These notes summarize the material in §2.7-2.8 of [1] covered in lecture, along with some relevant background on permutation modules.

10.1 Group rings and permutation modules

Let R be a commutative ring. For any set X we use $R[X]$ to denote the free R-module generated by the elements of S; it consists of all finite formal sums $\sum_{x \in X} r_{x} x$, with addition scalar multiplication and addition defined in the obvious way: we let $r_{1} x+r_{2} x:=\left(r_{1}+r_{2}\right) x$ and $r_{1}\left(r_{2} x\right)=\left(r_{1} r_{2}\right) x$ and extend these definitions R-linearly to all of $R[X]$.

If G is a group, the R-module $R[G]$ is a ring with $r_{1} g_{1} \cdot r_{2} g_{2}:=\left(r_{1} r_{2}\right)\left(g_{1} g_{2}\right)$ (to define the product of elements or $R[G]$ use the distributive law), called the group ring $R[G]$ of G over R; note that this ring is commutative if and only if G is. If X is a left/right G-set then the R-module $R[X]$ can be given the structure of a left/right $R[G]$-module by extending the G-action R-linearly. Note that this ensures that the G-action is compatible with the R-module structure of $R[X]$ in the sense that the action of each $g \in G$ defines an endomorphism of $R[X]$.

For subgroups $H \leq G$ we use $[G / H]$ and $[H \backslash G]$ to denote the G-sets of left and right cosets of H equipped with the obvious left and right G-actions (g^{\prime} sends $g H$ to $g^{\prime} g H$ and $H g$ to $H g g^{\prime}$). We then have permutation modules $R[G / H]$ and $R[H \backslash G]$ that are left and right $R[G]$-modules, respectively. If K is another subgroup of G we have an R-module of double cosets $R[H \backslash G / K]$ which admits left and right G-actions in which $g^{\prime} \in G$ sends $H g K$ to ${H g^{\prime} g K ~ a n d ~}_{H^{\prime} g g^{\prime} K \text {; ex- }}$ tending these G-actions R-linearly makes $R[H \backslash G / K]$ an $R[G]$-bimodule.

For $H, K \leq G$ and $g \in G$, the decomposition of the double coset $H \backslash g / K$ into right H-cosets is given by the orbit of $H g \in[H \backslash G]$ under the right action of K. If this orbit is finite we can formally sum cosets to obtain an element of $R[H \backslash G]$. If every right H-coset in $[H \backslash G]$ has a finite K-orbit, we can use this to define an injective right $R[G]$-module homomorphism

$$
\begin{aligned}
R[H \backslash G / H] & \hookrightarrow R[H \backslash G] \\
H g K & \sum_{H g^{\prime} \in\{H g k: k \in K\}} H g^{\prime}
\end{aligned}
$$

Elements in the image of this homomorphism are R-linear combination of sums of K-orbits in [$H \backslash G$], hence invariant under the action of K. Let $R[H \backslash G]^{K}$ denote the R-submodule of $R[H \backslash G]$ whose elements are fixed by K. Every such element must be an R-linear sum of K-orbits in $R[H \backslash G]$, corresponding to the image of an R-linear sum of double cosets in $[H \backslash G / K]$ that lies in the image of the map above. It follows that we then have an R-module isomorphism

$$
R[H \backslash G / K] \simeq[H \backslash G]^{K},
$$

and if ever K-coset in [G / K] has a finite H-orbit we similarly obtain an R-module isomorphism

$$
R[H \backslash G / K] \simeq[G / K]^{H} .
$$

We now that that everything above applies more generally to any semigroup $\Delta \leq G$. The semigroup ring $R[\Delta]$ is defined in the same way as the group ring $R[G]$ (and it is indeed a ring, even though Δ need not be a group). For $H, K \subseteq \Delta$ we have the right $R[\Delta]$-module $R[H \backslash \Delta]$ and the $R[\Delta]$-bimodule $R[H \backslash \Delta / K]$, and if every K orbit in $[H \backslash \Delta]$ and every H-orbit in $[\Delta / K]$ is finite, we have R-module isomorphisms

$$
R[H \backslash \Delta / K] \simeq[H \backslash \Delta]^{K} \simeq[\Delta / K]^{H}
$$

