These notes summarize the material in §2.7–2.8 of [1] covered in lecture, along with some relevant background on permutation modules.

10.1 Group rings and permutation modules

Let R be a commutative ring. For any set X we use $R[X]$ to denote the free R-module generated by the elements of X; it consists of all finite formal sums $\sum_{x \in X} r_x x$, with addition scalar multiplication and addition defined in the obvious way: we let $r_1 x + r_2 x := (r_1 + r_2) x$ and $r_1 (r_2 x) = (r_1 r_2) x$ and extend these definitions R-linearly to all of $R[X]$.

If G is a group, the R-module $R[G]$ is a ring with $r_1 g_1 \cdot r_2 g_2 := (r_1 r_2) (g_1 g_2)$ (to define the product of elements or $R[G]$ use the distributive law), called the group ring $R[G]$ of G over R; note that this ring is commutative if and only if G is. If X is a left/right G-set then the R-module $R[X]$ can be given the structure of a left/right $R[G]$-module by extending the G-action R-linearly. Note that this ensures that the G-action is compatible with the R-module structure of $R[X]$ in the sense that the action of each $g \in G$ defines an endomorphism of $R[X]$.

For subgroups $H \leq G$ we use $[G/H]$ and $[H\backslash G]$ to denote the G-sets of left and right cosets of H equipped with the obvious left and right G-actions ($g' \in G$ sends gH to $g'gH$ and Hg to $Hgg'G$).

We then have permutation modules $R[G/H]$ and $R[H\backslash G]$ that are left and right $R[G]$-modules, respectively. If K is another subgroup of G we have an R-module of double cosets $R[H\backslash G/K]$ which admits left and right G-actions in which $g' \in G$ sends HgK to $Hg'gK$ and $Hgg'K$; extending these G-actions R-linearly makes $R[H\backslash G/K]$ an $R[G]$-bimodule.

For $H,K \leq G$ and $g \in G$, the decomposition of the double coset $H \backslash g \mid K$ into right H-cosets is given by the orbit of $Hg \in [H\backslash G]$ under the right action of K. If this orbit is finite we can formally sum cosets to obtain an element of $R[H\backslash G]$.

If every right H-coset in $[H\backslash G]$ has a finite K-orbit, we can use this to define an injective right $R[G]$-module homomorphism

$$R[H\backslash G/H] \hookrightarrow R[H\backslash G]$$

$$HgK \mapsto \sum_{Hg'K : g' \in G} Hg'K$$

Elements in the image of this homomorphism are R-linear combination of sums of K-orbits in $[H\backslash G]$, hence invariant under the action of K. Let $R[H\backslash G]^K$ denote the R-submodule of $R[H\backslash G]$ whose elements are fixed by K. Every such element must be an R-linear sum of K-orbits in $R[H\backslash G]$, corresponding to the image of an R-linear sum of double cosets in $[H\backslash G/K]$ that lies in the image of the map above. It follows that we then have an R-module isomorphism

$$R[H\backslash G/K] \cong [H\backslash G]^K,$$

and if every K-coset in $[G/K]$ has a finite H-orbit we similarly obtain an R-module isomorphism

$$R[H\backslash G/K] \cong [G/K]^H.$$

We now that that everything above applies more generally to any semigroup $\Delta \leq G$. The semigroup ring $R[\Delta]$ is defined in the same way as the group ring $R[G]$ (and it is indeed a ring, even though Δ need not be a group). For $H,K \subseteq \Delta$ we have the right $R[\Delta]$-module $R[H\backslash \Delta]$ and the $R[\Delta]$-bimodule $R[H\backslash \Delta/K]$, and if every K orbit in $[H\backslash \Delta]$ and every H-orbit in $[\Delta/K]$ is finite, we have R-module isomorphisms

$$R[H\backslash \Delta/K] \cong [H\backslash \Delta]^K \cong [\Delta/K]^H.$$
10.2 Commensurability

We now investigate conditions under which the finite orbit assumptions above are satisfied.

Definition 10.1. Let G be a group. Two subgroups $H, K \leq G$ are **commensurable** if their intersection has finite index in both H and K; we write $H \sim K$ to indicate this relationship.

For any $H, K, J \leq G$ we have

$$[H : H \cap J] \leq [H : H \cap K \cap J] = [H : H \cap K][H \cap K : H \cap J] \leq [H : H \cap K][K : K \cap J],$$

which implies that commensurability is transitive; it is clearly reflexive and symmetric, hence an equivalence relation.

