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These notes summarize the material in §2.7–2.8 of [1] covered in lecture, along with some
relevant background on permutation modules.

10.1 Group rings and permutation modules

Let R be a commutative ring. For any set X we use R[X ] to denote the free R-module gener-
ated by the elements of S; it consists of all finite formal sums

∑

x∈X rx x , with addition scalar
multiplication and addition defined in the obvious way: we let r1 x + r2 x := (r1 + r2)x and
r1(r2 x) = (r1r2)x and extend these definitions R-linearly to all of R[X ].

If G is a group, the R-module R[G] is a ring with r1 g1 · r2 g2 := (r1r2)(g1 g2) (to define the
product of elements or R[G] use the distributive law), called the group ring R[G] of G over R;
note that this ring is commutative if and only if G is. If X is a left/right G-set then the R-module
R[X ] can be given the structure of a left/right R[G]-module by extending the G-action R-linearly.
Note that this ensures that the G-action is compatible with the R-module structure of R[X ] in
the sense that the action of each g ∈ G defines an endomorphism of R[X ].

For subgroups H ≤ G we use [G/H] and [H\G] to denote the G-sets of left and right cosets
of H equipped with the obvious left and right G-actions (g ′ sends gH to g ′gH and H g to H g g ′).
We then have permutation modules R[G/H] and R[H\G] that are left and right R[G]-modules,
respectively. If K is another subgroup of G we have an R-module of double cosets R[H\G/K]
which admits left and right G-actions in which g ′ ∈ G sends H gK to H g ′gK and H g g ′K; ex-
tending these G-actions R-linearly makes R[H\G/K] an R[G]-bimodule.

For H, K ≤ G and g ∈ G, the decomposition of the double coset H\g/K into right H-cosets
is given by the orbit of H g ∈ [H\G] under the right action of K . If this orbit is finite we can
formally sum cosets to obtain an element of R[H\G]. If every right H-coset in [H\G] has a finite
K-orbit, we can use this to define an injective right R[G]-module homomorphism

R[H\G/H] ,→ R[H\G]

H gK 7→
∑

H g ′∈{H gk:k∈K}

H g ′

Elements in the image of this homomorphism are R-linear combination of sums of K-orbits in
[H\G], hence invariant under the action of K . Let R[H\G]K denote the R-submodule of R[H\G]
whose elements are fixed by K . Every such element must be an R-linear sum of K-orbits in
R[H\G], corresponding to the image of an R-linear sum of double cosets in [H\G/K] that lies
in the image of the map above. It follows that we then have an R-module isomorphism

R[H\G/K]' [H\G]K ,

and if ever K-coset in [G/K] has a finite H-orbit we similarly obtain an R-module isomorphism

R[H\G/K]' [G/K]H .

We now that that everything above applies more generally to any semigroup ∆ ≤ G. The
semigroup ring R[∆] is defined in the same way as the group ring R[G] (and it is indeed a ring,
even though ∆ need not be a group). For H, K ⊆ ∆ we have the right R[∆]-module R[H\∆]
and the R[∆]-bimodule R[H\∆/K], and if every K orbit in [H\∆] and every H-orbit in [∆/K]
is finite, we have R-module isomorphisms

R[H\∆/K]' [H\∆]K ' [∆/K]H
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10.2 Commensurability

We now investigate conditions under which the finite orbit assumptions above are satisfied.

Definition 10.1. Let G be a group. Two subgroups H, K ≤ G are commensurable if their inter-
section has finite index in both H and K; we write H ∼ K to indicate this relationship.

For any H, K , J ≤ G we have

[H : H ∩ J] ≤ [H : H ∩ K ∩ J] = [H : H ∩ K][H ∩ K : H ∩ K ∩ J] ≤ [H : H ∩ K][K : K ∩ J],

which implies that commensurability is transitive; it is clearly reflexive and symmetric, hence
an equivalence relation.

For g ∈ G, let H g denote g−1H g ≤ G. For any H, K ≤ G and g ∈ G we have H ∼ K if
and only if H g ∼ K g . It follows that if H is commensurable with H g1 and H g2 then it is also
commensurable with H g1 g2 and therefore the commensurator

eH := {g ∈ G : H ∼ H g}

is a subgroup of G that contains the normalizer of H in G.
If H, K ≤ G are commensurable, then H̃ = K̃ and for any g ∈ eH = eK we have finite left and

and right coset decompositions of the double coset H gK via

H gK =
m
∐

i=1

hi gK =
n
∐

j=1

H gk j ,

with hi ∈ H ranging over H/(H ∩K g−1
) representatives, of which there are m := [H : H ∩K g−1

],
and k j ranging over (K ∩H g)\K representatives, of which there are n= [K : K ∩H g].