10.2 Commensurability

We now investigate conditions under which the finite orbit assumptions above are satisfied.
Definition 10.1. Let G be a group. Two subgroups $H, K \leq G$ are commensurable if their intersection has finite index in both H and K; we write $H \sim K$ to indicate this relationship.
For any $H, K, J \leq G$ we have

$$
[H: H \cap J] \leq[H: H \cap K \cap J]=[H: H \cap K][H \cap K: H \cap K \cap J] \leq[H: H \cap K][K: K \cap J],
$$

which implies that commensurability is transitive; it is clearly reflexive and symmetric, hence an equivalence relation.

For $g \in G$, let H^{g} denote $g^{-1} H g \leq G$. For any $H, K \leq G$ and $g \in G$ we have $H \sim K$ if and only if $H^{g} \sim K^{g}$. It follows that if H is commensurable with $H^{g_{1}}$ and $H^{g_{2}}$ then it is also commensurable with $H^{g_{1} g_{2}}$ and therefore the commensurator

$$
\widetilde{H}:=\left\{g \in G: H \sim H^{g}\right\}
$$

is a subgroup of G that contains the normalizer of H in G.
If $H, K \leq G$ are commensurable, then $\tilde{H}=\tilde{K}$ and for any $g \in \widetilde{H}=\widetilde{K}$ we have finite left and and right coset decompositions of the double coset HgK via

$$
H g K=\coprod_{i=1}^{m} h_{i} g K=\coprod_{j=1}^{n} H g k_{j}
$$

with $h_{i} \in H$ ranging over $H /\left(H \cap K^{g^{-1}}\right)$ representatives, of which there are $m:=\left[H: H \cap K^{g^{-1}}\right]$, and k_{j} ranging over $\left(K \cap H^{g}\right) \backslash K$ representatives, of which there are $n=\left[K: K \cap H^{g}\right]$.

10.3 Hecke algebras

Now let S be a set of commensurable subgroups $\Gamma \leq G$, and let $\Delta \subseteq G$ be a semigroup containing every $\Gamma \in S$ and is contained in their common commensurator in G. We will eventually apply this with $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}) \leq \mathrm{GL}_{2}^{+}(\mathbb{R})=G$ and S the set of congruence subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$, but rather letting Δ be the commensurator of $\mathrm{SL}_{2}(\mathbb{Z})$ in $\mathrm{GL}_{2}^{+}(\mathbb{R})$ (which is $\mathbb{R}^{\times} \mathrm{GL}_{2}^{+}(\mathbb{Q})$), we will take Δ to be a semigroup of integer matrices with positive determinant.

Let M be an R-module equipped with a right Δ-action that is compatible with the R-module structure of M, making M an $R[\Delta]$-module. Let $\Gamma, \Gamma^{\prime} \in S$, and consider a double coset $\Gamma \alpha \Gamma^{\prime}$. If $\Gamma \alpha \Gamma^{\prime}=\coprod_{i} \Gamma \alpha_{i}$ is a right coset decomposition, we define an action of $\Gamma \alpha \Gamma^{\prime}$ on M^{Γ} via

$$
m \mid \Gamma \alpha \Gamma^{\prime}:=\sum_{i} m^{\alpha_{i}}
$$

This definition does not depend on the choice of the choice of the $\alpha_{i} \in \Gamma \alpha \Gamma^{\prime}$, since if $\Gamma \alpha_{i}^{\prime}=\Gamma \alpha_{i}$ for some then $\alpha_{i}^{\prime}=\gamma_{i} \alpha_{i}$ for some $\gamma_{i} \in \Gamma$ and $m^{\alpha_{i}^{\prime}}=m^{\gamma_{i} \alpha_{i}}=\left(m_{i}^{\gamma}\right)^{\alpha_{i}}=m^{\alpha_{i}}$ for all $m \in M^{\Gamma}$. We also note that $m \mid \Gamma \alpha \alpha \Gamma^{\prime} \in M$ is Γ^{\prime}-invariant, since for any $\gamma^{\prime} \in \Gamma^{\prime}$, if we let $\alpha_{i}^{\prime}=\alpha_{i} \gamma^{\prime}$ then

