These notes summarize the material in §4.3 and §4.5 of [2] covered in lecture

12.1 Hecke algebras for congruence subgroups

Let *N* be a positive integer. Recall the semigroups $\Delta_0(N), \Delta_0^*(N) \subseteq GL_2^+(\mathbb{Q})$:

$$\Delta_0(N) \coloneqq \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) : c \equiv 0 \mod N, a \perp N, ad - bc > 0 \right\},$$
$$\Delta_0^*(N) \coloneqq \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) : c \equiv 0 \mod N, d \perp N, ad - bc > 0 \right\},$$

and the corresponding Hecke algebras:

$$\mathbb{T}(N) \coloneqq \mathbb{Z}[\Gamma_0(N) \setminus \Delta_0(N) / \Gamma_0(N)],$$
$$\mathbb{T}^*(N) \coloneqq \mathbb{Z}[\Gamma_0(N) \setminus \Delta_0^*(N) / \Gamma_0(N)],$$

which act on $M_k(N, \chi)$ and $S_k(N, \chi)$ for all $N \ge 1$ and Dirichlet characters χ of modulus N via

$$f|_{k}\Gamma_{0}(N)\alpha\Gamma_{0}(N) = \det(\alpha)^{k/2-1}\sum_{i=1}^{r}\overline{\chi}(\alpha_{i})f|_{k}\alpha_{i},$$
$$= \det(\alpha)^{k-1}\sum_{i=i}^{r}\overline{\chi}(\alpha_{i})j(\alpha_{i},z)^{-k}f(\alpha_{i}z)$$

where $\Gamma_0(N) \alpha \Gamma_0(N) = \coprod_{i=1}^r \Gamma_0(N) \alpha_i$ and we extend χ to $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta_0(N)$ via $\chi(\alpha) \coloneqq \overline{\chi}(a)$ and to $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Delta_0^*(N)$ via $\chi^*(\alpha) \coloneqq \chi(d)$. It follows from [2, Lemma 4.52] that

$$\Gamma_{0}(N) \setminus \Delta_{0}(N) / \Gamma_{0}(N) = \left\{ \Gamma_{0}(N) \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix} \Gamma_{0}(N) : l, m \in \mathbb{Z}_{\geq 1} \text{ with } N \perp l | m \right\},$$

$$\Gamma_{0}(N) \setminus \Delta_{0}^{*}(N) / \Gamma_{0}(N) = \left\{ \Gamma_{0}(N) \begin{pmatrix} m & 0 \\ 0 & l \end{pmatrix} \Gamma_{0}(N) : l, m \in \mathbb{Z}_{\geq 1} \text{ with } N \perp l | m \right\},$$

and distinct pairs (l, m) yield distinct double cosets on the RHS in each case. For $m \perp N$ we have

$$\Gamma_0(N) \begin{pmatrix} l & 0\\ 0 & m \end{pmatrix} \Gamma_0(N) = \Gamma_0(N) \begin{pmatrix} m & 0\\ 0 & l \end{pmatrix} \Gamma_0(N), \tag{1}$$

but this does not contradict the statement above, we are just choosing a different representative for this double coset depending on whether we are working with $\Delta_0(N)$ or $\Delta_0^*(N)$.

For positive integers l, m, n with l|m and $l \perp N$ we define the following elements of $\mathbb{T}(N), \mathbb{T}^*(N)$:

$$T(l,m) \coloneqq \Gamma_0(N) \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix} \Gamma_0(N) \quad \text{and} \quad T^*(m,l) \coloneqq \Gamma_0(N) \begin{pmatrix} m & 0 \\ 0 & l \end{pmatrix} \Gamma_0(N),$$
$$T(n) \coloneqq \sum_{lm=n} T(l,m) \quad \text{and} \quad T^*(n) \coloneqq \sum_{lm=n} T^*(m,l),$$

where the sums are taken over $l, m \in \mathbb{Z}_{\geq 1}$ with $l \mid m$ and $l \perp N$ as above, and we note that

T(p) = T(1, p) and $T^*(p) = T^*(p, 1)$.

