These notes summarize the material in $\S 3.2$ presented in lecture.
Our goal for is to prove analytic continuation and a functional equation for the $L$-functions attached to cusp forms, as originally proved by Hecke. While this is a classical result, it is of critical importance for two reasons:

1. It makes modularity a much more powerful tool than it would otherwise be. Knowing that an elliptic curve $E / \mathbb{Q}$ has the same $L$-function as a modular form is interesting precisely because of the things we know about $L$-functions of modular forms. The LHS of the BSD formula makes sense only because we know both the modularity theorem and that $L$-functions of modular forms admit an analytic continuation and functional equation; modularity alone is not enough.
2. It is a model for proving facts about $L$-functions of more general automorphic forms.

In the spirit of the second point, as a warmup we recall the proof of the analytic continuation and functional equation for the Riemann zeta function, proved by Riemann in 1859, which was the basis for Hecke's results.

### 13.1 The Riemann zeta function

Given a sequence of complex numbers $a_{1}, a_{2}, a_{3}, \ldots$ we can define the Dirichlet series

$$
\sum_{n \geq 1} a_{n} n^{-s} .
$$

In order for this Dirichlet series to converge, we need bounds on the $a_{n}$. Note that $\left|n^{-s}\right|=n^{-\operatorname{Re}(s)}$, so if we have $\left|a_{n}\right|=O\left(n^{\sigma}\right)$ as $n \rightarrow \infty$ then the Dirichlet series above converges absolutely and uniformly to a holomorphic function on $\operatorname{Re}(s)>\sigma+1$. This function then uniquely determines the Dirichlet coefficients $a_{n}$ (no matter what $\sigma$ is); they are intrinsic to the function.

Lemma 13.1. Suppose $\sum_{n \geq 1} a_{n} n^{-s}$ and $\sum_{n \geq 1} b_{n} n^{-s}$ converge absolutely at $s=\sigma>0$. If $\sum_{n \geq 1} a_{n} n^{-s}=\sum_{n \geq 1} b_{n} n^{\geq s}$ on $\operatorname{Re}(s) \geq \sigma$ then $a_{n}=b_{n}$ for all $n \geq 1$.

Proof. This is Lemma 3.2.1 in [1].
The Riemann zeta function $\zeta(s)$ is defined by the Dirichlet series with $1=a_{1}=a_{2}=\cdots$ :

$$
\zeta(s):=\sum n^{-s}
$$

which converges absolutely and uniformly to a holomorphic function on $\operatorname{Re}(s)>1$, as does any Dirichlet series with bounded coefficients, since we can take $\sigma=0$.

Definition 13.2. Euler's gamma function is defined by the integral

$$
\Gamma(s):=\int_{0}^{\infty} e^{-t} t^{s-1} d t
$$

It is holomorphic on $\operatorname{Re}(s)>0$ and satisfies the functional equation $\Gamma(s+1)=s \Gamma(s)$, which allows us to extend it to a meromorphic function on $\mathbb{C}$ whose only poles are simple poles at $s=-n$ for $n \in \mathbb{Z}_{\geq 0}$, with residue $(-1)^{n} / n$ !. The gamma function has no zeros.

The gamma function can also be defined as the Mellin transform of $e^{-t}$. Recall that the Mellin transform of a function $h: \mathbb{R}_{>0} \rightarrow \mathbb{C}$ is defined by

$$
(\mathscr{M} h)(s):=\int_{0}^{\infty} h(t) t^{s-1} d t,
$$

and is holomorphic on vertical strips $\operatorname{Re}(s) \in(a, b)$ in which $\int_{0}^{\infty}|h(t)| t^{\sigma-1} d t$ converges for all $\sigma \in(a, b)$. The Mellin transform is related to the Fourier transform, which we will also need.

Recall that a Schwarz function $f(x)$ is a $C^{\infty}$-function for which

$$
\sup _{x}\left|x^{n} \frac{d^{m} f(x)}{d x^{m}}\right|<\infty .
$$

The Fourier transform of a Schwarz function $f(x)$ is defined by

$$
(\mathscr{F} f)(y):=\int_{\mathbb{R}} f(x) e^{-2 \pi i x y} d x,
$$

and is also Schwarz function. We also have the inverse Fourier transform

$$
\left(\mathscr{F}^{-1} f\right)(x):=\int_{\mathbb{R}} f(y) e^{+2 \pi i x y} d y
$$

with $\mathscr{F}^{-1} \mathscr{F} f=\mathscr{F}_{\mathscr{F}}{ }^{-1} f=f$ for all Schwarz functions $f$. We will need the following fact about the Fourier function of the Guassian function.