$$
\left(m \mid \Gamma \alpha \Gamma^{\prime}\right)^{\gamma^{\prime}}=\sum_{i} m^{\alpha_{i} \gamma^{\prime}}=\sum_{i} m^{\alpha_{i}^{\prime}}=m \mid \Gamma \alpha \Gamma^{\prime}
$$

because $\Gamma \alpha \Gamma^{\prime}=\coprod_{i} \Gamma \alpha_{i}^{\prime}$ is just another right coset decomposition. This defines an R-module homomorphism $M^{\Gamma} \rightarrow M^{\Gamma^{\prime}}$. Extend this R-linearly to an action of $R\left[\Gamma \backslash \Delta / \Gamma^{\prime}\right]$ yields an R-module homomorphism $R\left[\Gamma \backslash \Delta / \Gamma^{\prime}\right] \rightarrow \operatorname{Hom}_{R}\left(M^{\Gamma}, M^{\Gamma^{\prime}}\right)$.

Now Let $\Gamma_{1} \alpha \Gamma_{2}=\coprod_{i} \Gamma_{1} \alpha_{i}$ and $\Gamma_{2} \beta \Gamma_{3}=\coprod_{j} \Gamma_{2} \beta_{j}$, for some $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \in S$ and $\alpha, \beta \in \Delta$, and define the product

$$
\begin{equation*}
\Gamma_{1} \alpha \Gamma_{2} \cdot \Gamma_{2} \beta \Gamma_{3}=\sum_{\Gamma_{1} \gamma \Gamma_{3}} c_{\gamma} \Gamma_{1} \gamma \Gamma_{3} \quad \text { where } \quad c_{\gamma}=\#\left\{(i, j): \Gamma_{1} \alpha_{i} \beta_{j}=\Gamma_{1} \gamma\right\} \tag{1}
\end{equation*}
$$

with the summation over distinct double cosets $\Gamma_{1} \gamma \Gamma_{3}$ (not over all $\gamma \in \Delta$). Note that c_{γ} can be nonzero only when $\Gamma_{1} \gamma \Gamma_{3}$ is equal to one of the finitely many double cosets $\Gamma_{1} \alpha_{i} \beta_{j} \Gamma_{3}$, so the product of $\Gamma_{1} \alpha \Gamma_{2}$ and $\Gamma_{2} \beta \Gamma_{3}$ is an element of $R\left[\Gamma_{1} \backslash \Delta / \Gamma_{3}\right]$, and this element does not depend on the choice of the $\alpha_{i}, \beta_{j}, \gamma \in \Delta$.

The decomposition $\Gamma_{1} \alpha \Gamma_{2}=\coprod_{i} \Gamma_{1} \alpha_{i}$ defines an R-module isomorphism

$$
R\left[\Gamma_{1} \backslash \Delta / \Gamma_{2}\right] \simeq R\left[\Gamma_{1} \backslash \Delta\right]^{\Gamma_{2}}
$$

as in $\S 10.1$. We can thus view $R\left[\Gamma_{1} \backslash \Delta / \Gamma_{2}\right]$ as a Γ_{2}-invariant R-module on which $R\left[\Gamma_{2} \backslash \Delta / \Gamma_{3}\right]$ acts, and this action is given by the multiplication induced by (1), which extends to multiplication of elements of $R\left[\Gamma_{1} \backslash \Delta / \Gamma_{2}\right]$ by elements of $R\left[\Gamma_{2} \backslash \Delta / \Gamma_{3}\right]$ via

$$
\left(\sum_{\Gamma_{1} \alpha \Gamma_{2}} a_{\alpha} \Gamma_{1} \alpha \Gamma_{2}\right)\left(\sum_{\Gamma_{2} \beta \Gamma_{3}} b_{\beta} \Gamma_{2} \beta \Gamma_{3}\right)=\sum_{\Gamma_{1} \alpha \Gamma_{2}, \Gamma_{2} \beta \Gamma_{3}} a_{\alpha} b_{\beta}\left(\Gamma_{1} \alpha \Gamma_{2} \cdot \Gamma_{2} \beta \Gamma_{3}\right) \in R\left[\Gamma_{1} \backslash \Delta / \Gamma_{3}\right] .
$$