For $n \perp N$ the double coset T(n, n) is also a right coset (since $\begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}$ is scalar), which implies

$$T(n,n)T(l,m) = T(nl,nm)$$
 and $T^*(n,n)T^*(m,l) = T^*(nm,nl)$.

Lemma 12.1. For any $f \in M_k(N, \chi)$ and positive integers l, m, n with l|m and $lmn \perp N$ we have

$$f|_k T^*(m,l) = \overline{\chi}(lm) f|_k T(l,m)$$
 and $f|_k T^*(n) = \overline{\chi}(n) f|_k T(n)$.

Proof. We have $m \perp N$ and (1) implies that we can choose right coset representatives $\alpha_1, \ldots, \alpha_r$ for $T(l, m) = T^*(m, l)$ with $\alpha_i \in \Delta_0(N) \cap \Delta_0^*(N)$ so that

$$\chi^*(\alpha_i) = \chi(\det \alpha_i)\chi(\alpha_i) = \chi(lm)\chi(\alpha_i)$$

for $1 \le i \le r$, since for $\alpha_i = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we have

$$\chi^*(\alpha_i)/\chi(\alpha_i) = \chi(d)/\overline{\chi}(a) = \chi(d)\chi(a) = \chi(ad) = \chi(ad - bc) = \chi(\det \alpha) = \chi(lm),$$

because $c \equiv 0 \mod N$ and χ is a Dirichlet character of modulus *N*. We then have

$$f|_{k}T^{*}(m,l) = (lm)^{k/2-1} \sum_{i} \overline{\chi^{*}}(\alpha_{i})f|_{k}\alpha_{i}$$
$$= \overline{\chi}(lm)(lm)^{k/2-1} \sum_{i} \overline{\chi}(\alpha_{i})f|_{k}\alpha_{i}$$
$$= \overline{\chi}(lm)f|_{k}T(l,m),$$

and

$$f|_{k}T^{*}(n) = \sum_{lm=n} f_{k}|T^{*}(m,l) = \sum_{lm=n} \overline{\chi}f|_{k}T(lm) = \overline{\chi}(n)f|_{k}T(n).$$

12.2 Quick linear algebra review

Let *V* be a complex vector space. A function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ that satisfies

•
$$\langle u + \lambda v, w \rangle = \langle u, w \rangle + \lambda \langle v, w \rangle$$
,

- $\langle u, v \rangle = \overline{\langle v, u \rangle}$ (which then implies $\langle u, v + \lambda w \rangle = \langle u, v \rangle + \overline{\lambda} \langle u, w \rangle$),
- $\langle u, u \rangle \ge 0$ with $\langle u, u \rangle = 0$ only if u = 0,

for all $\lambda \in \mathbb{C}$ and $u, v, w \in V$ is a (positive definite) Hermitian inner product. For every $N \in \mathbb{Z}_{\geq 1}$, $k \in \mathbb{Z}$ and Dirichlet character χ of modulus N, the Petersson inner product is a Hermitian inner product on the \mathbb{C} -vector space $S_k(N, \chi)$, making it a (positive definite) Hermitian space.

If *T* is a linear transformation of a Hermitian space *V*, a linear operator T^* that satisfies $\langle Tu, v \rangle = \langle u, T^*v \rangle$ for all $u, v \in V$ is the adjoint operator of *T*; it is necessarily unique and guaranteed to exist when *V* is finite dimensional (take the linear operator defined by the conjugate transpose of a matrix representing *T* with respect to a $\langle \cdot, \cdot \rangle$ -orthonormal basis for *V*).

For all $u, v \in V$ and linear transformations S, T we have

•
$$\langle Tu, v \rangle = \langle u, T^*v \rangle = \overline{\langle T^*v, u \rangle} = \overline{\langle v, (T^*) * u \rangle} = \langle (T^*)^*u, v \rangle,$$

•
$$\langle (S+T)u, v \rangle = \langle Su, v \rangle + \langle Tu, v \rangle = \langle u, S^*v \rangle + \langle u, T^*v \rangle = \langle u, (S^*+T^*)v \rangle,$$

thus *T* is the adjoint of its adjoint and the adjoint of the sum is the sum of the adjoints. Linear operators on a Hermitian space may be classified as

- Hermitian: $T = T^*$,
- unitary: $TT^* = 1$,
- normal: $TT^* = T^*T$.

