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These notes summarize the material in §4.3 of [1] presented in lecture.

14.1 Nice holomorphic functions

We now recall some facts from complex analysis about the growth rate of the coefficients an that
can appear in the Fourier expansions f (z) =

∑∞
n=0 ane2πinz of holomorphic functions f : H→ C.

We omit the proofs, which can be found in [1].
For z ∈ C we put z = x + i y , with x , y ∈ R (so x and y are implicitly functions of z).

Lemma 14.1. Fix σ ∈ R. If f (z) is a holomorphic function on H whose Fourier expansion
∑∞

n=0 ane2πinz converges absolutely and uniformly on H with f (z) = O(y−σ) as y → 0, then
|an|= O(nσ) as n→∞.

Proof. See Corollary 2.1.6 in [1].

Lemma 14.2. Let {an}n≥0 be a sequence of complex numbers, let

f (z) =
∞
∑

n=0

ane2πinz .

If |an|= O(nσ) as n→∞, for some σ > 0, then the following hold:

• the sum defining f (z) converges absolutely and uniformly on every compact subset of H;

• the function f (z) is holomorphic on H;

• | f (z)|= O(y−σ−1) as y → 0;

• | f (z)− a0|= O(e−2πy) as y →∞.

Proof. This is Lemma 4.3.3 in [1].

Finally, we note the following lemma, which allows us to extend bounds on a holomorphic
function that hold at the edges of a vertical strip to the interior of the strip.

Lemma 14.3. Let σ1,σ2, a, c ∈ R with a, c > 0, and let φ(z)| be a function that is holomorphic
on an open set containing a vertical strip S bounded by the lines x = σ1 and x = σ2.

Suppose |φ(z)| = O
�

e|y|
a�

uniformly on S, with |φ(z)| = O(|y|c) on the lines x = σ1 and
x = σ2, as |y| →∞. Then |φ(z)|= O(|y|c) uniformly on S.

Proof. This is Lemma 4.3.4 in [1].

Now suppose f is a holomorphic on H with a Fourier expansion f (z) =
∑

n≥0 ane2πinz that
converges absolutely and uniformly on H, such that | f (z)|= O(y−σ) as y → 0, for some σ > 0.
Then we also have an = O(nσ) and | f (z)− a0| = O(e−2πy), by the first two lemmas above. Let
us call such f (z) nice holomorphic functions.

To each nice holomorphic function f (z) =
∑

n≥0 ane2πinz we associate the Dirichlet series

L( f , s) :=
∞
∑

n=1

ann−s,

which converges absolutely and uniformly on Re(s) > σ + 1 and is holomorphic on this right
half plane. For each positive integer N we define the completed L-function

ΛN ( f , s) := N s/2(2π)−sΓ (s)L( f , s).
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The motivation for this definition is that when a0 = 0 (as when f is a cusp form, for example),
then N−s/2ΛN ( f , s) is the Mellin transform of the function f (i t): R>0→ C, which we expect to
lead to a functional equation as in the proof for the Riemann zeta function.

Theorem 14.4 (Hecke). Let f =
∑

n≥0 ane2πinz and g(z) =
∑

n≥0 bne2πnz be nice holomorphic
functions, and let k and N be positive integers. The following are equivalent:

(A) g(z) = (−i
p

Nz)−k f (− 1
Nz ).

(B) The completed L-functions ΛN ( f , s) and ΛN (g, s) can be analytically continued to C, satisfy

ΛN ( f , s) = ΛN (g, k− s),

with ΛN ( f , s)+ a0
s +

a0
k−s and ΛN (s; g)+ b0

s +
b0

k−s holomorphic and bounded on vertical strips.

Proof. (A)⇒(B): We have |an|= O(nσ) and |bn|= O(nσ) for some σ > 0, which implies that
∑

n≥1

|an|e−2πnt/
p

N

converges for t > 0, and that
∑

n≥1

∫∞
0 |an|t ce−2πnt/

p
N t−1d t converges on c > σ + 1, and

similarly for the bn. Thus for Re(s)> σ+ 1 we have

ΛN ( f , s) =
∑

n≥1

an(2πn/
p

N)−s

∫ ∞

0

e−t ts−1d t

=
∑

n≥1

∫ ∞

0

ane−2πnt/
p

N ts−1d t

=

∫ ∞

0

�

∑

n≥1

ane−2πnt/
p

N

�

ts−1d t

=

∫ ∞

0

�

f (i t/
p

N)− a0

�

ts−1d t

where the second line uses the change of variable t 7→ (2πn/
p

N)t, the sum-integral swap in
the third line is justified by the convergence noted above, and the fourth line simply applies the
definition of f (z) =

∑

n≥0 ane2πinz . This implies

ΛN ( f , s) = −
a0

s
+

∫ ∞

1

f ( i
t
p

N
)t−s−1d t +

∫ ∞

1

�

f ( i tp
N
)− a0

�

ts−1d t

= −
a0

s
−

b0

k− s
+

∫ ∞

1

�

g(i t/
p

N)− b0

�

tk−s−1d t +

∫ ∞

1

�

f (i t/
p

N)− a0

�

ts−1d t,

where the change of variable t 7→ t−1 gives the middle term in the first line, and (A) implies

g(i t/
p

N) = (−i
p

N(i t/
p

N))−k f (− 1
i t
p

N
) = t−k f ( i

t
p

N
),

which we used in the second line. The fact that f and g are nice implies | f (i t)−a0|= O(e−2πt)
and |g(i t) − b0| = O(e−2πt) as t → ∞, so the two integrals in the last displayed equation
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converge absolutely and uniformly on any vertical strip, and are therefore holomorphic on C.
It follows that ΛN ( f , s) has a meromorphic continuation to C and that

ΛN ( f , s) +
a0

s
+

b0

k− s

is holomorphic on C and bounded on every vertical strip. Applying the exact same calculation
to ΛN (g, k− s) yields the desired identity ΛN ( f , s) = ΛN (g, k− s) of meromorphic functions.

