These notes summarize the material in $\S 4.3$ and $\S 4.5$ of [1] covered in lecture

11.1 Modular forms for congruence subgroups

Definition 11.1. For each positive integer N the principal congruence subgroup of level N is

$$
\Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv 1 \bmod N\right\} .
$$

A subgroup $\Gamma \leq \Gamma(1)$ that contains $\Gamma(N)$ for some $N \geq 1$ is a congruence subgroup. The least such $N \geq 1$ is the level of Γ. The set of congruence subgroups of level N includes the groups

$$
\begin{aligned}
& \Gamma_{0}(N):=\left\{\gamma \in \Gamma(1): \gamma \equiv\binom{* *}{0} \bmod N\right\}, \\
& \Gamma_{1}(N):=\left\{\gamma \in \Gamma(1): \gamma \equiv\left(\begin{array}{cc}
1 \\
0 & *
\end{array}\right) \bmod N\right\} .
\end{aligned}
$$

Congruence subgroups are lattices in $\mathrm{SL}_{2}(\mathbb{R})$, so Fuchsian groups of the first kind.
If Γ is a congruence subgroup containing $\Gamma(N)$, then $M_{k}(\Gamma) \subseteq M_{k}(\Gamma(N))$ for any $k \in \mathbb{Z}$. Moreover, for $\delta_{N}:=\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we have

$$
\delta_{N}^{-1} \Gamma(N) \delta_{N}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N^{2}, a \equiv d \equiv 1 \bmod N\right\} \supseteq \Gamma_{1}\left(N^{2}\right)
$$

Thus for any $f \in M_{k}(\Gamma(N))$ we have

$$
f(N z)=N^{-k / 2}\left(\left.f\right|_{k} \delta_{N}\right)(z) \in M_{k}\left(\Gamma_{1}\left(N^{2}\right),\right.
$$

and if $f(z)=\sum_{n \geq 0} a_{n} q^{n / N}$ is the q-expansion of f at ∞ (with $q(z):=e^{2 \pi i n z}$), then

$$
f(N z)=\sum_{n \geq 0} a_{n} q^{n},
$$

and we can read off the Fourier coefficients of $f(N z)$ from those of $f(z)$. It follows that provided we are willing to square the level when necessary, the study of modular forms for congruence subgroups reduces to the study of modular forms for $\Gamma_{1}(N)$.

Now let χ be a Dirichlet character of modulus N; this means that $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a periodic multiplicative function that is the extension by zero of a group homomorphism $(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}$. The set of all such χ form a group $X(N)$ that can be identified with the character group of $(\mathbb{Z} / N \mathbb{Z})^{\times}$, which is abstractly isomorphic to its dual $(\mathbb{Z} / N \mathbb{Z})^{\times}$, since $(\mathbb{Z} / N \mathbb{Z})^{\times}$is abelian.

We define a character $\chi: \Gamma_{0}(N) \rightarrow \mathbb{C}$ via

$$
\chi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right):=\chi(d)
$$

Lemma 11.2. For each positive integer N we have \mathbb{C}-vector space decompositions

$$
M_{k}\left(\Gamma_{1}(N)\right)=\bigoplus_{\chi \in X(N)} M_{k}\left(\Gamma_{0}(N), \chi\right) \quad \text { and } \quad S_{k}\left(\Gamma_{1}(N)=\bigoplus_{\chi \in X(N)} S_{k}\left(\Gamma_{0}(N), \chi\right) .\right.
$$

Proof. We have $\Gamma_{1}(N) \unlhd \Gamma_{0}(N)$ and an action of Γ_{0} on $M_{k}\left(\Gamma_{1}(N)\right)$ and $S_{k}\left(\Gamma_{1}(N)\right)$ via $\left.f \mapsto f\right|_{k} \gamma$ in which elements of $\Gamma_{1}(N)$ act trivially. This induces a representation of $\Gamma_{0}(N) / \Gamma_{1}(N) \simeq(\mathbb{Z} / N \mathbb{Z})^{\times}$. Now $(\mathbb{Z} / N \mathbb{Z})^{\times}$is abelian, with character group $X(N)$, so every such representation is induced by a Dirichlet character $\chi \in X(N)$, and the decompositions above are simply decompositions into irreducible representations.