Lemma 13.3. For any $a>0$ the Fourier transform of $e^{-\pi a x^{2}}$ is $\frac{1}{\sqrt{a}} e^{-\pi y^{2} / a}$.
Proof. See any textbook on Fourier analysis.
The Mellin transform is related to the Fourier transform via

$$
(\mathscr{M} h)(s)=\left(\mathscr{F} h\left(e^{-x}\right)\right)\left(\frac{s}{2 \pi i}\right),
$$

provided that $h\left(e^{-x}\right)$ is a Schwarz function. We also have the inverse Mellin transform

$$
\left(\mathscr{M}^{-1} f\right)(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{-s} f(s) d s
$$

defined for $f(s)$ holomorphic on a vertical strip $\operatorname{Re}(s) \in(a, b)$ with $c \in(a, b)$. We than have $\mathscr{M}^{-1} \mathscr{M} h=h$ and $\mathscr{M} \mathscr{M}^{-1} f=f$ for suitable $h: \mathbb{R}_{>0} \rightarrow \mathbb{C}$ and $f: \mathbb{C} \rightarrow \mathbb{C}$.

Theorem 13.4 (Poisson summation). Let $f$ be a Schwarz function with Fourier transform $\hat{f}$. Then

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n) .
$$

Proof. Both $f$ and $\hat{f}$ are Schwarz functions, which decay rapidly as $|n| \rightarrow \infty$, so the sums converge. Let $F(x):=\sum_{n \in \mathbb{Z}} f(x+n)$. Then $F$ is a periodic $C^{\infty}$-function with Fourier expansion

$$
F(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n z},
$$

whose Fourier coefficients are given by

$$
c_{n}=\int_{0}^{1} F(t) e^{-2 \pi i n t} d t=\int_{0}^{1} \sum_{m \in \mathbb{Z}} f(t+m) e^{-2 \pi i n t} d t=\int_{\mathbb{R}} f(t) e^{-2 \pi i n t} d t=\hat{f}(n)
$$

and we have

$$
\sum_{n \in \mathbb{Z}} f(n)=F(0)=\sum_{n \in \mathbb{Z}} c_{n}=\sum_{n \in \mathbb{Z}} \hat{f}(n) .
$$

We now prove Riemann's theorem for $\zeta(s)$, carefully spelling out each step (this is our model for the next section where we won't be as pedantic).
Theorem 13.5 (Riemann). Let $\Lambda(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$. Then $\Lambda(s)$ has a meromorphic continuation to $\mathbb{C}$ and $\Lambda(s)+\frac{1}{s}+\frac{1}{1-s}$ is holomorphic on $\mathbb{C}$ and satisfies $\Lambda(s)=\Lambda(1-s)$.
Proof. For $\operatorname{Re}(s)>1$ we have

$$
\begin{aligned}
\Lambda(2 s) & =\sum_{n=1}^{\infty}\left(\pi n^{2}\right)^{-s} \int_{0}^{\infty} e^{-t} t^{s-1} d t \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^{2} t} t^{s-1} d t \\
& =\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\right) t^{s-1} d t
\end{aligned}
$$

with a change of variable $t \mapsto \pi n^{2} t$ in the second line and $\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\left|t^{s-1}\right|<\infty$ justifying the third line (via Fubini). Applying Poisson summation and Lemma 13.3 to $e^{-\pi x^{2} t}$ yields

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} t}=\frac{1}{\sqrt{t}} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} / t}
$$

thus $g(t)=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} t}$ satisfies the functional equation $g(t)=\frac{1}{\sqrt{t}} g\left(\frac{1}{t}\right)$, and we have

$$
\begin{aligned}
\Lambda(2 s) & =\frac{1}{2} \int_{0}^{\infty}(g(t)-1) t^{s-1} d t \\
& =\frac{1}{2}\left(\int_{0}^{1}\left(\frac{1}{\sqrt{t}} g\left(\frac{1}{t}\right)-1\right) t^{s-1} d t+\int_{1}^{\infty}(g(t)-1) t^{s-1} d t\right) \\
& =\frac{1}{2}\left(\int_{1}^{\infty}(\sqrt{t} g(t)-1) t^{-1-s} d t+\int_{1}^{\infty}(g(t)-1) t^{s-1} d t\right) \\
& =\frac{1}{2}\left(\int_{1}^{\infty} t^{1 / 2} g(t) t^{-1-s} d t-\frac{1}{s}-\int_{1}^{\infty} t^{1 / 2-s} t^{-1} d t+\int_{1}^{\infty} t^{-1 / 2-s} d t+\int_{1}^{\infty}(g(t)-1) t^{s-1} d t\right) \\
& =\frac{1}{2} \int_{1}^{\infty}\left(t^{1 / 2-s}+t^{s}\right)(g(t)-1) t^{-1} d t-\frac{1}{2 s}-\frac{1}{1-2 s} .
\end{aligned}
$$

with a change of variable $t \mapsto \frac{1}{t}$ to get the third line. The last integral converges uniformly on any compact subset and defines a holomorphic function on $\mathbb{C}$, hence a meromorphic continuation of $\Lambda(s)$ to $\mathbb{C}$ for which $\Lambda(s)+\frac{1}{s}+\frac{1}{1-s}$ is holomorphic. The last line is invariant under the transformation $s \mapsto \frac{1}{2}-s$, which implies $\Lambda(s)=\Lambda(1-s)$.
Corollary 13.6. The function $\zeta(s)+\frac{1}{1-s}$ is holomorphic on $\mathbb{C}$.

## References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