It is easy to verify that for all $m \in M^{\Gamma_{1}}, A_{1} \in R\left[\Gamma_{1} \backslash \Delta / \Gamma_{2}\right], A_{2} \in R\left[\Gamma_{2} \backslash \Delta / \Gamma_{3}\right]$ we have

$$
\left(m \mid A_{1}\right)\left|A_{2}=m\right|\left(A_{1} A_{2}\right) \in M^{\Gamma_{3}},
$$

and that for all $A_{1} \in R\left[\Gamma_{1} \backslash \Delta / \Gamma_{2}\right], A_{2} \in R\left[\Gamma_{2} \backslash \Delta / \Gamma_{3}\right], A_{3} \in R\left[\Gamma_{3} \backslash \Delta / \Gamma_{4}\right]$ we have

$$
\left(A_{1} A_{2}\right) A_{3}=A_{1}\left(A_{2} A_{3}\right) \in R\left[\Gamma_{1} \backslash \Delta / \Gamma_{4}\right] .
$$

If we now consider the case where $\Gamma_{1}=\Gamma_{2}$, the multiplication defined above makes $R[\Gamma \backslash \Delta / \Gamma]$ into a ring, in fact an R-algebra, with identity $\Gamma=\Gamma 1_{\Delta} \Gamma$.
Definition 10.2. Let G be a group, let $\Gamma \leq G$ be a subgroup, let $\Gamma \subseteq \Delta \subseteq \widetilde{\Gamma}$ be a semigroup, and let R be a ring. The Hecke algebra of Γ over R with respect to Δ is the R-algebra $R[\Gamma \backslash \Delta / \Gamma]$.

Recall that an anti-involution of a semigroup is a bijection $\iota: \Delta \rightarrow \Delta$ with $\iota(\alpha \beta)=\iota(\beta) \iota(\alpha)$ for all $\alpha, \beta \in \Delta$.

Theorem 10.3. Let $\Gamma \leq G$ be a subgroup, $\Gamma \leq \Delta \leq \widetilde{\Gamma}$ a semigroup, R a commutative ring, and $\iota \Delta \rightarrow \Delta$ an anti-involution for which $\iota(\Gamma)=\Gamma$ and $\Gamma \iota(\alpha) \Gamma=\Gamma \alpha \Gamma$. The following hold:

- For all $\alpha \in \Delta$ the double coset $\Gamma \backslash \Gamma \alpha \Gamma$ has a common set of left and right Γ-coset representatives: there exist $\alpha_{1}, \ldots, \alpha_{r} \in \Gamma \alpha \Gamma$ such that $\Gamma \alpha \Gamma=\coprod_{i}^{r} \Gamma \alpha_{i}=\coprod_{i=1}^{r} \alpha_{i} \Gamma$.
- The Hecke algebra $R[\Gamma \backslash \Delta / \Gamma]$ is commutative.

Proof. The existence of the involution ι implies that decompositions of $\Gamma \alpha \Gamma$ into left or right cosets all have the same cardinality. Indeed, if $\Gamma \alpha \Gamma=\coprod_{i=1}^{r} \Gamma \alpha_{i}$ then

$$
\Gamma \alpha \Gamma=\iota(\Gamma \alpha \Gamma)=\coprod_{i=1}^{r} \iota\left(\Gamma \alpha_{i}\right)=\coprod_{i=1}^{r} \iota\left(\alpha_{i}\right) \iota(\Gamma)=\coprod_{i=1}^{r} \iota\left(\alpha_{i}\right) \Gamma .
$$

Now suppose $\Gamma \alpha \Gamma=\coprod_{i=1}^{r} \Gamma \beta_{i}=\coprod_{i=1}^{r} \delta_{i} \Gamma$ then $\Gamma \beta_{i} \cap \delta_{j} \Gamma \neq \emptyset$ for $1 \leq i, j \leq r$, otherwise $\Gamma \beta_{i} \subseteq \bigcup_{k \neq j} \delta_{k} \Gamma$ for some i, j and $\Gamma \alpha \Gamma=\Gamma \beta_{i} \Gamma=\bigcup_{k \neq j} \delta_{k} \Gamma$, which is impossible. So we may pick $\alpha_{i} \in \Gamma \beta_{i} \cap \delta_{i} \Gamma$ so that $\Gamma \beta_{i}=\Gamma \alpha_{i}$ and $\delta_{i} \Gamma=\alpha_{i} \Gamma$ for $1 \leq i \leq r$. This proves the first claim.