10.3 Hecke algebras

Now let S be a set of commensurable subgroups Γ ≤ G, and let∆ ⊆ G be a semigroup containing
every Γ ∈ S and is contained in their common commensurator in G. We will eventually apply
this with Γ = SL2(Z)≤ GL+2 (R) = G and S the set of congruence subgroups of SL2(Z), but rather
letting ∆ be the commensurator of SL2(Z) in GL+2 (R) (which is R×GL+2 (Q)), we will take ∆ to
be a semigroup of integer matrices with positive determinant.

Let M be an R-module equipped with a right∆-action that is compatible with the R-module
structure of M , making M an R[∆]-module. Let Γ , Γ ′ ∈ S, and consider a double coset ΓαΓ ′. If
ΓαΓ ′ =

∐

i Γαi is a right coset decomposition, we define an action of ΓαΓ ′ on M Γ via

m|ΓαΓ ′ :=
∑

i

mαi .

This definition does not depend on the choice of the choice of the αi ∈ ΓαΓ ′, since if Γα′i = Γαi

for some then α′i = γiαi for some γi ∈ Γ and mα
′
i = mγiαi = (mγi )

αi = mαi for all m ∈ M Γ . We
also note that m|ΓααΓ ′ ∈ M is Γ ′-invariant, since for any γ′ ∈ Γ ′, if we let α′i = αiγ

′ then

(m|ΓαΓ ′)γ
′
=
∑

i

mαiγ
′
=
∑

i

mα
′
i = m|ΓαΓ ′,

because ΓαΓ ′ =
∐

i Γα
′
i is just another right coset decomposition. This defines an R-module

homomorphism M Γ → M Γ ′ . Extend this R-linearly to an action of R[Γ\∆/Γ ′] yields an R-module
homomorphism R[Γ\∆/Γ ′]→ HomR(M Γ , M Γ ′).
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Now Let Γ1αΓ2 =
∐

i Γ1αi and Γ2βΓ3 =
∐

j Γ2β j , for some Γ1, Γ2, Γ3 ∈ S and α,β ∈ ∆, and
define the product

Γ1αΓ2 · Γ2βΓ3 =
∑

Γ1γΓ3

cγΓ1γΓ3 where cγ = #{(i, j) : Γ1αiβ j = Γ1γ} (1)

with the summation over distinct double cosets Γ1γΓ3 (not over all γ ∈ ∆). Note that cγ can
be nonzero only when Γ1γΓ3 is equal to one of the finitely many double cosets Γ1αiβ jΓ3, so the
product of Γ1αΓ2 and Γ2βΓ3 is an element of R[Γ1\∆/Γ3], and this element does not depend on
the choice of the αi ,β j ,γ ∈∆.

The decomposition Γ1αΓ2 =
∐

i Γ1αi defines an R-module isomorphism

R[Γ1\∆/Γ2]' R[Γ1\∆]Γ2 ,

as in §10.1. We can thus view R[Γ1\∆/Γ2] as a Γ2-invariant R-module on which R[Γ2\∆/Γ3] acts,
and this action is given by the multiplication induced by (1), which extends to multiplication of
elements of R[Γ1\∆/Γ2] by elements of R[Γ2\∆/Γ3] via

 

∑

Γ1αΓ2

aαΓ1αΓ2

! 

∑

Γ2βΓ3

bβΓ2βΓ3

!

=
∑

Γ1αΓ2,Γ2βΓ3

aαbβ(Γ1αΓ2 · Γ2βΓ3) ∈ R[Γ1\∆/Γ3].

It is easy to verify that for all m ∈ M Γ1 , A1 ∈ R[Γ1\∆/Γ2], A2 ∈ R[Γ2\∆/Γ3] we have

(m|A1)|A2 = m|(A1A2) ∈ M Γ3 ,

and that for all A1 ∈ R[Γ1\∆/Γ2], A2 ∈ R[Γ2\∆/Γ3], A3 ∈ R[Γ3\∆/Γ4] we have

(A1A2)A3 = A1(A2A3) ∈ R[Γ1\∆/Γ4].

If we now consider the case where Γ1 = Γ2, the multiplication defined above makes R[Γ\∆/Γ ]
into a ring, in fact an R-algebra, with identity Γ = Γ 1∆ Γ .

