These notes summarize the material in §2.7–2.8 of [1] covered in lecture, along with some relevant background on permutation modules.

10.1 Group rings and permutation modules

Let *R* be a commutative ring. For any set *X* we use *R*[*X*] to denote the free *R*-module generated by the elements of *S*; it consists of all finite formal sums $\sum_{x \in X} r_x x$, with addition scalar multiplication and addition defined in the obvious way: we let $r_1 x + r_2 x := (r_1 + r_2)x$ and $r_1(r_2 x) = (r_1 r_2)x$ and extend these definitions *R*-linearly to all of *R*[*X*].

If *G* is a group, the *R*-module R[G] is a ring with $r_1g_1 \cdot r_2g_2 := (r_1r_2)(g_1g_2)$ (to define the product of elements or R[G] use the distributive law), called the group ring R[G] of *G* over *R*; note that this ring is commutative if and only if *G* is. If *X* is a left/right *G*-set then the *R*-module R[X] can be given the structure of a left/right R[G]-module by extending the *G*-action *R*-linearly. Note that this ensures that the *G*-action is compatible with the *R*-module structure of R[X] in the sense that the action of each $g \in G$ defines an endomorphism of R[X].

For subgroups $H \leq G$ we use [G/H] and $[H\backslash G]$ to denote the *G*-sets of left and right cosets of *H* equipped with the obvious left and right *G*-actions (g' sends gH to g'gH and Hg to Hgg'). We then have permutation modules R[G/H] and $R[H\backslash G]$ that are left and right R[G]-modules, respectively. If *K* is another subgroup of *G* we have an *R*-module of double cosets $R[H\backslash G/K]$ which admits left and right *G*-actions in which $g' \in G$ sends HgK to Hg'gK and Hgg'K; extending these *G*-actions *R*-linearly makes $R[H\backslash G/K]$ an R[G]-bimodule.

For $H, K \leq G$ and $g \in G$, the decomposition of the double coset $H \setminus g/K$ into right *H*-cosets is given by the orbit of $Hg \in [H \setminus G]$ under the right action of *K*. If this orbit is finite we can formally sum cosets to obtain an element of $R[H \setminus G]$. If every right *H*-coset in $[H \setminus G]$ has a finite *K*-orbit, we can use this to define an injective right R[G]-module homomorphism

$$R[H \setminus G/H] \hookrightarrow R[H \setminus G]$$
$$HgK \mapsto \sum_{Hg' \in \{Hgk: k \in K\}} Hg'$$

Elements in the image of this homomorphism are *R*-linear combination of sums of *K*-orbits in $[H \setminus G]$, hence invariant under the action of *K*. Let $R[H \setminus G]^K$ denote the *R*-submodule of $R[H \setminus G]$ whose elements are fixed by *K*. Every such element must be an *R*-linear sum of *K*-orbits in $R[H \setminus G]$, corresponding to the image of an *R*-linear sum of double cosets in $[H \setminus G/K]$ that lies in the image of the map above. It follows that we then have an *R*-module isomorphism

$$R[H\backslash G/K] \simeq [H\backslash G]^K,$$

and if ever K-coset in [G/K] has a finite H-orbit we similarly obtain an R-module isomorphism

$$R[H\backslash G/K] \simeq [G/K]^H.$$

We now that that everything above applies more generally to any semigroup $\Delta \leq G$. The semigroup ring $R[\Delta]$ is defined in the same way as the group ring R[G] (and it is indeed a ring, even though Δ need not be a group). For $H, K \subseteq \Delta$ we have the right $R[\Delta]$ -module $R[H \setminus \Delta]$ and the $R[\Delta]$ -bimodule $R[H \setminus \Delta/K]$, and if every K orbit in $[H \setminus \Delta]$ and every H-orbit in $[\Delta/K]$ is finite, we have R-module isomorphisms

$$R[H \setminus \Delta/K] \simeq [H \setminus \Delta]^K \simeq [\Delta/K]^H$$

10.2 Commensurability

We now investigate conditions under which the finite orbit assumptions above are satisfied.

Definition 10.1. Let *G* be a group. Two subgroups $H, K \leq G$ are commensurable if their intersection has finite index in both *H* and *K*; we write $H \sim K$ to indicate this relationship.

