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These notes summarize the material in §4.3 and §4.5 of [2] covered in lecture

12.1 Hecke algebras for congruence subgroups

Let N be a positive integer. Recall the semigroups ∆0(N),∆∗0(N) ⊆ GL+2 (Q):

∆0(N) :=
��

a b
c d

�

∈M2(Z) : c ≡ 0 mod N , a ⊥ N , ad − bc > 0
	

,

∆∗0(N) :=
��

a b
c d

�

∈M2(Z) : c ≡ 0 mod N , d ⊥ N , ad − bc > 0
	

,

and the corresponding Hecke algebras:

T(N) := Z[Γ0(N)\∆0(N)/Γ0(N)],

T∗(N) := Z[Γ0(N)\∆∗0(N)/Γ0(N)],

which act on Mk(N ,χ) and Sk(N ,χ) for all N ≥ 1 and Dirichlet characters χ of modulus N via

f |kΓ0(N)αΓ0(N) = det(α)k/2−1
r
∑

i=1

χ(αi) f |kαi ,

= det(α)k−1
r
∑

i=i

χ(αi) j(αi , z)−k f (αiz),

where Γ0(N)αΓ0(N) =
∐r

i=1 Γ0(N)αi and we extend χ to
�

a b
c d

�

∈ ∆0(N) via χ(α) := χ(a) and
to
�

a b
c d

�

∈∆∗0(N) via χ∗(α) := χ(d). It follows from [2, Lemma 4.52] that

Γ0(N)\∆0(N)/Γ0(N) =
�

Γ0(N)
�

l 0
0 m

�

Γ0(N) : l, m ∈ Z≥1 with N ⊥ l|m
	

,

Γ0(N)\∆∗0(N)/Γ0(N) =
�

Γ0(N)
�

m 0
0 l

�

Γ0(N) : l, m ∈ Z≥1 with N ⊥ l|m
	

,

and distinct pairs (l, m) yield distinct double cosets on the RHS in each case. For m ⊥ N we
have

Γ0(N)
�

l 0
0 m

�

Γ0(N) = Γ0(N)
�

m 0
0 l

�

Γ0(N), (1)

but this does not contradict the statement above, we are just choosing a different representative
for this double coset depending on whether we are working with ∆0(N) or ∆∗0(N).

For positive integers l, m, n with l|m and l ⊥ N we define the following elements ofT(N),T∗(N):

T (l, m) := Γ0(N)
�

l 0
0 m

�

Γ0(N) and T ∗(m, l) := Γ0(N)
�

m 0
0 l

�

Γ0(N),

T (n) :=
∑

lm=n

T (l, m) and T ∗(n) :=
∑

lm=n

T ∗(m, l),

where the sums are taken over l, m ∈ Z≥1 with l|m and l ⊥ N as above, and we note that

T (p) = T (1, p) and T ∗(p) = T ∗(p, 1).

For n⊥ N the double coset T (n, n) is also a right coset (since
�

n 0
0 n

�

is scalar), which implies

T (n, n)T (l, m) = T (nl, nm) and T ∗(n, n)T ∗(m, l) = T ∗(nm, nl).

Lemma 12.1. For any f ∈ Mk(N ,χ) and positive integers l, m, n with l|m and lmn⊥ N we have

f |kT ∗(m, l) = χ(lm) f |kT (l, m) and f |kT ∗(n) = χ(n) f |kT (n).
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Proof. We have m⊥ N and (1) implies that we can choose right coset representatives α1, . . . ,αr
for T (l, m) = T ∗(m, l) with αi ∈∆0(N)∩∆∗0(N) so that

χ∗(αi) = χ(detαi)χ(αi) = χ(lm)χ(αi),

for 1≤ i ≤ r, since for αi =
�

a b
c d

�

we have

χ∗(αi)/χ(αi) = χ(d)/χ(a) = χ(d)χ(a) = χ(ad) = χ(ad − bc) = χ(detα) = χ(lm),

because c ≡ 0 mod N and χ is a Dirichlet character of modulus N . We then have

f |kT ∗(m, l) = (lm)k/2−1
∑

i

χ∗(αi) f |kαi

= χ(lm)(lm)k/2−1
∑

i

χ(αi) f |kαi

= χ(lm) f |kT (l, m),

and
f |kT ∗(n) =

∑

lm=n

fk|T ∗(m, l) =
∑

lm=n

χ f |kT (lm) = χ(n) f |kT (n).

12.2 Quick linear algebra review

Let V be a complex vector space. A function 〈·, ·〉: V × V → C that satisfies

• 〈u+λv, w〉= 〈u, w〉+λ〈v, w〉,

• 〈u, v〉= 〈v, u〉
�

which then implies 〈u, v +λw〉= 〈u, v〉+ λ̄〈u, w〉
�

,

• 〈u, u〉 ≥ 0 with 〈u, u〉= 0 only if u= 0,

for all λ ∈ C and u, v, w ∈ V is a (positive definite) Hermitian inner product. For every N ∈ Z≥1,
k ∈ Z and Dirichlet character χ of modulus N , the Petersson inner product is a Hermitian inner
product on the C-vector space Sk(N ,χ), making it a (positive definite) Hermitian space.

