $n \to \infty$.

Proof. See Corollary 2.1.6 in [1].

Lemma 14.2. Let $\{a_n\}_{n\geq 0}$ be a sequence of complex numbers, let

$$f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}.$$

If $|a_n| = O(n^{\sigma})$ as $n \to \infty$, for some $\sigma > 0$, then the following hold:

- the sum defining f(z) converges absolutely and uniformly on every compact subset of **H**;
- the function f(z) is holomorphic on H;

•
$$|f(z)| = O(y^{-\sigma-1})$$
 as $y \to 0$;

•
$$|f(z)-a_0| = O(e^{-2\pi y})$$
 as $y \to \infty$.

Proof. This is Lemma 4.3.3 in [1].

Finally, we note the following lemma, which allows us to extend bounds on a holomorphic function that hold at the edges of a vertical strip to the interior of the strip.

Lemma 14.3. Let $\sigma_1, \sigma_2, a, c \in \mathbb{R}$ with a, c > 0, and let $\phi(z)$ be a function that is holomorphic on an open set containing a vertical strip *S* bounded by the lines $x = \sigma_1$ and $x = \sigma_2$.

Suppose $|\phi(z)| = O(e^{|y|^a})$ uniformly on *S*, with $|\phi(z)| = O(|y|^c)$ on the lines $x = \sigma_1$ and $x = \sigma_2$, as $|y| \to \infty$. Then $|\phi(z)| = O(|y|^c)$ uniformly on *S*.

Proof. This is Lemma 4.3.4 in [1].

Now suppose f is a holomorphic on **H** with a Fourier expansion $f(z) = \sum_{n\geq 0} a_n e^{2\pi i n z}$ that converges absolutely and uniformly on **H**, such that $|f(z)| = O(y^{-\sigma})$ as $y \to 0$, for some $\sigma > 0$. Then we also have $a_n = O(n^{\sigma})$ and $|f(z) - a_0| = O(e^{-2\pi y})$, by the first two lemmas above. Let us call such f(z) nice holomorphic functions.

To each nice holomorphic function $f(z) = \sum_{n \ge 0} a_n e^{2\pi i n z}$ we associate the Dirichlet series

$$L(f,s) := \sum_{n=1}^{\infty} a_n n^{-s},$$

which converges absolutely and uniformly on $\text{Re}(s) > \sigma + 1$ and is holomorphic on this right half plane. For each positive integer *N* we define the completed *L*-function

$$\Lambda_N(f,s) := N^{s/2} (2\pi)^{-s} \Gamma(s) L(f,s).$$

The motivation for this definition is that when $a_0 = 0$ (as when f is a cusp form, for example), then $N^{-s/2}\Lambda_N(f,s)$ is the Mellin transform of the function $f(it): \mathbb{R}_{>0} \to \mathbb{C}$, which we expect to lead to a functional equation as in the proof for the Riemann zeta function.

Theorem 14.4 (Hecke). Let $f = \sum_{n\geq 0} a_n e^{2\pi i n z}$ and $g(z) = \sum_{n\geq 0} b_n e^{2\pi n z}$ be nice holomorphic functions, and let k and N be positive integers. The following are equivalent:

(A)
$$g(z) = (-i\sqrt{N}z)^{-k}f(-\frac{1}{Nz}).$$

(B) The completed L-functions $\Lambda_N(f,s)$ and $\Lambda_N(g,s)$ can be analytically continued to \mathbb{C} , satisfy

$$\Lambda_N(f,s) = \Lambda_N(g,k-s),$$

with $\Lambda_N(f,s) + \frac{a_0}{s} + \frac{a_0}{k-s}$ and $\Lambda_N(s;g) + \frac{b_0}{s} + \frac{b_0}{k-s}$ holomorphic and bounded on vertical strips.

Proof. (A) \Rightarrow (B): We have $|a_n| = O(n^{\sigma})$ and $|b_n| = O(n^{\sigma})$ for some $\sigma > 0$, which implies that

$$\sum_{n\geq 1} |a_n| e^{-2\pi nt/\sqrt{N}}$$

converges for t > 0, and that $\sum_{n \ge 1} \int_0^\infty |a_n| t^c e^{-2\pi n t/\sqrt{N}} t^{-1} dt$ converges on $c > \sigma + 1$, and similarly for the b_n . Thus for $\operatorname{Re}(s) > \sigma + 1$ we have