If *V* is finite dimensional and we fix a $\langle \cdot, \cdot \rangle$ -orthonormal basis, then the matrix *M* representing *T* is Hermitian ($M = M^*$), unitary ($MM^* = 1$), normal ($MM^* = M^*M$) if and only if *T* is. Hermitian and unitary operators are normal, but normal operators need not be Hermitian/unitary. The essential property of normal operators is that their eigenspaces are orthogonal, in fact this property uniquely characterizes normal operators.

Theorem 12.2 (Spectral theorem). Let T be a linear operator on a Hermitian space V of finite dimension. Then T is normal if and only if V is the orthogonal sum of the eigenspaces of T.

Proof. This is Theorem 7.31 in [1].

If $\mathscr{T} = \{T_1, T_2, T_3, ...\}$ is a (possibly infinite) family of normal operators on a finite dimensional Hermitian space *V* that pairwise commute, then *V* has an orthonormal basis whose elements are simultaneous eigenvectors of every $T \in \mathscr{T}$; this follows from the fact that diagonalizable operators that commute can be simultaneously diagonalized; see [1, Theorem 5.76].

12.3 Adjoint Hecke operators

We now want to apply the spectral theorem to Hecke operators in T(N) acting on the Hermitian space $S_k(N, \chi)$. We continue in the setting of §12.1, with χ a Dirichlet character of modulus N extended to $\Delta_0(N)$ and $\Delta_0^*(N)$ as above, and Hecke operators T(l,m) and T(n) defined as above for positive integers with l|m and $l \perp N$.

Theorem 12.3. T(l,m) and $T^*(m,l)$ are adjoint operators on the Hermitian space $S_k(N, \chi)$ with the Petersson inner product, as are T(n) and $T^*(n)$.

Proof. For $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ let $\alpha' := \operatorname{det}(\alpha)\alpha^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. The map $\alpha \mapsto \alpha'$ is an antiisomorphism form $\Delta_0(N)$ to $\Delta_0^*(N)$, which allows us to choose coset representatives

$$\Gamma_0(N) \begin{pmatrix} l & 0 \\ 0 & m \end{pmatrix} \Gamma_0(N) = \prod_i^r \Gamma_0(N) \alpha_i$$

so that

$$\Gamma_0(N) \begin{pmatrix} m & 0 \\ 0 & l \end{pmatrix} \Gamma_0(N) = \prod_i^r \Gamma_0(N) \alpha_i',$$

and we have $\chi(\alpha_i) = \overline{\chi^*}(\alpha'_i)$. For $g \in S_k(N, \chi)$ and any $\alpha = \alpha_i$ we have

$$\left\langle f|_{k} \alpha, g \right\rangle = \nu(\Gamma_{0}(N) \setminus \mathbf{H})^{-1} \int_{\Gamma_{0}(n) \setminus H} \det(\alpha)^{k/2} j(\alpha, z)^{-k} f(\alpha z) \overline{g(z)} \operatorname{Im}(z)^{k} d\nu(z)$$

= $\nu(\Gamma_{0}(N) \setminus \mathbf{H})^{-1} \int_{\alpha \Gamma_{0}(n) \alpha^{-1} \setminus H} \det(\alpha)^{k/2} j(\alpha, \alpha^{-1} z)^{-k} f(z) \overline{g(\alpha^{-1} z)} \operatorname{Im}(\alpha^{-1} z)^{k} d\nu(\alpha^{-1} z).$