For $g \in G$, let H^g denote $g^{-1}Hg \leq G$. For any $H, K \leq G$ and $g \in G$ we have $H \sim K$ if and only if $H^g \sim K^g$. It follows that if H is commensurable with H^{g_1} and H^{g_2} then it is also commensurable with $H^{g_1 g_2}$ and therefore the commensurator

$$\tilde{H} := \{ g \in G : H \sim H^g \}$$

is a subgroup of G that contains the normalizer of H in G.

If $H, K \leq G$ are commensurable, then $\tilde{H} = \tilde{K}$ and for any $g \in \tilde{H} = \tilde{K}$ we have finite left and right coset decompositions of the double coset HgK via

$$HgK = \bigsqcup_{i=1}^{m} h_i gK = \bigsqcup_{j=1}^{n} Hgk_j,$$

with $h_i \in H$ ranging over $H/(H \cap K^{g^{-1}})$ representatives, of which there are $m := [H : H \cap K^{g^{-1}}]$, and k_j ranging over $(K \cap H^g)\backslash K$ representatives, of which there are $n = [K : K \cap H^g]$.

10.3 Hecke algebras

Now let S be a set of commensurable subgroups $\Gamma \leq G$, and let $\Delta \subseteq G$ be a semigroup containing every $\Gamma \in S$ and is contained in their common commensurator in G. We will eventually apply this with $\Gamma = SL_2(\mathbb{Z}) \leq GL_2^+(\mathbb{R}) = G$ and S the set of congruence subgroups of $SL_2(\mathbb{Z})$, but rather letting Δ be the commensurator of $SL_2(\mathbb{Z})$ in $GL_2^+(\mathbb{R})$ (which is $\mathbb{R}^+GL_2^+(\mathbb{Q})$), we will take Δ to be a semigroup of integer matrices with positive determinant.

Let M be an R-module equipped with a right Δ-action that is compatible with the R-module structure of M, making M an $R[\Delta]$-module. Let $\Gamma, \Gamma' \in S$, and consider a double coset $\Gamma \alpha \Gamma'$. If $\Gamma \alpha \Gamma' = \bigsqcup_i \Gamma \alpha_i$ is a right coset decomposition, we define an action of $\Gamma \alpha \Gamma'$ on M^Γ via

$$m|\Gamma \alpha \Gamma' := \sum_i m^{\alpha_i}.$$

This definition does not depend on the choice of the choice of the $\alpha_i \in \Gamma \alpha \Gamma'$, since if $\Gamma \alpha_i' = \Gamma \alpha_i$ for some then $\alpha_i' = \gamma_i \alpha_i$ for some $\gamma_i \in \Gamma$ and $m^{\alpha_i} = m^{\gamma_i \alpha_i} = (m^{\gamma_i})^{\alpha_i} = m^{\alpha_i}$ for all $m \in M^\Gamma$. We also note that $m|\Gamma \alpha \Gamma' \in M$ is Γ'-invariant, since for any $\gamma' \in \Gamma'$, if we let $\alpha_i' = \alpha_i \gamma'$ then

$$(m|\Gamma \alpha \Gamma')^{\gamma'} = \sum_i m^{\alpha_i \gamma'} = \sum_i m^{\alpha_i} = m|\Gamma \alpha \Gamma',$$

because $\Gamma \alpha \Gamma' = \bigsqcup_i \Gamma \alpha_i'$ is just another right coset decomposition. This defines an R-module homomorphism $M^\Gamma \to M^{\Gamma'}$. Extend this R-linearly to an action of $R[\Gamma \backslash \Delta / \Gamma']$ yields an R-module homomorphism $R[\Gamma \backslash \Delta / \Gamma'] \to \text{Hom}_R(M^\Gamma, M^{\Gamma'})$.

18.786 Spring 2024, Lecture #10, Page 2
Now let \(\Gamma_1 \alpha \Gamma_2 = \bigsqcup_i \Gamma_1 \alpha_i \) and \(\Gamma_2 \beta \Gamma_3 = \bigsqcup_j \Gamma_2 \beta_j \), for some \(\Gamma_1, \Gamma_2, \Gamma_3 \in \mathcal{S} \) and \(\alpha, \beta \in \Delta \), and define the product

\[
\Gamma_1 \alpha \Gamma_2 \cdot \Gamma_2 \beta \Gamma_3 = \sum_{\gamma} c_{\gamma} \Gamma_1 \gamma \Gamma_3 \quad \text{where} \quad c_{\gamma} = \# \{ (i, j) : \Gamma_1 \alpha_i \Gamma_2 \beta_j = \gamma \Gamma_3 \}
\]