$$\Lambda_{N}(f,s) = \sum_{n \ge 1} a_{n} (2\pi n/\sqrt{N})^{-s} \int_{0}^{\infty} e^{-t} t^{s-1} dt$$
$$= \sum_{n \ge 1} \int_{0}^{\infty} a_{n} e^{-2\pi n t/\sqrt{N}} t^{s-1} dt$$
$$= \int_{0}^{\infty} \left(\sum_{n \ge 1} a_{n} e^{-2\pi n t/\sqrt{N}} \right) t^{s-1} dt$$
$$= \int_{0}^{\infty} \left(f(it/\sqrt{N}) - a_{0} \right) t^{s-1} dt$$

where the second line uses the change of variable $t \mapsto (2\pi n/\sqrt{N})t$, the sum-integral swap in the third line is justified by the convergence noted above, and the fourth line simply applies the definition of $f(z) = \sum_{n>0} a_n e^{2\pi i n z}$. This implies

$$\begin{split} \Lambda_N(f,s) &= -\frac{a_0}{s} + \int_1^\infty f(\frac{i}{t\sqrt{N}})t^{-s-1}dt + \int_1^\infty \left(f(\frac{it}{\sqrt{N}}) - a_0\right)t^{s-1}dt \\ &= -\frac{a_0}{s} - \frac{b_0}{k-s} + \int_1^\infty \left(g(it/\sqrt{N}) - b_0\right)t^{k-s-1}dt + \int_1^\infty \left(f(it/\sqrt{N}) - a_0\right)t^{s-1}dt, \end{split}$$

where the change of variable $t \mapsto t^{-1}$ gives the middle term in the first line, and (A) implies

$$g(it/\sqrt{N}) = (-i\sqrt{N}(it/\sqrt{N}))^{-k}f(-\frac{1}{it\sqrt{N}}) = t^{-k}f(\frac{i}{t\sqrt{N}}),$$

which we used in the second line. The fact that f and g are nice implies $|f(it)-a_0| = O(e^{-2\pi t})$ and $|g(it) - b_0| = O(e^{-2\pi t})$ as $t \to \infty$, so the two integrals in the last displayed equation converge absolutely and uniformly on any vertical strip, and are therefore holomorphic on \mathbb{C} . It follows that $\Lambda_N(f,s)$ has a meromorphic continuation to \mathbb{C} and that

$$\Lambda_N(f,s) + \frac{a_0}{s} + \frac{b_0}{k-s}$$

is holomorphic on \mathbb{C} and bounded on every vertical strip. Applying the exact same calculation to $\Lambda_N(g, k-s)$ yields the desired identity $\Lambda_N(f, s) = \Lambda_N(g, k-s)$ of meromorphic functions.

(B) \Rightarrow (A): Applying the inverse Mellin transform to the Mellin transform $\Gamma(s)$ of e^{-t} yields

$$e^{-t} = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=a} \Gamma(s) t^{-s} ds,$$

valid for any $\alpha > 0$. Applying this to all but the first term of $f(iy) = \sum_{n>0} a_n e^{-2\pi ny}$ yields

$$f(iy) = \frac{1}{2\pi i} \sum_{n \ge 1} a_n \int_{\operatorname{Re}(s) = a} \Gamma(s) (2\pi n y)^{-s} ds + a_0$$

For $\alpha > \sigma + 1$ the function $L(f,s) = \sum_{n \ge 1} a_n n^{-s}$ is absolutely convergent and bounded on $\operatorname{Re}(s) = \alpha$, which implies we can swap the order of summation/integration to obtain

$$f(iy) = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=a} \left(\sqrt{N}y\right)^{-s} \Lambda_N(f,s) ds + a_0.$$
(1)

Since L(f,s) is bounded on $\operatorname{Re}(s) = \alpha$, for any c > 0 we have

$$|\Lambda_N(f,s)| = O(|\operatorname{Im}(s)|^{-c})$$
⁽²⁾

as $|y| \to \infty$ on $x = \alpha$, and applying a similar argument using $k - \beta > \sigma + 1$ yields