We have $\alpha^{-1}z = \alpha'z$ for any $z \in \mathbf{H}$ and $\alpha\alpha' = \det(\alpha) = \det(\alpha')$. For $\gamma, \delta \in \mathrm{GL}_2^+(\mathbb{R})$ we have $j(\gamma, \delta z) = j(\gamma \delta, z)/j(\delta, z)$ and $\mathrm{Im}(\delta z) = \det(\delta)|j(\delta, z)|^{-2} \mathrm{Im}(z)$. Taking $\gamma = \alpha$ and $\delta = \alpha'$ yields

$$det(\alpha)^{k/2} j(\alpha, \alpha^{-1}z)^{-k} \operatorname{Im}(\alpha^{-1}z)^{k} = det(\alpha')^{k/2} j(\alpha, \alpha'z)^{-k} \operatorname{Im}(\alpha'z)^{k}$$
$$= det(\alpha')^{k/2} (det(\alpha')/j(\alpha', z))^{-k} (det(\alpha')|j(\alpha', z)|^{-2} \operatorname{Im}(z))^{k}$$
$$= det(\alpha')^{k} \overline{j(\alpha', z)^{-k}} \operatorname{Im}(z)^{k}.$$

Now *v* is the invariant measure, so $v(\alpha\Gamma_0(N)\alpha^{-1}\backslash H) = v(\Gamma_0(N)\backslash H)$ and $dv(\alpha^{-1}z) = dv(z)$, and

$$\begin{split} \left\langle f |_{k} \alpha, g \right\rangle &= \nu(\alpha \Gamma_{0}(N) \alpha^{-1} \setminus \mathbf{H})^{-1} \int_{\alpha \Gamma_{0}(n) \alpha^{-1} \setminus \mathbf{H}} f(z) \overline{\det(\alpha')^{k/2} j(\alpha', z)^{-k} g(\alpha' z)} \operatorname{Im}(z)^{k} d\nu(z) \\ &= \left\langle f, g |_{k} \alpha' \right\rangle. \end{split}$$

Left linearity and right sesquilinearity of the Petersson inner product then implies

$$\begin{split} \left\langle f|_{k}T(l,m),g\right\rangle &= \left\langle \sum_{i=1}^{r} \det(\alpha_{i})^{k/2-1}\overline{\chi}(\alpha_{i})f|_{k}\alpha_{i}, g\right\rangle \\ &= \sum_{i=1}^{r} \det(\alpha_{i})^{k/2-1}\overline{\chi}(\alpha_{i}')\left\langle f|_{k}\alpha_{i},g\right\rangle \\ &= \sum_{i=1}^{r} \det(\alpha_{i}')^{k/2-1}\chi^{*}(\alpha_{i}')\left\langle f,g|_{k}\alpha_{i}'\right\rangle \\ &= \left\langle f,\sum_{i=1}^{r} \det(\alpha_{i}')^{k/2-1}\overline{\chi}^{*}(\alpha_{i}')g|_{k}\alpha_{i}'\right\rangle = \left\langle f,g|_{k}T^{*}(m,l)\right\rangle, \end{split}$$

proving that T(l, m) and $T^*(m, l)$ are adjoint operators as claimed, as are $T(n) = \sum_{lm=n} T(l, m)$ and $T^*(n) = \sum_{lm=n} T^*(m, l)$

Corollary 12.4. For l|m and $lmn \perp N$ the Hecke operators T(l,m) and T(n) are normal operators on the Hermitian space $S_k(N, \chi)$.

Proof. By Lemma 12.1 we have

$$T(l,m)T^*(m,l) = T(l,m)\overline{\chi}(lm)T(l,m) = \overline{\chi}T(l,m)T(l,m) = T^*(m,l)T(l,m),$$

which shows that T(l,m) commutes with its adjoint $T^*(m,l)$, by Theorem 12.3. So T(l,m) is a normal operator, and the same argument applies to T(n).¹

Corollary 12.5. The \mathbb{C} -vector space $S_k(N, \chi)$ has a basis of common eigenfunctions for the Hecke operators T(n) and T(l,m) with l|m and $lmn \perp N$.

Proof. The Hecke algebra T(N) is commutative, by Theorem 10.3, and the spectral theorem implies that $S_k(N, \chi)$ admits a basis of simultaneous eigenvectors for the operators T(l, m) and T(n) when they are normal, which holds for $lmn \perp N$, by the previous corollary.