For any $H, K, J \leq G$ we have

$$[H:H\cap J] \leq [H:H\cap K\cap J] = [H:H\cap K][H\cap K:H\cap K\cap J] \leq [H:H\cap K][K:K\cap J],$$

which implies that commensurability is transitive; it is clearly reflexive and symmetric, hence an equivalence relation.

For $g \in G$, let H^g denote $g^{-1}Hg \leq G$. For any $H, K \leq G$ and $g \in G$ we have $H \sim K$ if and only if $H^g \sim K^g$. It follows that if H is commensurable with H^{g_1} and H^{g_2} then it is also commensurable with $H^{g_1g_2}$ and therefore the commensurator

$$\widetilde{H} := \{g \in G : H \sim H^g\}$$

is a subgroup of G that contains the normalizer of H in G.

If $H, K \leq G$ are commensurable, then $\tilde{H} = \tilde{K}$ and for any $g \in \tilde{H} = \tilde{K}$ we have finite left and and right coset decompositions of the double coset HgK via

$$HgK = \coprod_{i=1}^{m} h_i gK = \coprod_{j=1}^{n} Hgk_j$$

with $h_i \in H$ ranging over $H/(H \cap K^{g^{-1}})$ representatives, of which there are $m := [H : H \cap K^{g^{-1}}]$, and k_i ranging over $(K \cap H^g) \setminus K$ representatives, of which there are $n = [K : K \cap H^g]$.

10.3 Hecke algebras

Now let *S* be a set of commensurable subgroups $\Gamma \leq G$, and let $\Delta \subseteq G$ be a semigroup containing every $\Gamma \in S$ and is contained in their common commensurator in *G*. We will eventually apply this with $\Gamma = SL_2(\mathbb{Z}) \leq GL_2^+(\mathbb{R}) = G$ and *S* the set of congruence subgroups of $SL_2(\mathbb{Z})$, but rather letting Δ be the commensurator of $SL_2(\mathbb{Z})$ in $GL_2^+(\mathbb{R})$ (which is $\mathbb{R}^{\times}GL_2^+(\mathbb{Q})$), we will take Δ to be a semigroup of integer matrices with positive determinant.

Let *M* be an *R*-module equipped with a right Δ -action that is compatible with the *R*-module structure of *M*, making *M* an *R*[Δ]-module. Let $\Gamma, \Gamma' \in S$, and consider a double coset $\Gamma \alpha \Gamma'$. If $\Gamma \alpha \Gamma' = \coprod_i \Gamma \alpha_i$ is a right coset decomposition, we define an action of $\Gamma \alpha \Gamma'$ on M^{Γ} via

$$m|\Gamma lpha \Gamma' \coloneqq \sum_i m^{lpha_i}.$$

This definition does not depend on the choice of the choice of the $\alpha_i \in \Gamma \alpha \Gamma'$, since if $\Gamma \alpha'_i = \Gamma \alpha_i$ for some then $\alpha'_i = \gamma_i \alpha_i$ for some $\gamma_i \in \Gamma$ and $m^{\alpha'_i} = m^{\gamma_i \alpha_i} = (m_i^{\gamma})^{\alpha_i} = m^{\alpha_i}$ for all $m \in M^{\Gamma}$. We also note that $m | \Gamma \alpha \alpha \Gamma' \in M$ is Γ' -invariant, since for any $\gamma' \in \Gamma'$, if we let $\alpha'_i = \alpha_i \gamma'$ then

$$(m|\Gamma\alpha\Gamma')^{\gamma'} = \sum_{i} m^{\alpha_i\gamma'} = \sum_{i} m^{\alpha'_i} = m|\Gamma\alpha\Gamma',$$

because $\Gamma \alpha \Gamma' = \prod_i \Gamma \alpha'_i$ is just another right coset decomposition. This defines an *R*-module homomorphism $M^{\Gamma} \to M^{\Gamma'}$. Extend this *R*-linearly to an action of $R[\Gamma \setminus \Delta / \Gamma']$ yields an *R*-module homomorphism $R[\Gamma \setminus \Delta / \Gamma'] \to \operatorname{Hom}_R(M^{\Gamma}, M^{\Gamma'})$.