(B)⇒ (A): Applying the inverse Mellin transform to the Mellin transform Γ (s) of e−t yields

e−t =
1

2πi

∫

Re(s)=α
Γ (s)t−sds,

valid for any α > 0. Applying this to all but the first term of f (i y) =
∑

n≥0 ane−2πny yields

f (i y) =
1

2πi

∑

n≥1

an

∫

Re(s)=α
Γ (s)(2πny)−sds+ a0

For α > σ + 1 the function L( f , s) =
∑

n≥1 ann−s is absolutely convergent and bounded on
Re(s) = α, which implies we can swap the order of summation/integration to obtain

f (i y) =
1

2πi

∫

Re(s)=α

�p
N y

�−s
ΛN ( f , s)ds+ a0. (1)

Since L( f , s) is bounded on Re(s) = α, for any c > 0 we have

|ΛN ( f , s)|= O(| Im(s)|−c) (2)

as |y| →∞ on x = α, and applying a similar argument using k− β > σ+ 1 yields

|ΛN ( f , s)|= |ΛN (g, k− s)|= O(| Im(s)|−c)

as | Im(s)| →∞ on Re(s) = β . Now (B) implies ΛN ( f , s)+ a0
s +

b0
k−s is bounded on β ≤ Re(s)≤ α,

so Lemma 14.3 implies that (2) holds uniformly on the vertical strip β ≤ Re(s) ≤ α. We may
choose α > k and β < 0. By (B), the function (

p
N y)−sΛN ( f , s) has simple poles at s = 0 and

s = k with residues −a0 and (
p

N y)−k b0, respectively, which lie in the strip β ≤ Re(s) ≤ α, so
if we shift the path of integration from Re(s) = α to Re(s) = β in (1) we obtain

f (i y) =
1

2πi

∫

Re(s)=β

�p
N y

�−s
ΛN ( f , s)ds+ (

p
N y)−k b0.

Now the functional equation given by (B) implies

f (i y) =
1

2πi

∫

Re(s)=β

�p
N y

�−s
ΛN (k− s; g)ds+ (

p
N y)−k b0

=
1

2πi

∫

Re(s)=k−β

�p
N y

�s−k
ΛN (s; g)ds+ (

p
N y)−k b0

= (
p

N y)−k g
�

−1
Ni y

�

.

The functions f (z) and g(z) are holomorphic on H, so this implies f (z) = (
p

Nz/i)−k g
�−1

Nz

�

,
which is equivalent to (A): g(z) = (−i

p
Nz)−k f

�−1
Nz

�

.
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14.2 Analytic continuation and functional equation for cusp forms

Let N be a positive integer and χ a Dirichlet character of modulus N . As in Lecture 11 (see
Lemma 11.6), if we defineω(N) :=

�

0 −1
N 0

�

∈ GL+2 (Q)with N ∈ Z≥1, then the map f 7→ f |kω(N)
gives an isomorphism Sk(N ,χ)' Sk(N ,χ).

We now observe that any cusp form f ∈ Sk(N ,χ) is a nice holomorphic function, as is
g = f |kω(N) ∈ Sk(N ,χ). Applying Theorem 14.4 to f and g, with a0 = b0 = 0 yields the
following corollary.

Corollary 14.5. For any cusp form f ∈ Sk(Nχ) the function ΛN ( f , s) is entire and satisfies

ΛN ( f , s) = ikΛN ( f |kω(N), k− s).

When N = 1 the character χ is trivial, and f |kω(1) = f , since ω(1) =
�

0 −1
1 0

�

∈ Γ0(1) = SL2(Z),
so the functional equation becomes

ΛN ( f , s) = ikΛN ( f , k− s).

For N > 1, if χ is trivial (in which case we should assume k is even), for f ∈ Sk(N) we still have
f |kω(N) ∈ Sk(N), but we do not quite have f |kω(N) = f , since ω(N) 6∈ Γ0(N). But in fact, up
to a sign the functional equation above still holds provided that f is an eigenfunction for the
Fricke involution ωN , the linear operator defined by f 7→ f |kω(N). Note that

( f |kωN )(z) = N−k/2z−k f
�−1

Nz

�

,

so
(( f |kωN )|kωN )(z) = N−k/2z−kN−k/2(−1

Nz )
−k f (z) = (−1)k f (z) = f (z),

where the last equality follows from the fact that for f ∈ Sk(N), either k is even or f = 0.
Thus ωN is an involution, and its eigenvalues are ±1. We will see later that if f ∈ Sk(N) is an
eigenform for all the Hecke operators, then it is automatically an eigenfunction for the Fricke
involution, but in any case, for any f ∈ Sk(N) that is an eigenfunction for ωN we have the
functional equation

ΛN ( f , s) = ±ikΛN ( f , k− s).

More generally, if f ∈ Sk(N ,χ) is an eigenform for all the Hecke operators, we will always have
a functional equation of the form

ΛN ( f , s) = εikΛN ( f , k− s),

where ε is a root of unity.
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