If T is a linear transformation of a Hermitian space V , a linear operator T ∗ that satisfies
〈Tu, v〉= 〈u, T ∗v〉 for all u, v ∈ V is the adjoint operator of T ; it is necessarily unique and guar-
anteed to exist when V is finite dimensional (take the linear operator defined by the conjugate
transpose of a matrix representing T with respect to a 〈·, ·〉-orthonormal basis for V ).

For all u, v ∈ V and linear transformations S, T we have

• 〈Tu, v〉= 〈u, T ∗v〉= 〈T ∗v, u〉= 〈v, (T ∗) ∗ u〉= 〈(T ∗)∗u, v〉,

• 〈(S + T )u, v〉= 〈Su, v〉+ 〈Tu, v〉= 〈u, S∗v〉+ 〈u, T ∗v〉= 〈u, (S∗ + T ∗)v〉,

thus T is the adjoint of its adjoint and the adjoint of the sum is the sum of the adjoints.
Linear operators on a Hermitian space may be classified as

• Hermitian: T = T ∗,

• unitary: T T ∗ = 1,

• normal: T T ∗ = T ∗T .
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If V is finite dimensional and we fix a 〈·, ·〉-orthonormal basis, then the matrix M representing
T is Hermitian (M = M∗), unitary (M M∗ = 1), normal (M M∗ = M∗M) if and only if T is. Her-
mitian and unitary operators are normal, but normal operators need not be Hermitian/unitary.
The essential property of normal operators is that their eigenspaces are orthogonal, in fact this
property uniquely characterizes normal operators.

Theorem 12.2 (Spectral theorem). Let T be a linear operator on a Hermitian space V of finite
dimension. Then T is normal if and only if V is the orthogonal sum of the eigenspaces of T .

Proof. This is Theorem 7.31 in [1].

If T = {T1, T2, T3, . . .} is a (possibly infinite) family of normal operators on a finite dimen-
sional Hermitian space V that pairwise commute, then V has an orthonormal basis whose ele-
ments are simultaneous eigenvectors of every T ∈ T ; this follows from the fact that diagonal-
izable operators that commute can be simultaneously diagonalized; see [1, Theorem 5.76].

12.3 Adjoint Hecke operators

We now want to apply the spectral theorem to Hecke operators in T(N) acting on the Hermitian
space Sk(N ,χ). We continue in the setting of §12.1, with χ a Dirichlet character of modulus
N extended to ∆0(N) and ∆∗0(N) as above, and Hecke operators T (l, m) and T (n) defined as
above for positive integers with l|m and l ⊥ N .

Theorem 12.3. T (l, m) and T ∗(m, l) are adjoint operators on the Hermitian space Sk(N ,χ) with
the Petersson inner product, as are T (n) and T ∗(n).

Proof. For α =
�

a b
c d

�

∈ GL+2 (R) let α′ := det(α)α−1 =
�

d −b
−c a

�

. The map α 7→ α′ is an anti-
isomorphism form ∆0(N) to ∆∗0(N), which allows us to choose coset representatives

Γ0(N)
�

l 0
0 m

�

Γ0(N) =
r
∏

i

Γ0(N)αi

so that

Γ0(N)
�

m 0
0 l

�

Γ0(N) =
r
∏

i

Γ0(N)α
′
i ,

and we have χ(αi) = χ∗(α′i). For g ∈ Sk(N ,χ) and any α= αi we have




f |kα, g
�

= v(Γ0(N)\H)−1
∫

Γ0(n)\H
det(α)k/2 j(α, z)−k f (αz)g(z) Im(z)kdv(z)

= v(Γ0(N)\H)−1
∫

αΓ0(n)α−1\H
det(α)k/2 j(α,α−1z)−k f (z)g(α−1z) Im(α−1z)kdv(α−1z).

We have α−1z = α′z for any z ∈ H and αα′ = det(α) = det(α′). For γ,δ ∈ GL+2 (R) we have
j(γ,δz) = j(γδ, z)/ j(δ, z) and Im(δz) = det(δ)| j(δ, z)|−2 Im(z). Taking γ= α and δ = α′ yields

det(α)k/2 j(α,α−1z)−k Im(α−1z)k = det(α′)k/2 j(α,α′z)−k Im(α′z)k

= det(α′)k/2(det(α′)/ j(α′, z))−k(det(α′)| j(α′, z)|−2 Im(z))k

= det(α′)k j(α′, z)−k Im(z)k.
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Now v is the invariant measure, so v(αΓ0(N)α−1\H) = v(Γ0(N)\H) and dv(α−1z) = dv(z), and




f |kα, g
�

= v(αΓ0(N)α
−1\H)−1

∫

αΓ0(n)α−1\H
f (z)det(α′)k/2 j(α′, z)−k g(α′z) Im(z)kdv(z)

=



f , g|kα′
�

.