Proposition 12.6. The isomorphisms $M_k(N, \chi) \simeq M_k(N, \overline{\chi})$ and $S_k(N, \chi) \simeq S_k(N, \overline{\chi})$ induced by the map $f \mapsto f|_k \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$ commute with the Hecke operators T(l,m) and T(n) for l|m with $l, n \perp n$.

Proof. This is Theorem 4.5.5 in [2].

Lemma 12.7. For all prime numbers p and $e \ge 1$ we have

•
$$T(p)(T(1,p^e) = T(1,p^{e+1}) + \begin{cases} (p+1)T(p,p) & \text{if } p \nmid N \text{ and } e = 1, \\ pT(p,p)T(1,p^{e-1}) & \text{if } p \nmid N \text{ and } e > 1, \\ 0 & \text{otherwise.} \end{cases}$$

¹Note that a sum of normal operators need not be normal, so one really does need to apply the argument to T(n).

•
$$T(p)T(p^e) = \begin{cases} T(p^{e+1}) + pT(p, pT(p^{e-1}) & \text{if } p \nmid N, \\ T(p^{e+1}) & \text{otherwise.} \end{cases}$$

Proof. This is Lemma 4.5.7 in [2].

Lemma 12.8. For positive integers l'|m' with $lm \perp l'm'$, and $m \perp n$ we have

- T(l,m)T(l',m') = T(ll',mm'),
- T(m)T(n) = T(mn).

Proof. This is Lemma 4.5.8 in [2].

Theorem 12.9. The Hecke algebra $\mathbb{T}(N)$ is equal to the polynomial ring over \mathbb{Z} generated by the Hecke operators T(p), T(p,p), T(q) for prime numbers $p \nmid N$ and $q \mid N$.

Proof. That T(p), T(p,p), T(q) generate T(N) follows from the commutativity of T(N) and the preceeding lemmas, and one can verify that they are algebraically independent over \mathbb{Q} .

Lemma 12.10. Let p be prime, $e \ge 1$. If $p \nmid N$ then $\Gamma_0(N) \begin{pmatrix} 1 & 0 \\ 0 & p^e \end{pmatrix} \Gamma_0(N)$ contains $p^e + p^{e-1}$ distinct right cosets $\Gamma_0(N) \alpha$ with

$$\alpha \in \left\{ \begin{pmatrix} p^{e-r} & m \\ e & p^f \end{pmatrix} : 0 \le f \le e, 0 \le m < p^f, \gcd(m, p^f, p^{e-f}) = 1 \right\},\$$

and if p|N then $\Gamma_0(N) \begin{pmatrix} 1 & 0 \\ 0 & p^e \end{pmatrix} \Gamma_0(N)$ contains p^e distinct right cosets $\Gamma_0(N)\alpha$ with

$$\alpha \in \left\{ \left(\begin{smallmatrix} 1 & m \\ e & p^e \end{smallmatrix}\right) : 0 \le m < p^e \right\},\$$

Proof. See Lemma 4.5.6 in [2].

Let l|m be positive integers with $l \perp N$, and let $m/l = p_1^{e_1} \cdots p_r^{e_r}$. Then

$$T(l,m) = T(l,l)T(1,m/l) = T(l,l)\prod_{i=1}^{r} T(1,p_i^{e_i}),$$

and we obtain right coset decompositions

$$T(l,m) = \prod_{n \in \mathbb{N}} \Gamma_0(N) \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \qquad (ad = lm, 0 \le b < d, \gcd(a, b, d) = l)$$
$$T(n) = \prod_{n \in \mathbb{N}} \Gamma_0(N) \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \qquad (ad = n, 0 \le b < d, a \perp N).$$

It follows that for $f \in M_k(N, \chi)$ we have

$$(f|_k T(n))(z) = n^{k-1} \sum_{\substack{ad=n\\0 \le b < d}} \chi(a) d^{-k} f\left(\frac{az+b}{d}\right)$$

and for $l \perp N$ we have

$$(f_k|T(l,l))(z) = l^{k-2}\chi(l)f(z)$$

References

- [1] Sheldon Axler, *Linear algebra done right*, Fourth Edition, Springer, 2023.
- [2] Toshitsune Miyake, *Modular forms*, Springer, 2006.