The lemma implies that we can restrict our study of modular forms for congruence subgroups to the spaces $M_{k}\left(\Gamma_{0}(N), \chi\right)$ and $S_{k}\left(\Gamma_{0}(N), \chi\right)$, and to simplify the notation we define

$$
M_{k}(N, \chi):=M_{k}\left(\Gamma_{0}(N), \chi\right) \quad \text { and } \quad S_{k}(N, \chi):=S_{k}\left(\Gamma_{0}(N), \chi\right),
$$

and just write $M_{k}(N)$ and $S_{k}(N)$ when the character χ is the trivial character of modulus N. For any multiple M of N, each $\chi \in X(N)$ induces a character $\chi \in X(M)$, and we have

$$
M_{k}(N, \chi) \subseteq M_{k}(M, \chi) \quad \text { and } \quad S_{k}(N, \chi) \subseteq S_{k}(M, \chi)
$$

Definition 11.3. A Dirichlet character χ has even parity if $\chi(-1)=1$, and odd parity otherwise (in which case we necessarily have $\chi(-1)=-1$).

Lemma 11.4. If k and χ do not have the same parity then $M_{k}(N, \chi)=\{0\}$.
Proof. We have $-1 \in \Gamma_{0}(N)$ and $f=\chi(-1) f_{k} \mid-1=\chi(-1)(-1)^{k} f$ cannot hold for $f \neq 0$ unless k and χ have the same parity.

Definition 11.5. Fix $N \geq 1$. For each positive integer d coprime to N we define the diamond operator $\langle d\rangle$ on $M_{k}\left(\Gamma_{1}(N)\right)$ via

$$
\langle d\rangle f:=\left.f\right|_{k} \alpha,
$$

for any $\alpha=\left(\begin{array}{ll}a & b \\ c & \delta\end{array}\right) \in \Gamma_{0}(N)$ with $\delta \equiv d \bmod N$. The map $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow d$ on $\Gamma_{0}(N)$ has kernel $\Gamma_{1}(N)$, so the definition of $\langle d\rangle$ does not depend on the choice of α, since $f=\left.f\right|_{k} \gamma$ for $\gamma \in \Gamma_{1}(N)$.

The spaces $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$ are χ-eigenspaces of diamond operators:

$$
\begin{aligned}
M_{k}(N, \chi) & =\left\{f \in M_{k}\left(\Gamma_{1}(N)\right):\langle d\rangle f=\chi(d) f \text { for all } d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\}, \\
S_{k}(N, \chi) & =\left\{f \in S_{k}\left(\Gamma_{1}(N)\right):\langle d\rangle f=\chi(d) f \text { for all } d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\} .
\end{aligned}
$$

For each positive integer N we define

$$
\omega(N)=\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q}) .
$$

Lemma 11.6. The map $\left.f \mapsto f\right|_{k} \omega(N)$ induces isomorphisms

$$
M_{k}(N, \chi) \simeq M_{k}(N, \bar{\chi}) \quad \text { and } \quad S_{k}(N, \chi) \simeq S_{k}(N, \bar{\chi}) .
$$

Proof. Let $f \in M_{k}(N, \chi)$ and put $g=\left.f\right|_{k} \omega(N)$. For $\gamma=\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{0}(N)$ we have

$$
\omega(N) \gamma \omega_{N}^{-1}=\left(\begin{array}{cc}
d & -c \\
-b N & a
\end{array}\right)
$$

thus $\Gamma_{0}(N)^{\omega(N)^{-1}}=\Gamma_{0}(N)$ and $\left.g\right|_{k} \gamma=\chi(a) g=\bar{\chi}(d)=\bar{\chi}(\gamma) g$, since $a d=1$.
For $f \in M_{k}(N, \chi)$ with q-expansion $\sum_{n \geq 0} a_{n} q^{n}$, we define $\tilde{f}=\sum_{n \geq 0} \bar{a}_{n} q^{n}$.
Lemma 11.7. For $f \in M_{k}(N, \chi)$ we have $\tilde{f}(z)=\overline{f(-\bar{z})} \in M_{k}(N, \bar{\chi})$, and for $f \in S_{k}(N, \chi)$ we have $\tilde{f} \in S_{k}(N, \bar{\chi})$.

Proof. We have $q(z)=e^{2 \pi i z}$, so $\overline{q(z)}=q(-\bar{z})$ and $\tilde{f}(z)=\overline{f(-\bar{z})}$ follows. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$, if we put $\gamma^{\prime}=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right) \in \Gamma_{0}(N)$, then $\left.\tilde{f}\right|_{k} \gamma=\widetilde{\left.f\right|_{k} \gamma^{\prime}}=\bar{\chi}(\gamma) \tilde{f}$.