Left linearity and right sesquilinearity of the Petersson inner product then implies




f |kT (l, m), g
�

=

® r
∑

i=1

det(αi)
k/2−1χ(αi) f |kαi , g

¸

=
r
∑

i=1

det(αi)
k/2−1χ(α′i)




f |kαi , g
�

=
r
∑

i=1

det(α′i)
k/2−1χ∗(α′i)




f , g|kα′i
�

=



f ,
r
∑

i=1

det(α′i)
k/2−1χ∗(α′i)g|kα

′
i

�

=



f , g|kT ∗(m, l)
�

,

proving that T (l, m) and T ∗(m, l) are adjoint operators as claimed, as are T (n) =
∑

lm=n T (l, m)
and T ∗(n) =

∑

lm=n T ∗(m, l)

Corollary 12.4. For l|m and lmn⊥ N the Hecke operators T (l, m) and T (n) are normal operators
on the Hermitian space Sk(N ,χ).

Proof. By Lemma 12.1 we have

T (l, m)T ∗(m, l) = T (l, m)χ(lm)T (l, m) = χT (l, m)T (l, m) = T ∗(m, l)T (l, m),

which shows that T (l, m) commutes with its adjoint T ∗(m, l), by Theorem 12.3. So T (l, m) is a
normal operator, and the same argument applies to T (n).1

Corollary 12.5. The C-vector space Sk(N ,χ) has a basis of common eigenfunctions for the Hecke
operators T (n) and T (l, m) with l|m and lmn⊥ N.

Proof. The Hecke algebra T(N) is commutative, by Theorem 10.3, and the spectral theorem
implies that Sk(N ,χ) admits a basis of simultaneous eigenvectors for the operators T (l, m) and
T (n) when they are normal, which holds for lmn⊥ N , by the previous corollary.

Proposition 12.6. The isomorphisms Mk(N ,χ)' Mk(N ,χ) and Sk(N ,χ)' Sk(N ,χ) induced by
the map f 7→ f |k

�

0 −1
N 0

�

commute with the Hecke operators T (l, m) and T (n) for l|m with l, n⊥ n.

Proof. This is Theorem 4.5.5 in [2].

Lemma 12.7. For all prime numbers p and e ≥ 1 we have

• T (p)(T (1, pe) = T (1, pe+1) +











(p+ 1)T (p, p) if p - N and e = 1,

pT (p, p)T (1, pe−1) if p - N and e > 1,

0 otherwise.

1Note that a sum of normal operators need not be normal, so one really does need to apply the argument to T (n).
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• T (p)T (pe) =

¨

T (pe+1) + pT (p, pT (pe−1) if p - N ,

T (pe+1) otherwise.

Proof. This is Lemma 4.5.7 in [2].

Lemma 12.8. For positive integers l ′|m′ with lm⊥ l ′m′, and m⊥ n we have

• T (l, m)T (l ′, m′) = T (l l ′, mm′),

• T (m)T (n) = T (mn).

Proof. This is Lemma 4.5.8 in [2].

Theorem 12.9. The Hecke algebra T(N) is equal to the polynomial ring over Z generated by the
Hecke operators T (p), T (p, p), T (q) for prime numbers p - N and q|N.

Proof. That T (p), T (p, p), T (q) generate T(N) follows from the commutativity of T(N) and the
preceeding lemmas, and one can verify that they are algebraically independent over Q.

Lemma 12.10. Let p be prime, e ≥ 1. If p - N then Γ0(N)
� 1 0

0 pe

�

Γ0(N) contains pe + pe−1 distinct
right cosets Γ0(N)α with

α ∈
¦�

pe−r m
e p f

�

: 0≤ f ≤ e, 0≤ m< p f , gcd(m, p f , pe− f ) = 1
©

,

and if p|N then Γ0(N)
� 1 0

0 pe

�

Γ0(N) contains pe distinct right cosets Γ0(N)α with

α ∈
¦

� 1 m
e pe

�

: 0≤ m< pe
©

,

Proof. See Lemma 4.5.6 in [2].

Let l|m be positive integers with l ⊥ N , and let m/l = pe1
1 · · · p

er
r . Then

T (l, m) = T (l, l)T (1, m/l) = T (l, l)
r
∏

i=1

T (1, pei
i ),

and we obtain right coset decompositions

T (l, m) =
∐

Γ0(N)
�

a b
0 d

�

(ad = lm, 0≤ b < d, gcd(a, b, d) = l)

T (n) =
∐

Γ0(N)
�

a b
0 d

�

(ad = n, 0≤ b < d, a ⊥ N).

It follows that for f ∈ Mk(N ,χ) we have

( f |kT (n))(z) = nk−1
∑

ad=n
0≤b<d

χ(a)d−k f
� az+b

d

�

and for l ⊥ N we have
( fk|T (l, l))(z) = lk−2χ(l) f (z).
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