For the second, given $\alpha, \beta \in \Delta$, the first claim lets us write $\Gamma \alpha \Gamma=\coprod_{i=1}^{r} \Gamma \alpha_{i}=\coprod_{i=1}^{r} \alpha_{i} \Gamma$ and $\Gamma \beta \Gamma=\coprod_{i=1}^{r} \Gamma \beta_{i}=\coprod_{i=1}^{r} \beta_{i} \Gamma$, and we then have

$$
\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma=\sum_{\Gamma \gamma \Gamma} c_{\gamma} \Gamma \gamma \Gamma \quad \text { and } \quad \Gamma \beta \Gamma \cdot \Gamma \alpha \Gamma=\sum_{\Gamma \gamma \Gamma} c_{\gamma}^{\prime} \Gamma \gamma \Gamma \text {, }
$$

where

$$
\begin{aligned}
c_{\gamma} & =\#\left\{(i, j): \Gamma \alpha_{i} \beta_{j}=\Gamma \gamma\right\} \\
& =\#\left\{(i, j): \Gamma \alpha_{i} \beta_{j} \Gamma=\Gamma \gamma \Gamma\right\} / \#(\Gamma \backslash \Gamma \gamma \Gamma) \\
& =\#\left\{(i, j): \Gamma \iota\left(\beta_{j}\right) \iota\left(\alpha_{i}\right) \Gamma=\Gamma \iota(\gamma) \Gamma\right\} / \#(\Gamma \backslash \Gamma \iota(\gamma) \Gamma) \\
& =\#\left\{(i, j): \Gamma \iota\left(\beta_{j}\right) \iota\left(\alpha_{i}\right)=\Gamma \iota(\gamma)\right\} \\
& =c_{\gamma}^{\prime} .
\end{aligned}
$$

It follows that $\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma=\Gamma \beta \Gamma \cdot \Gamma \alpha \Gamma$, and this implies that $R[\Gamma \backslash \Delta / \Gamma]$ is commutative.

10.4 Hecke operators on automorphic forms

We now consider a lattice $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$, viewed as a subgroup of $\mathrm{GL}_{2}^{+}(\mathbb{R})$, and fix a semigroup $\Gamma \subseteq \Delta \subseteq \widetilde{\Gamma}$. If we have a finite order character χ on Γ, we assume it extends to a character χ of Δ such that $\chi\left(\alpha \gamma \alpha^{-1}\right)=\chi(\gamma)$ whenever $\gamma, \alpha \gamma \alpha^{-1} \in \Gamma$, a condition that is obviously satisfied when χ is the trivial character.

Let S be a set of commensurable subgroups of Γ. For $\Gamma_{1}, \Gamma_{2} \in S$ and $\alpha \in \Delta$ we have a decomposition $\Gamma_{1} \alpha \Gamma_{2}=\coprod_{i=1}^{r} \Gamma_{1} \alpha_{i}$, and for any automorphic form $f \in A_{k}\left(\Gamma_{1} \chi\right)$ we define

$$
\begin{aligned}
\left(\left.f\right|_{k} \Gamma_{1} \alpha \Gamma_{2}\right)(z) & :=\operatorname{det}(\alpha)^{k / 2-1} \sum_{i=1}^{r} \bar{\chi}\left(\alpha_{i}\right)\left(\left.f\right|_{k} \alpha_{i}\right)(z) \\
& =\operatorname{det}(\alpha)^{k-1} \sum_{i=1}^{r} \bar{\chi}\left(\alpha_{i}\right) j\left(\alpha_{i}, z\right)^{-k} f\left(\alpha_{i} z\right)
\end{aligned}
$$