with the summation over distinct double cosets \(\Gamma_1 \gamma \Gamma_3 \) (not over all \(\gamma \in \Delta \)). Note that \(c_{\gamma} \) can be nonzero only when \(\Gamma_1 \gamma \Gamma_3 \) is equal to one of the finitely many double cosets \(\Gamma_1 \alpha_1 \beta_1 \Gamma_3 \), so the product of \(\Gamma_1 \alpha \Gamma_2 \) and \(\Gamma_2 \beta \Gamma_3 \) is an element of \(R[\Gamma_1 \setminus \Delta / \Gamma_3] \), and this element does not depend on the choice of the \(\alpha_i, \beta_j, \gamma \in \Delta \).

The decomposition \(\Gamma_1 \alpha \Gamma_2 = \bigsqcup_i \Gamma_1 \alpha_i \) defines an \(R \)-module isomorphism

\[
R[\Gamma_1 \setminus \Delta / \Gamma_3] \cong R[\Gamma_1 \setminus \Delta]^{\Gamma_2},
\]

as in §10.1. We can thus view \(R[\Gamma_1 \setminus \Delta / \Gamma_3] \) as a \(\Gamma_2 \)-invariant \(R \)-module on which \(R[\Gamma_2 \setminus \Delta / \Gamma_3] \) acts, and this action is given by the multiplication induced by (1), which extends to multiplication of elements of \(R[\Gamma_1 \setminus \Delta / \Gamma_2] \) by elements of \(R[\Gamma_2 \setminus \Delta / \Gamma_3] \) via

\[
\left(\sum_{\alpha} a_{\alpha} \Gamma_1 \alpha \Gamma_2 \right) \left(\sum_{\beta} b_{\beta} \Gamma_2 \beta \Gamma_3 \right) = \sum_{\Gamma_1 \alpha \Gamma_2, \Gamma_2 \beta \Gamma_3} a_{\alpha} b_{\beta} (\Gamma_1 \alpha \Gamma_2 \cdot \Gamma_2 \beta \Gamma_3) \in R[\Gamma_1 \setminus \Delta / \Gamma_3].
\]

It is easy to verify that for all \(m \in M^{\Gamma_1}, A_1 \in R[\Gamma_1 \setminus \Delta / \Gamma_2], A_2 \in R[\Gamma_2 \setminus \Delta / \Gamma_3] \) we have

\[
(m|A_1)|A_2 = m|(A_1 A_2) \in M^{\Gamma_3},
\]

and that for all \(A_1 \in R[\Gamma_1 \setminus \Delta / \Gamma_2], A_2 \in R[\Gamma_2 \setminus \Delta / \Gamma_3], A_3 \in R[\Gamma_3 \setminus \Delta / \Gamma_4] \) we have

\[
(A_1 A_2) A_3 = A_1 (A_2 A_3) \in R[\Gamma_1 \setminus \Delta / \Gamma_4].
\]

If we now consider the case where \(\Gamma_1 = \Gamma_2 \), the multiplication defined above makes \(R[\Gamma \setminus \Delta / \Gamma] \) into a ring, in fact an \(R \)-algebra, with identity \(\Gamma = \Gamma_1 \cap \Gamma \).

Definition 10.2. Let \(G \) be a group, let \(\Gamma \leq G \) be a subgroup, let \(\Delta \subseteq \Gamma \subseteq \tilde{\Gamma} \) be a semigroup, and let \(R \) be a ring. The \textbf{Hecke algebra} of \(\Gamma \) over \(R \) with respect to \(\Delta \) is the \(R \)-algebra \(R[\Gamma \setminus \Delta / \Gamma] \).

Recall that an \textbf{anti-involution} of a semigroup is a bijection \(\iota : \Delta \rightarrow \Delta \) with \(\iota(\alpha \beta) = \iota(\beta) \iota(\alpha) \) for all \(\alpha, \beta \in \Delta \).