11.2 Hecke operators for congruence subgroups

Congruence subgroups have finite index in $\mathrm{SL}_{2}(\mathbb{Z})$ and are thus mutually commensurable (and commensurable with finite index subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ that are not congruence subgroups).
Lemma 11.8. Let Γ be a finite index subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$. Then $\widetilde{\Gamma}$ is $\mathbb{R}^{\times} \mathrm{GL}_{2}^{+}(\mathbb{Q})$.
Proof. It suffices to consider $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$. Given $\alpha \in \mathbb{R}^{\times} \mathrm{GL}_{2}^{+}(\mathbb{Q})$, we may choose $c \in \mathbb{R}^{\times}$so that $\beta=c \alpha \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ is an integer matrix, with $\alpha^{-1} \Gamma \alpha=\beta^{-1} \Gamma \beta$. Let $m=\operatorname{det}(\beta) \in \mathbb{Z}_{\geq 1}$ so that $m \beta^{-1}$ has integer entries. For $\gamma \in \Gamma(m)$ the matrix $m \beta^{-1} \gamma \beta \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ has integer entries divisible by m, and it follows that $\beta^{-1} \gamma \beta \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ is an integer matrix with determinant 1 , hence an element of Γ. Therefore $\beta^{-1} \Gamma(m) \beta=\alpha^{-1} \Gamma(m) \alpha \subseteq \Gamma$; it follows that $\alpha \Gamma \alpha^{-1} \cap \Gamma$ contains $\Gamma(m)$ and has finite index in Γ. Applying the same argument to $\alpha^{-1} \in \mathbb{R}^{\times} \mathrm{GL}_{2}^{+}(\mathbb{Q})$ and conjugating by α shows that $\alpha \Gamma \alpha^{-1} \cap \Gamma$ has finite index in $\alpha \Gamma \alpha^{-1}$. Thus Γ and $\alpha \Gamma \alpha^{-1}$ are commensurable, so $\alpha \in \widetilde{\Gamma}$, which proves that $\mathbb{R}^{\times} \mathrm{GL}_{2}^{+}(\mathbb{Q}) \subseteq \widetilde{\Gamma}$, since α was arbitrary.

Now suppose $\alpha \in \widetilde{\Gamma} \subseteq \mathrm{GL}_{2}^{+}(\mathbb{R})$. Then $\alpha \Gamma \alpha^{-1}$ is commensurable with Γ, as is $\beta \Gamma \beta^{-1}$, where β is the inverse transpose of α. It follows that $\Gamma, \alpha \Gamma \alpha^{-1}, \beta \Gamma \beta^{-1}$ all have the same set of cusps, namely $\mathbb{P}^{1}(\mathbb{Q})$, since taking a finite index subgroup of a Fuchsian group does not change the cusps, as proved in Lecture 4. So $\alpha^{-1} 0, \alpha^{-1} \infty, \beta^{-1} 0, \beta^{-1} \infty$ are all elements of $\mathbb{P}^{1}(\mathbb{Q})$, and this implies that every ratio of entries of $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ lies in $\mathbb{P}^{1}(\mathbb{Q})$, therefore $\alpha \in \mathbb{R}^{\times} \mathrm{GL}_{2}^{+}(\mathbb{Q})$.

We now define the following semigroups $\Delta_{0}(N), \Delta_{0}^{*}(N) \subseteq \mathrm{GL}_{2}^{+}(\mathbb{Q})$:

$$
\begin{aligned}
& \Delta_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a \perp N, a d-b c>0\right\}, \\
& \Delta_{0}^{*}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, d \perp N, a d-b c>0\right\} .
\end{aligned}
$$

We also note that

$$
\Delta_{0}(N) \cap \Delta_{0}^{*}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a d-b c \perp N, a d-b c>0\right\} .
$$

We now want to consider the Hecke algebras

$$
\begin{aligned}
\mathbb{T}(N) & :=\mathbb{Z}\left[\Gamma_{0}(N) \backslash \Delta_{0}(N) / \Gamma_{0}(N)\right], \\
\mathbb{T}^{*}(N) & :=\mathbb{Z}\left[\Gamma_{0}(N) \backslash \Delta_{0}^{*}(N) / \Gamma_{0}(N)\right] .
\end{aligned}
$$

