18.786 Number theory II Spring 2024
Lecture #10 3/13/2024

These notes summarize the material in §2.7-2.8 of [1] covered in lecture, along with some
relevant background on permutation modules.

10.1 Group rings and permutation modules

Let R be a commutative ring. For any set X we use R[X] to denote the free R-module gener-
ated by the elements of S; it consists of all finite formal sums ), ., rx, with addition scalar
multiplication and addition defined in the obvious way: we let ryx + rox = (r; + ry)x and
r1(rox) = (r;r9)x and extend these definitions R-linearly to all of R[X].

If G is a group, the R-module R[G] is a ring with g, - 1585 = (r173)(g1&>) (to define the
product of elements or R[G] use the distributive law), called the group ring R[G] of G over R;
note that this ring is commutative if and only if G is. If X is a left/right G-set then the R-module
R[X] can be given the structure of a left/right R[ G ]-module by extending the G-action R-linearly.
Note that this ensures that the G-action is compatible with the R-module structure of R[X] in
the sense that the action of each g € G defines an endomorphism of R[X].

For subgroups H < G we use [G/H] and [H\G] to denote the G-sets of left and right cosets
of H equipped with the obvious left and right G-actions (g’ sends gH to g'¢H and Hg to Hgg').
We then have permutation modules R[G/H] and R[H\G] that are left and right R[ G]-modules,
respectively. If K is another subgroup of G we have an R-module of double cosets R[H\G /K]
which admits left and right G-actions in which g’ € G sends HgK to Hg'gK and Hgg'K; ex-
tending these G-actions R-linearly makes R[H\G/K] an R[G]-bimodule.

For H,K < G and g € G, the decomposition of the double coset H\g/K into right H-cosets
is given by the orbit of Hg € [H\G] under the right action of K. If this orbit is finite we can
formally sum cosets to obtain an element of RLTH\G]. If every right H-coset in [H\G] has a finite
K-orbit, we can use this to define an injective right R[ G]-module homomorphism

R[H\G/H] — R[H\G]

HgK — Z Hg'
Hg’'e{Hgk:keK}

Elements in the image of this homomorphism are R-linear combination of sums of K-orbits in
[H\G], hence invariant under the action of K. Let R[H\G]X denote the R-submodule of R[H\G]
whose elements are fixed by K. Every such element must be an R-linear sum of K-orbits in
R[H\G], corresponding to the image of an R-linear sum of double cosets in [H\G/K] that lies
in the image of the map above. It follows that we then have an R-module isomorphism

R[H\G/K] ~[H\G],
and if ever K-coset in [G/K] has a finite H-orbit we similarly obtain an R-module isomorphism
R[H\G/K]~[G/K]".

We now that that everything above applies more generally to any semigroup A < G. The
semigroup ring R[A] is defined in the same way as the group ring R[G] (and it is indeed a ring,
even though A need not be a group). For H,K C A we have the right R[A]-module R[H\A]
and the R[A]-bimodule R{H\A /K], and if every K orbit in [H\A] and every H-orbit in [A/K]
is finite, we have R-module isomorphisms

RIH\A/K]~[H\A ~[A/KT?
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10.2 Commensurability
We now investigate conditions under which the finite orbit assumptions above are satisfied.

Definition 10.1. Let G be a group. Two subgroups H,K < G are commensurable if their inter-
section has finite index in both H and K; we write H ~ K to indicate this relationship.

For any H,K,J < G we have
[H:HNJ]<[H:HNKNJ]=[H:HNK]J[HNK:HNKNJ] <[H:HNK][K:KnJ],

which implies that commensurability is transitive; it is clearly reflexive and symmetric, hence
an equivalence relation.

For g € G, let H® denote g7'Hg < G. For any H,K < G and g € G we have H ~ K if
and only if H® ~ K&. It follows that if H is commensurable with H' and H®? then it is also
commensurable with H8182 and therefore the commensurator

H:={geG:H~H?¢

is a subgroup of G that contains the normalizer of H in G.
If H, K < G are commensurable, then H = K and for any g € H = K we have finite left and
and right coset decompositions of the double coset HgK via

m n
HgK =] [nigk =] [Hek;,
i=1 =1

with h; € H ranging over H/(HNK? ') representatives, of which there are m := [H : HNK¢ '],
and k; ranging over (K N H®)\K representatives, of which there are n = [K : K NH?].