Theorem 10.3. Let \(\Gamma \leq G \) be a subgroup, \(\Delta \subseteq \Gamma \subseteq \tilde{\Gamma} \) a semigroup, \(R \) a commutative ring, and \(\iota : \Delta \rightarrow \Delta \) an anti-involution for which \(\iota(\Gamma) = \Gamma \) and \(\Gamma \iota(\alpha) = \iota(\alpha) \Gamma \). The following hold:

- For all \(\alpha \in \Delta \) the double coset \(\Gamma \setminus \Gamma \alpha \Gamma \) has a common set of left and right \(\Gamma \)-coset representatives: there exist \(\alpha_1, \ldots, \alpha_r \in \Gamma \alpha \Gamma \) such that \(\Gamma \alpha \Gamma = \bigsqcup_i \Gamma \alpha_i = \bigsqcup_i \alpha_i \Gamma \).

- The Hecke algebra \(R[\Gamma \setminus \Delta / \Gamma] \) is commutative.

Proof. The existence of the involution \(\iota \) implies that decompositions of \(\Gamma \alpha \Gamma \) into left or right cosets all have the same cardinality. Indeed, if \(\Gamma \alpha \Gamma = \bigsqcup_i \Gamma \alpha_i \) then

\[
\Gamma \alpha \Gamma = \iota(\Gamma \alpha \Gamma) = \bigsqcup_i \iota(\Gamma \alpha_i) = \bigsqcup_i \iota(\alpha_i) \iota(\Gamma) = \bigsqcup_i \iota(\alpha_i) \Gamma.
\]
Now suppose $\Gamma \alpha \Gamma = \bigsqcup_{i=1}^{r} \Gamma \beta_i = \bigsqcup_{i=1}^{r} \delta_i \Gamma$ then $\Gamma \beta_i \cap \delta_j \Gamma \neq \emptyset$ for $1 \leq i, j \leq r$, otherwise $\Gamma \beta_i \subseteq \bigcup_{k \neq j} \delta_k \Gamma$ for some i, j and $\Gamma \alpha \Gamma = \Gamma \beta_i \Gamma = \bigcup_{k \neq j} \delta_k \Gamma$, which is impossible. So we may pick $\alpha_i \in \Gamma \beta_i \cap \delta_i \Gamma$ so that $\Gamma \beta_i = \Gamma \alpha_i$ and $\delta_i \Gamma = \alpha_i \Gamma$ for $1 \leq i \leq r$. This proves the first claim.

For the second, given $\alpha, \beta \in \Delta$, the first claim lets us write $\Gamma \alpha \Gamma = \bigsqcup_{i=1}^{r} \Gamma \alpha_i = \bigsqcup_{i=1}^{r} \alpha_i \Gamma$ and $\Gamma \beta \Gamma = \bigsqcup_{i=1}^{r} \Gamma \beta_i = \bigsqcup_{i=1}^{r} \beta_i \Gamma$, and we then have

$$\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma = \sum_{\gamma \Gamma} c_{\gamma} \Gamma \gamma \Gamma$$

and

$$\Gamma \beta \Gamma \cdot \Gamma \alpha \Gamma = \sum_{\gamma \Gamma} c'_{\gamma} \Gamma \gamma \Gamma,$$

where

$$c_{\gamma} = \#\{(i, j) : \Gamma \alpha_i \beta_j = \Gamma \gamma\}$$

$$= \#\{(i, j) : \Gamma \alpha_i \beta_j \Gamma = \Gamma \gamma \Gamma\} / \#(\Gamma \gamma \Gamma)$$

$$= \#\{(i, j) : \Gamma \alpha_i \beta_j \Gamma = \Gamma \gamma \Gamma\} / \#(\Gamma \gamma \Gamma)$$

$$= \#\{(i, j) : \Gamma \alpha_i \beta_j \Gamma = \Gamma \gamma \Gamma\}$$

$$= c'_{\gamma}.$$

It follows that $\Gamma \alpha \Gamma \cdot \Gamma \beta \Gamma = \Gamma \beta \Gamma \cdot \Gamma \alpha \Gamma$, and this implies that $R[\Gamma \Delta / \Gamma]$ is commutative.

\[\square\]

10.4 Hecke operators on automorphic forms

We now consider a lattice $\Gamma \subseteq \text{SL}_2(\mathbb{R})$, viewed as a subgroup of $\text{GL}_2^+(\mathbb{R})$, and fix a semigroup $\Gamma \subseteq \Delta \subseteq \overline{\Delta}$. If we have a finite order character χ on Γ, we assume it extends to a character χ of Δ such that $\chi(\Gamma \alpha \Gamma^{-1}) = \chi(\gamma)$ whenever $\gamma, \alpha \gamma \alpha^{-1} \in \Gamma$, a condition that is obviously satisfied when χ is the trivial character.