Lemma 11.9. For each $\alpha \in \Delta_{0}(N)$ there exist unique positive integers $l \mid m$ with $l \perp N$ such that

$$
\Gamma_{0}(N) \alpha \Gamma_{0}(N)=\Gamma_{0}(N)\left(\begin{array}{ll}
l & 0 \\
0 & m
\end{array}\right) \Gamma_{0}(N),
$$

and for each $\alpha \in \Delta_{0}^{*}(N)$ there exist unique positive integers $l \mid m$ with $l \perp N$ such that

$$
\Gamma_{0}(N) \alpha \Gamma_{0}(N)=\Gamma_{0}(N)\left(\begin{array}{cc}
m & 0 \\
0 & l
\end{array}\right) \Gamma_{0}(N) .
$$

Proof. This is Lemma 4.5.2 in [1].
Theorem 11.10. The Hecke algebras $\mathbb{T}(N), \mathbb{T}^{*}(N)$ are commutative, and for $\alpha \in \Delta_{0}(N) \cup \Delta_{0}^{*}(N)$ the double coset $\Gamma_{0}(N) \alpha \Gamma_{0}(N)$ admits a common set of representatives for its decomposition into left and right $\Gamma_{0}(N)$-cosets.
Proof. By Theorem 10.3 proved in Lecture 10, it suffices to exhibit an anti-involution ι for which $\iota\left(\Gamma_{0}(N)\right)=\Gamma_{0}(N)$ and $\Gamma_{0}(N) \iota(\alpha) \Gamma_{0}(N)=\Gamma_{0}(N) \alpha \Gamma_{0}(N)$, for all $\alpha \in \Delta_{0}(N)$ and $\alpha \in \Delta_{0}^{*}(N)$. It follows from Lemma 11.9 that the map

$$
\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right) \mapsto\left(\begin{array}{cc}
a & c \\
b N & d
\end{array}\right)
$$

is such an involution.

For $\chi \in X(N)$ and $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Delta_{0}(N)$ we define $\chi(\alpha)=\bar{\chi}(a)$. Then χ is an extension of the induced character χ of $\Gamma_{0}(N)$ to $\Delta_{0}(N)$, and we claim that

$$
\chi\left(\alpha \gamma \alpha^{-1}\right)=\chi(\gamma)
$$

for all $\gamma \in \Gamma$ and $\alpha \in \Delta_{0}(N)$ for which $\alpha \gamma \alpha^{-1} \in \Gamma_{0}(N)$. By Lemma 11.9 we may assume $\alpha=\left(\begin{array}{ll}l & 0 \\ 0 & m\end{array}\right)$ with $l \mid m$ and $l \perp N$.

For $\gamma=\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{0}(N)$, if $\gamma^{\prime}:=\alpha \gamma \alpha^{-1} \in \Gamma_{0}(N)$ then $b l \equiv 0 \bmod m$ and $\gamma^{\prime}=\left(\begin{array}{cc}a & b l / m \\ c N m / l & d\end{array}\right)$, in which case $\chi\left(\gamma^{\prime}\right)=\chi\left(\alpha \gamma \alpha^{-1}\right)=\chi\left(\gamma^{\prime}\right)$, as required. It follows from Theorem 10.4 of Lecture 10 that the Hecke algebra $\mathbb{T}(N)$ acts on $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$.

For $\Delta_{0}^{*}(N)$ we extend χ to $\chi^{*}(\alpha)=\chi(d)$ and one similarly shows that $\mathbb{T}^{*}(N)$ acts on $M_{k}(N, \chi)$ and $S_{k}(N, \chi)$.

Remark 11.11. For double cosets $\Gamma_{0}(N) \alpha \Gamma_{0}(N) \in \mathbb{T}(N) \cap \mathbb{T}^{*}(N)$ the actions of $\Gamma_{0}(N) \alpha \Gamma_{0}(N)$ as an element of $\mathbb{T}(N)$ and $\mathbb{T}^{*}(N)$ need not coincide! However, the map $\alpha \mapsto \omega(N)^{-1} \alpha \omega(N)$ induces an isomorphism $\Delta_{0}(N) \simeq \Delta_{0}^{*}(N)$ and we have

$$
\chi^{*}\left(\omega(N)^{-1} \alpha \omega(N)\right)=\bar{\chi}(\alpha)
$$

for $\alpha \in \Delta_{0}(N)$.

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