$$|\Lambda_N(f,s)| = |\Lambda_N(g,k-s)| = O(|\operatorname{Im}(s)|^{-c})$$

as $|\operatorname{Im}(s)| \to \infty$ on $\operatorname{Re}(s) = \beta$. Now (B) implies $\Lambda_N(f,s) + \frac{a_0}{s} + \frac{b_0}{k-s}$ is bounded on $\beta \le \operatorname{Re}(s) \le \alpha$, so Lemma 14.3 implies that (2) holds uniformly on the vertical strip $\beta \le \operatorname{Re}(s) \le \alpha$. We may choose $\alpha > k$ and $\beta < 0$. By (B), the function $(\sqrt{N}y)^{-s}\Lambda_N(f,s)$ has simple poles at s = 0 and s = k with residues $-a_0$ and $(\sqrt{N}y)^{-k}b_0$, respectively, which lie in the strip $\beta \le \operatorname{Re}(s) \le \alpha$, so if we shift the path of integration from $\operatorname{Re}(s) = \alpha$ to $\operatorname{Re}(s) = \beta$ in (1) we obtain

$$f(iy) = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\beta}^{\infty} (\sqrt{N}y)^{-s} \Lambda_N(f,s) ds + (\sqrt{N}y)^{-k} b_0.$$

Now the functional equation given by (B) implies

$$f(iy) = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\beta} (\sqrt{N}y)^{-s} \Lambda_N(k-s;g) ds + (\sqrt{N}y)^{-k} b_0$$

$$= \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=k-\beta} (\sqrt{N}y)^{s-k} \Lambda_N(s;g) ds + (\sqrt{N}y)^{-k} b_0$$

$$= (\sqrt{N}y)^{-k} g\left(\frac{-1}{Niy}\right).$$

The functions f(z) and g(z) are holomorphic on **H**, so this implies $f(z) = (\sqrt{N}z/i)^{-k}g(\frac{-1}{Nz})$, which is equivalent to (A): $g(z) = (-i\sqrt{N}z)^{-k}f(\frac{-1}{Nz})$.

14.2 Analytic continuation and functional equation for cusp forms

Let *N* be a positive integer and χ a Dirichlet character of modulus *N*. As in Lecture 11 (see Lemma 11.6), if we define $\omega(N) := \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{Q})$ with $N \in \mathbb{Z}_{\geq 1}$, then the map $f \mapsto f|_k \omega(N)$ gives an isomorphism $S_k(N, \chi) \simeq S_k(N, \overline{\chi})$.

We now observe that any cusp form $f \in S_k(N, \chi)$ is a nice holomorphic function, as is $g = f|_k \omega(N) \in S_k(N, \overline{\chi})$. Applying Theorem 14.4 to f and g, with $a_0 = b_0 = 0$ yields the following corollary.

Corollary 14.5. For any cusp form $f \in S_k(N\chi)$ the function $\Lambda_N(f,s)$ is entire and satisfies

$$\Lambda_N(f,s) = i^k \Lambda_N(f|_k \omega(N), k-s).$$

When N = 1 the character χ is trivial, and $f|_k \omega(1) = f$, since $\omega(1) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \Gamma_0(1) = SL_2(\mathbb{Z})$, so the functional equation becomes

$$\Lambda_N(f,s) = i^k \Lambda_N(f,k-s).$$

For N > 1, if χ is trivial (in which case we should assume k is even), for $f \in S_k(N)$ we still have $f|_k \omega(N) \in S_k(N)$, but we do not quite have $f|_k \omega(N) = f$, since $\omega(N) \notin \Gamma_0(N)$. But in fact, up to a sign the functional equation above still holds provided that f is an eigenfunction for the Fricke involution ω_N , the linear operator defined by $f \mapsto f|_k \omega(N)$. Note that

$$(f|_k\omega_N)(z) = N^{-k/2}z^{-k}f\left(\frac{-1}{Nz}\right),$$

so

$$((f|_k\omega_N)|_k\omega_N)(z) = N^{-k/2}z^{-k}N^{-k/2}(\frac{-1}{Nz})^{-k}f(z) = (-1)^k f(z) = f(z),$$

where the last equality follows from the fact that for $f \in S_k(N)$, either k is even or f = 0. Thus ω_N is an involution, and its eigenvalues are ± 1 . We will see later that if $f \in S_k(N)$ is an eigenform for all the Hecke operators, then it is automatically an eigenfunction for the Fricke involution, but in any case, for any $f \in S_k(N)$ that is an eigenfunction for ω_N we have the functional equation

$$\Lambda_N(f,s) = \pm i^k \Lambda_N(f,k-s).$$

More generally, if $f \in S_k(N, \chi)$ is an eigenform for all the Hecke operators, we will always have a functional equation of the form

$$\Lambda_N(f,s) = \varepsilon i^k \overline{\Lambda}_N(f,k-s),$$

where ε is a root of unity.

References

[1] Toshitsune Miyake, *Modular forms*, Springer, 2006.