Let Δ be a set of commensurable subgroups of Γ. For $\Gamma_1, \Gamma_2 \in \Delta$ and $\alpha \in \Delta$ we have a decomposition $\Gamma_1 \alpha \Gamma_2 = \bigsqcup_{i=1}^{r} \Gamma_1 \alpha_i$, and for any automorphic form $f \in A_k(\Gamma_1 \chi)$ we define

$$\langle f | k \Gamma_1 \alpha \Gamma_2 \rangle(z) := \det(k \gamma \Gamma)^{k/2-1} \sum_{i=1}^{r} \chi(\alpha_i)(f | k \alpha_i)(z)$$

$$= \det(k \gamma \Gamma)^{k-1} \sum_{i=1}^{r} \chi(\alpha_i)(j(\alpha_i, z))^{-k} f(\alpha_i z).$$

This definition does not depend on the choice of the α_i; see [1, Theorem 2.8.1].

We now specialize to the case $\Gamma = \mathbb{Z}$.

Theorem 10.4. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be finite index subgroups of a lattice $\Gamma \subseteq \text{SL}_2(\mathbb{R})$, let Δ be a semigroup containing Γ that lies in its commensurator in $\text{GL}_2^+(\mathbb{R})$, let k be an integer, and let χ be a character of finite order on Γ extending to Δ as above. The following hold:

- If f is an automorphic/modular/cusp form of weight k for Γ_1 with character χ then $f | k \Gamma_1 \alpha \Gamma_2$ is an automorphic/modular/cusp form of weight k for Γ_2 with character χ.

- For all finite index $\Gamma_1, \Gamma_2, \Gamma_3 \leq \Gamma$ and $\alpha, \beta \in \Delta$ we have

$$\langle f | k \Gamma_1 \alpha \Gamma_2 \rangle | k \Gamma_2 \beta \Gamma_3 = f | k \Gamma_1 \alpha \Gamma_2 \cdot \Gamma_2 \beta \Gamma_3 \rangle.$$

- The spaces $S_k(\Gamma, \chi) \subseteq M_k(\Gamma, \chi) \subseteq A_k(\Gamma, \chi)$ are right $\mathbb{Z}[\Gamma \Delta / \Gamma]$-submodules.

Proof. This is Theorem 2.8.1 in [1].

\[\square\]
Recall the Petersson inner product \(\langle f, g \rangle \), defined for \(f \in S_k(\Gamma) \) and \(g \in M_k(\Gamma) \).

Theorem 10.5. Let \(\alpha \in \text{GL}^+_2(\mathbb{R}) \) and define \(\alpha' := \det(\alpha)\alpha^{-1} \). Let \(\Gamma_1, \Gamma_2 \) be commensurable to a lattice \(\Gamma \in \text{SL}_2(\mathbb{R}) \) with commensurator \(\Gamma' \) in \(\text{GL}^+_2(\mathbb{R}) \), and let \(k \) be an integer. We then have:

- \(\langle f |_k \alpha, g \rangle = \langle f, g |_{k'} \rangle \) for all \(f \in S_k(\Gamma_1) \) and \(g \in M_k(\Gamma_2) \);
- \(\langle f |_{k\Gamma\alpha}, g \rangle = \langle f, g |_{k\Gamma'\alpha'} \rangle \) for all \(f \in S_k(\Gamma) \) and \(g \in M_k(\Gamma) \).

Proof. This is Theorem 2.8.2 in [1]. \qed

Corollary 10.6. Let \(\chi, \psi \) be distinct finite order characters of a lattice \(\Gamma \in \text{SL}_2(\mathbb{R}) \). Then \(\langle f, g \rangle = 0 \) for all \(f \in S_k(\Gamma, \chi) \) and \(g \in M_k(\Gamma, \psi) \).

Proof. Pick \(\gamma \in \Gamma \) so that \(\chi(\gamma) \neq \psi(\gamma) \). Then \(\gamma' := \det(\gamma)\gamma^{-1} = \gamma^{-1} \) and

\[
\chi(\gamma)(f, g) = \langle f |_{k\gamma}, g \rangle = \langle f, g |_{k\gamma} \rangle = \psi(\gamma)\langle f, g \rangle,
\]

by Theorem 10.5, which is possible only if \(\langle f, g \rangle = 0 \). \qed

Corollary 10.7. If \(f \in \mathcal{E}_k(\Gamma) \) then \(f |_{k\Gamma\alpha} \in \mathcal{E}_k(\Gamma) \) for all \(\alpha \in \Gamma' \).

References