10.3 Hecke algebras

Now let S be a set of commensurable subgroups I' < G, and let A C G be a semigroup containing
every I' € S and is contained in their common commensurator in G. We will eventually apply
this with T' = SL,(Z) < GL; (R) = G and S the set of congruence subgroups of SL,(Z), but rather
letting A be the commensurator of SLy(Z) in GL; (R) (which is R*GL} (Q)), we will take A to
be a semigroup of integer matrices with positive determinant.

Let M be an R-module equipped with a right A-action that is compatible with the R-module
structure of M, making M an R[A]-module. Let I',T' € S, and consider a double coset T'al”. If
Tal” =] ], Ta, is a right coset decomposition, we define an action of 'aI” on M" via

m|Tal’ := Z m®.
i

This definition does not depend on the choice of the choice of the a; € T'al”, since if I‘al’. =Ta;
/

for some then a] = y;a; for some y; € T and m* = m"i% = (ml.y)"‘i =m®% for all m € M'. We

also note that m|Taal” € M is I"-invariant, since for any y’ € I, if we let a; = a;y’ then

(m|Tal’) = Z m&r = Z m% = m|Tal’,
i i
because F'al” = [ ]; Ta! is just another right coset decomposition. This defines an R-module
homomorphism M" — M I Extend this R-linearly to an action of R[T'\A/I"] yields an R-module

homomorphism R[T'\A/T’] — Homg(MT, M™).
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Now Let Tyal; = [ [;Tya; and T,8T3 = [ [; T, B;, for some I3,T5,I3 € S and @, € A, and
define the product

laly - LT = oiyl;  where ¢, =#{(i,j) : Tho;3; =T17} e
Iyl

with the summation over distinct double cosets I'1 Y[ (not over all y € A). Note that ¢, can
be nonzero only when I yTj is equal to one of the finitely many double cosets I a;3;13, so the
product of T;al; and I, AT5 is an element of R[T}\A /T3], and this element does not depend on
the choice of the a;, B;,7 € A.

The decomposition I aly = [ |, I} a; defines an R-module isomorphism

R[T}\A/T,] ~R[[1\A]R,

asin §10.1. We can thus view R[T;\A/T,] as a I,-invariant R-module on which R[T;\A/T;] acts,
and this action is given by the multiplication induced by (1), which extends to multiplication of
elements of R[T;\A/I},] by elements of R[T,\A/I5] via

(Z aarlarz) ( Z b/jrzﬂrs) = Z aqbp(Taly - ThAT3) € RTN\A/T;].
Tyal, T,BT; Tyaly, AT,
It is easy to verify that for all m € M™, A; € R[T}\A/L}], A, € R[T,\A/T;] we have
(mlA1)IAy = m|(A;4;) € M,
and that for all A; e R[[1\A/I,], A, € R[[L,\A /T3], A; € R[[3\A/T,] we have
(A1A9)A3 = A (AzA3) € R[TI\A/T,].

If we now consider the case where I} = I, the multiplication defined above makes R[T\A/T]
into a ring, in fact an R-algebra, with identity ' =T 1, T.

Definition 10.2. Let G be a group, let T < G be a subgroup, let I' € A C T be a semigroup, and
let R be a ring. The Hecke algebra of T' over R with respect to A is the R-algebra R[T\A/T'].

Recall that an anti-involution of a semigroup is a bijection ¢: A — A with «(af) = «(B)i(a) for
all a, B € A.

Theorem 10.3. Let T < G be a subgroup, I' < A < T a semigroup, R a commutative ring, and
t: A — A an anti-involution for which ¢(T') =T and T't(a)T = T'al. The following hold:

* For all a € A the double coset T\T'al' has a common set of left and right T-coset representa-
r

tives: there exist ay,...,a, € Tal such that Tal =] [ Ta; =[['_, &,T.
* The Hecke algebra R[T\A/T] is commutative.