Now Let $\Gamma_1 \alpha \Gamma_2 = \coprod_i \Gamma_1 \alpha_i$ and $\Gamma_2 \beta \Gamma_3 = \coprod_j \Gamma_2 \beta_j$, for some $\Gamma_1, \Gamma_2, \Gamma_3 \in S$ and $\alpha, \beta \in \Delta$, and define the product

$$\Gamma_{1}\alpha\Gamma_{2}\cdot\Gamma_{2}\beta\Gamma_{3} = \sum_{\Gamma_{1}\gamma\Gamma_{3}}c_{\gamma}\Gamma_{1}\gamma\Gamma_{3} \quad \text{where} \quad c_{\gamma} = \#\{(i,j):\Gamma_{1}\alpha_{i}\beta_{j} = \Gamma_{1}\gamma\}$$
(1)

with the summation over distinct double cosets $\Gamma_1 \gamma \Gamma_3$ (not over all $\gamma \in \Delta$). Note that c_{γ} can be nonzero only when $\Gamma_1 \gamma \Gamma_3$ is equal to one of the finitely many double cosets $\Gamma_1 \alpha_i \beta_j \Gamma_3$, so the product of $\Gamma_1 \alpha \Gamma_2$ and $\Gamma_2 \beta \Gamma_3$ is an element of $R[\Gamma_1 \setminus \Delta / \Gamma_3]$, and this element does not depend on the choice of the $\alpha_i, \beta_j, \gamma \in \Delta$.

The decomposition $\Gamma_1 \alpha \Gamma_2 = \prod_i \Gamma_1 \alpha_i$ defines an *R*-module isomorphism

$$R[\Gamma_1 \setminus \Delta / \Gamma_2] \simeq R[\Gamma_1 \setminus \Delta]^{\Gamma_2},$$

as in §10.1. We can thus view $R[\Gamma_1 \setminus \Delta / \Gamma_2]$ as a Γ_2 -invariant *R*-module on which $R[\Gamma_2 \setminus \Delta / \Gamma_3]$ acts, and this action is given by the multiplication induced by (1), which extends to multiplication of elements of $R[\Gamma_1 \setminus \Delta / \Gamma_2]$ by elements of $R[\Gamma_2 \setminus \Delta / \Gamma_3]$ via

$$\left(\sum_{\Gamma_1 \alpha \Gamma_2} a_{\alpha} \Gamma_1 \alpha \Gamma_2\right) \left(\sum_{\Gamma_2 \beta \Gamma_3} b_{\beta} \Gamma_2 \beta \Gamma_3\right) = \sum_{\Gamma_1 \alpha \Gamma_2, \Gamma_2 \beta \Gamma_3} a_{\alpha} b_{\beta} (\Gamma_1 \alpha \Gamma_2 \cdot \Gamma_2 \beta \Gamma_3) \in R[\Gamma_1 \setminus \Delta / \Gamma_3].$$

It is easy to verify that for all $m \in M^{\Gamma_1}$, $A_1 \in R[\Gamma_1 \setminus \Delta/\Gamma_2]$, $A_2 \in R[\Gamma_2 \setminus \Delta/\Gamma_3]$ we have

$$(m|A_1)|A_2 = m|(A_1A_2) \in M^{\Gamma_3},$$

and that for all $A_1 \in R[\Gamma_1 \setminus \Delta / \Gamma_2]$, $A_2 \in R[\Gamma_2 \setminus \Delta / \Gamma_3]$, $A_3 \in R[\Gamma_3 \setminus \Delta / \Gamma_4]$ we have

$$(A_1A_2)A_3 = A_1(A_2A_3) \in R[\Gamma_1 \setminus \Delta / \Gamma_4].$$

If we now consider the case where $\Gamma_1 = \Gamma_2$, the multiplication defined above makes $R[\Gamma \setminus \Delta / \Gamma]$ into a ring, in fact an *R*-algebra, with identity $\Gamma = \Gamma \mathbf{1}_{\Delta} \Gamma$.

Definition 10.2. Let *G* be a group, let $\Gamma \leq G$ be a subgroup, let $\Gamma \subseteq \Delta \subseteq \widetilde{\Gamma}$ be a semigroup, and let *R* be a ring. The Hecke algebra of Γ over *R* with respect to Δ is the *R*-algebra $R[\Gamma \setminus \Delta / \Gamma]$.

Recall that an anti-involution of a semigroup is a bijection $\iota : \Delta \to \Delta$ with $\iota(\alpha\beta) = \iota(\beta)\iota(\alpha)$ for all $\alpha, \beta \in \Delta$.