This definition does not depend on the choice of the α_{i}; see [1 , Theorem 2.8.1].
We now specialize to the case $R=\mathbb{Z}$.
Theorem 10.4. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ be finite index subgroups of a lattice $\Gamma \leq \mathrm{SL}_{2}(\mathbb{R})$, let Δ be a semigroup containing Γ that lies in its commensurator in $\mathrm{GL}_{2}^{+}(\mathbb{R})$, let k be an integer, and let χ be a character of finite order on Γ extending to Δ as above. The following hold:

- If f is an automorphic/modular/cusp form of weight k for Γ_{1} with character χ then $f \mid \Gamma_{1} \alpha \Gamma_{2}$ is an automorphic/modular/cusp form of weight k for Γ_{2} with character χ.
- For all finite index $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \leq \Gamma$ and $\alpha, \beta \in \Delta$ we have

$$
\left.\left(\left.f\right|_{k} \Gamma_{1} \alpha \Gamma_{2}\right)\right|_{k} \Gamma_{2} \beta \Gamma_{3}=\left.f\right|_{k}\left(\Gamma_{1} \alpha \Gamma_{2} \cdot \Gamma_{2} \beta \Gamma_{3}\right)
$$

- The spaces $S_{k}(\Gamma, \chi) \subseteq M_{k}(\Gamma, \chi) \subseteq A_{k}(\Gamma, \chi)$ are right $\mathbb{Z}[\Gamma \backslash \Delta / \Gamma]$-submodules.

Proof. This is Theorem 2.8.1 in [1].

Recall the Petersson inner product $\langle f, g\rangle$, defined for $f \in S_{k}(\Gamma)$ and $g \in M_{k}(\Gamma)$.
Theorem 10.5. Let $\alpha \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ and define $\alpha^{\prime}:=\operatorname{det}(\alpha) \alpha^{-1}$. Let Γ_{1}, Γ_{2} be commensurable to a lattice $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$ with commensurator $\widetilde{\Gamma}$ in $\mathrm{GL}_{2}^{+}(\mathbb{R})$, and let k be an integer. We then have:

- $\left\langle\left. f\right|_{k} \alpha, g\right\rangle=\left\langle f,\left.g\right|_{k} \alpha^{\prime}\right\rangle$ for all $f \in S_{k}\left(\Gamma_{1}\right)$ and $g \in M_{k}\left(\Gamma_{2}\right)$;
- $\left\langle\left. f\right|_{k} \Gamma \alpha \Gamma, g\right\rangle=\left\langle f,\left.g\right|_{k} \Gamma \alpha^{\prime} \Gamma\right\rangle$ for all $f \in S_{k}(\Gamma)$ and $g \in M_{k}(\Gamma)$.

Proof. This is Theorem 2.8.2 in [1].
Corollary 10.6. Let χ, ψ be distinct finite order characters of a lattice $\Gamma \in \mathrm{SL}_{2}(\mathbb{R})$. Then $\langle f, g\rangle=0$ for all $f \in S_{k}(\Gamma, \chi)$ and $g \in M_{k}(\Gamma, \psi)$.

Proof. Pick $\gamma \in \Gamma$ so that $\chi(\gamma) \neq \psi(\gamma)$. Then $\gamma^{\prime}:=\operatorname{det}(\gamma) \gamma^{-1}=\gamma^{-1}$ and

$$
\chi(\gamma)\langle f, g\rangle=\left\langle\left. f\right|_{k} \gamma, g\right\rangle=\left\langle f,\left.g\right|_{k} \gamma^{-1}\right)=\psi(\gamma)\langle f, g\rangle,
$$

by Theorem 10.5 , which is possible only if $\langle f, g\rangle=0$.
Corollary 10.7. If $f \in \mathscr{E}_{k}(\Gamma)$ then $\left.f\right|_{k} \Gamma \alpha \Gamma \in \mathscr{E}_{k}(\Gamma)$ for all $\alpha \in \widetilde{\Gamma}$

References

[1] Toshitsune Miyake, Modular forms, Springer, 2006.