Proof. The existence of the involution ¢ implies that decompositions of I'al into left or right
cosets all have the same cardinality. Indeed, if Tal’ = ]_[irzl T'a; then

r r r

Fall =(Tall) = ]_[ (Ta;) = ]_[ (a(T) = ]_[ v(a)T.

i=1 i=1 i=1
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Now suppose Tal' = [ [;_ TB; = [ [[_, 6,T then T3; N &;T # B for 1 < i,j < r, otherwise
I'p; € Uk# Oyl forsomei,jand I'al' =Tf;I' = Uk# 0 I', which is impossible. So we may pick
a; €T'B;No;I'sothat I'P; =Ta; and 6;I' = o;T for 1 <i < r. This proves the first claim.

For th(;: second, givren a,f € A, the first claim lets us write Tal' = [ [{_; Ta; = [ ['_; a;T and
rpr=11_,TB; =[1;_, B:T, and we then have

Tl -TAT=» ¢, TyT  and  TPT-Tal = » T,

ryT ryr
where
Cy = #{(l,]) : 1—‘aiﬂj = FY}
= #{(i, j) : TayB;T = IyT}/#(T\IYT)
= #{(i,7) : Te(B)e(a )T = Te(y)T}H/#(T\T'e(y)T)
= #{(1,7) : Te(B;)e(a;) = Tu(y)}
=c.
It follows that T'al’ - TSI’ =TBI - T'al, and this implies that R[T\A/I'] is commutative. O

10.4 Hecke operators on automorphic forms

We now consider a lattice I' € SLy(R), viewed as a subgroup of GL; (R), and fix a semigroup
I € A CT. If we have a finite order character y on I, we assume it extends to a character y
of A such that y (aya™) = y(y) whenever y,aya! €T, a condition that is obviously satisfied
when y is the trivial character.

Let S be a set of commensurable subgroups of I'. For I'},I, € S and @ € A we have a
decomposition I aly, = ]_[irzl I a;, and for any automorphic form f € A, (T} ¥ ) we define

(f kT al)(2) = det(@)/271 > "7 (a)(f ke )(2)

i=1

= det(a)* ! > 7(@)j(a;,2) ™ f (%)

i=1

This definition does not depend on the choice of the a;; see [1, Theorem 2.8.1].
We now specialize to the case R = Z.

Theorem 10.4. Let I, T;, [ be finite index subgroups of a lattice T' < SL,(R), let A be a semigroup
containing T that lies in its commensurator in GL;(R), let k be an integer, and let y be a character
of finite order on T extending to A as above. The following hold:

* If f is an automorphic/modular /cusp form of weight k for T with character y then f|T}al,
is an automorphic/modular /cusp form of weight k for T, with character .

* For all finite index Ty,1,,I3 < T'and a, 3 € A we have
(flkTal) [k LpTs = flk(Tyaly - T AT3).

* The spaces Si.(T, x) € M (T, x) C A, (T, x) are right Z[T\A/T ]-submodules.

Proof. This is Theorem 2.8.1 in [1]. O
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Recall the Petersson inner product (f, g), defined for f € S;(T") and g € M (T).

Theorem 10.5. Let a € GL;(R) and define a’ := det(a)a™'. Let I},T, be commensurable to a
lattice T € SL,(R) with commensurator T in GLZ(R), and let k be an integer. We then have:

* (flka, &) = (f, glx’) for all f € S(I}) and g € My (I,);
* (flxTal,g) = (f,glTa’T) for all f € S;(T) and g € My(T).

Proof. This is Theorem 2.8.2 in [1]. O

Corollary 10.6. Let y, % be distinct finite order characters of a lattice T’ € SLy(R). Then (f,g) =0
forall f € S, (T, x) and g € My (T, ).

Proof. Pick y €T so that y(y) #(y). Then y’ :=det(y)y ' =y~ ! and

XN, 8) = (fler.g) = (£, gher ™) =9 ({f, 8),
by Theorem 10.5, which is possible only if (f, g) = 0. O

Corollary 10.7. If f € &.(T) then f|,T'al € &(T) forall a €T
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