Theorem 10.3. Let $\Gamma \leq G$ be a subgroup, $\Gamma \leq \Delta \leq \widetilde{\Gamma}$ a semigroup, R a commutative ring, and $\iota : \Delta \to \Delta$ an anti-involution for which $\iota(\Gamma) = \Gamma$ and $\Gamma\iota(\alpha)\Gamma = \Gamma\alpha\Gamma$. The following hold:

- For all $\alpha \in \Delta$ the double coset $\Gamma \setminus \Gamma \alpha \Gamma$ has a common set of left and right Γ -coset representatives: there exist $\alpha_1, \ldots, \alpha_r \in \Gamma \alpha \Gamma$ such that $\Gamma \alpha \Gamma = \prod_i^r \Gamma \alpha_i = \prod_{i=1}^r \alpha_i \Gamma$.
- The Hecke algebra $R[\Gamma \setminus \Delta / \Gamma]$ is commutative.

Proof. The existence of the involution ι implies that decompositions of $\Gamma \alpha \Gamma$ into left or right cosets all have the same cardinality. Indeed, if $\Gamma \alpha \Gamma = \coprod_{i=1}^{r} \Gamma \alpha_i$ then

$$\Gamma \alpha \Gamma = \iota(\Gamma \alpha \Gamma) = \prod_{i=1}^{r} \iota(\Gamma \alpha_i) = \prod_{i=1}^{r} \iota(\alpha_i)\iota(\Gamma) = \prod_{i=1}^{r} \iota(\alpha_i)\Gamma.$$

Now suppose $\Gamma \alpha \Gamma = \prod_{i=1}^{r} \Gamma \beta_i = \prod_{i=1}^{r} \delta_i \Gamma$ then $\Gamma \beta_i \cap \delta_j \Gamma \neq \emptyset$ for $1 \leq i, j \leq r$, otherwise $\Gamma \beta_i \subseteq \bigcup_{k \neq j} \delta_k \Gamma$ for some i, j and $\Gamma \alpha \Gamma = \Gamma \beta_i \Gamma = \bigcup_{k \neq j} \delta_k \Gamma$, which is impossible. So we may pick $\alpha_i \in \Gamma \beta_i \cap \delta_i \Gamma$ so that $\Gamma \beta_i = \Gamma \alpha_i$ and $\delta_i \Gamma = \alpha_i \Gamma$ for $1 \leq i \leq r$. This proves the first claim.

For the second, given $\alpha, \beta \in \Delta$, the first claim lets us write $\Gamma \alpha \Gamma = \coprod_{i=1}^{r} \Gamma \alpha_i = \coprod_{i=1}^{r} \alpha_i \Gamma$ and $\Gamma \beta \Gamma = \coprod_{i=1}^{r} \Gamma \beta_i = \coprod_{i=1}^{r} \beta_i \Gamma$, and we then have

$$\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma = \sum_{\Gamma \gamma \Gamma} c_{\gamma} \Gamma \gamma \Gamma$$
 and $\Gamma \beta \Gamma \cdot \Gamma \alpha \Gamma = \sum_{\Gamma \gamma \Gamma} c'_{\gamma} \Gamma \gamma \Gamma$,

where

$$c_{\gamma} = \#\{(i, j) : \Gamma \alpha_{i} \beta_{j} = \Gamma \gamma \}$$

= #\{(i, j) : \Gamma \alpha_{i} \beta_{j} \Gamma = \Gamma \gamma \Gamma \Beta_{j} \Gamma = \Gamma \gamma \Gamma \Beta_{j} \Delta_{i} \Delta_{i}

It follows that $\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma = \Gamma \beta \Gamma \cdot \Gamma \alpha \Gamma$, and this implies that $R[\Gamma \setminus \Delta / \Gamma]$ is commutative.

10.4 Hecke operators on automorphic forms

We now consider a lattice $\Gamma \in SL_2(\mathbb{R})$, viewed as a subgroup of $GL_2^+(\mathbb{R})$, and fix a semigroup $\Gamma \subseteq \Delta \subseteq \widetilde{\Gamma}$. If we have a finite order character χ on Γ , we assume it extends to a character χ of Δ such that $\chi(\alpha\gamma\alpha^{-1}) = \chi(\gamma)$ whenever $\gamma, \alpha\gamma\alpha^{-1} \in \Gamma$, a condition that is obviously satisfied when χ is the trivial character.

Let *S* be a set of commensurable subgroups of Γ . For $\Gamma_1, \Gamma_2 \in S$ and $\alpha \in \Delta$ we have a decomposition $\Gamma_1 \alpha \Gamma_2 = \prod_{i=1}^r \Gamma_1 \alpha_i$, and for any automorphic form $f \in A_k(\Gamma_1 \chi)$ we define

$$(f|_k \Gamma_1 \alpha \Gamma_2)(z) := \det(\alpha)^{k/2-1} \sum_{i=1}^r \overline{\chi}(\alpha_i)(f|_k \alpha_i)(z)$$
$$= \det(\alpha)^{k-1} \sum_{i=1}^r \overline{\chi}(\alpha_i) j(\alpha_i, z)^{-k} f(\alpha_i z)$$

This definition does not depend on the choice of the α_i ; see [1, Theorem 2.8.1].

We now specialize to the case $R = \mathbb{Z}$.

Theorem 10.4. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be finite index subgroups of a lattice $\Gamma \leq SL_2(\mathbb{R})$, let Δ be a semigroup containing Γ that lies in its commensurator in $GL_2^+(\mathbb{R})$, let k be an integer, and let χ be a character of finite order on Γ extending to Δ as above. The following hold:

- If f is an automorphic/modular/cusp form of weight k for Γ₁ with character χ then f |Γ₁αΓ₂ is an automorphic/modular/cusp form of weight k for Γ₂ with character χ.
- For all finite index $\Gamma_1, \Gamma_2, \Gamma_3 \leq \Gamma$ and $\alpha, \beta \in \Delta$ we have

$$(f|_k\Gamma_1\alpha\Gamma_2)|_k\Gamma_2\beta\Gamma_3 = f|_k(\Gamma_1\alpha\Gamma_2\cdot\Gamma_2\beta\Gamma_3).$$

• The spaces $S_k(\Gamma, \chi) \subseteq M_k(\Gamma, \chi) \subseteq A_k(\Gamma, \chi)$ are right $\mathbb{Z}[\Gamma \setminus \Delta / \Gamma]$ -submodules.

Proof. This is Theorem 2.8.1 in [1].

Recall the Petersson inner product (f, g), defined for $f \in S_k(\Gamma)$ and $g \in M_k(\Gamma)$.

Theorem 10.5. Let $\alpha \in \operatorname{GL}_2^+(\mathbb{R})$ and define $\alpha' := \det(\alpha)\alpha^{-1}$. Let Γ_1, Γ_2 be commensurable to a lattice $\Gamma \in \operatorname{SL}_2(\mathbb{R})$ with commensurator $\widetilde{\Gamma}$ in $\operatorname{GL}_2^+(\mathbb{R})$, and let k be an integer. We then have:

- $\langle f |_k \alpha, g \rangle = \langle f, g |_k \alpha' \rangle$ for all $f \in S_k(\Gamma_1)$ and $g \in M_k(\Gamma_2)$;
- $\langle f |_k \Gamma \alpha \Gamma, g \rangle = \langle f, g |_k \Gamma \alpha' \Gamma \rangle$ for all $f \in S_k(\Gamma)$ and $g \in M_k(\Gamma)$.

Proof. This is Theorem 2.8.2 in [1].

Corollary 10.6. Let χ, ψ be distinct finite order characters of a lattice $\Gamma \in SL_2(\mathbb{R})$. Then $\langle f, g \rangle = 0$ for all $f \in S_k(\Gamma, \chi)$ and $g \in M_k(\Gamma, \psi)$.

Proof. Pick $\gamma \in \Gamma$ so that $\chi(\gamma) \neq \psi(\gamma)$. Then $\gamma' := \det(\gamma)\gamma^{-1} = \gamma^{-1}$ and

$$\chi(\gamma)\langle f,g\rangle = \langle f|_k\gamma,g\rangle = \langle f,g|_k\gamma^{-1}) = \psi(\gamma)\langle f,g\rangle,$$

by Theorem 10.5, which is possible only if $\langle f, g \rangle = 0$.

Corollary 10.7. If $f \in \mathscr{E}_k(\Gamma)$ then $f|_k \Gamma \alpha \Gamma \in \mathscr{E}_k(\Gamma)$ for all $\alpha \in \widetilde{\Gamma}$

References

[1] Toshitsune Miyake, *Modular forms*, Springer, 2006.