Definition 10.2. Let G be a group, let Γ ≤ G be a subgroup, let Γ ⊆∆ ⊆ eΓ be a semigroup, and
let R be a ring. The Hecke algebra of Γ over R with respect to ∆ is the R-algebra R[Γ\∆/Γ ].

Recall that an anti-involution of a semigroup is a bijection ι : ∆→∆ with ι(αβ) = ι(β)ι(α) for
all α,β ∈∆.

Theorem 10.3. Let Γ ≤ G be a subgroup, Γ ≤ ∆ ≤ eΓ a semigroup, R a commutative ring, and
ι : ∆→∆ an anti-involution for which ι(Γ ) = Γ and Γ ι(α)Γ = ΓαΓ . The following hold:

• For all α ∈∆ the double coset Γ\ΓαΓ has a common set of left and right Γ -coset representa-
tives: there exist α1, . . . ,αr ∈ ΓαΓ such that ΓαΓ =

∐r
i Γαi =

∐r
i=1αiΓ .

• The Hecke algebra R[Γ\∆/Γ ] is commutative.

Proof. The existence of the involution ι implies that decompositions of ΓαΓ into left or right
cosets all have the same cardinality. Indeed, if ΓαΓ =

∐r
i=1 Γαi then

ΓαΓ = ι(ΓαΓ ) =
r
∐

i=1

ι(Γαi) =
r
∐

i=1

ι(αi)ι(Γ ) =
r
∐

i=1

ι(αi)Γ .
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Now suppose ΓαΓ =
∐r

i=1 Γβi =
∐r

i=1δiΓ then Γβi ∩ δ jΓ 6= ; for 1 ≤ i, j ≤ r, otherwise
Γβi ⊆

⋃

k 6= j δkΓ for some i, j and ΓαΓ = ΓβiΓ =
⋃

k 6= j δkΓ , which is impossible. So we may pick
αi ∈ Γβi ∩δiΓ so that Γβi = Γαi and δiΓ = αiΓ for 1≤ i ≤ r. This proves the first claim.

For the second, given α,β ∈∆, the first claim lets us write ΓαΓ =
∐r

i=1 Γαi =
∐r

i=1αiΓ and
ΓβΓ =

∐r
i=1 Γβi =

∐r
i=1 βiΓ , and we then have

ΓαΓ · ΓβΓ =
∑

ΓγΓ

cγΓγΓ and ΓβΓ · ΓαΓ =
∑

ΓγΓ

c′γΓγΓ ,

where

cγ = #{(i, j) : Γαiβ j = Γγ}
= #{(i, j) : Γαiβ jΓ = ΓγΓ }/#(Γ\ΓγΓ )
= #{(i, j) : Γ ι(β j)ι(αi)Γ = Γ ι(γ)Γ }/#(Γ\Γ ι(γ)Γ )
= #{(i, j) : Γ ι(β j)ι(αi) = Γ ι(γ)}
= c′γ.

It follows that ΓαΓ · ΓβΓ = ΓβΓ · ΓαΓ , and this implies that R[Γ\∆/Γ ] is commutative.

10.4 Hecke operators on automorphic forms

We now consider a lattice Γ ∈ SL2(R), viewed as a subgroup of GL+2 (R), and fix a semigroup
Γ ⊆ ∆ ⊆ eΓ . If we have a finite order character χ on Γ , we assume it extends to a character χ
of ∆ such that χ(αγα−1) = χ(γ) whenever γ,αγα−1 ∈ Γ , a condition that is obviously satisfied
when χ is the trivial character.

Let S be a set of commensurable subgroups of Γ . For Γ1, Γ2 ∈ S and α ∈ ∆ we have a
decomposition Γ1αΓ2 =

∐r
i=1 Γ1αi , and for any automorphic form f ∈ Ak(Γ1χ) we define

( f |kΓ1αΓ2)(z) := det(α)k/2−1
r
∑

i=1

χ(αi)( f |kαi)(z)

= det(α)k−1
r
∑

i=1

χ(αi) j(αi , z)−k f (αiz)

This definition does not depend on the choice of the αi; see [1, Theorem 2.8.1].
We now specialize to the case R= Z.

Theorem 10.4. Let Γ1, Γ2, Γ3 be finite index subgroups of a lattice Γ ≤ SL2(R), let∆ be a semigroup
containing Γ that lies in its commensurator in GL+2 (R), let k be an integer, and let χ be a character
of finite order on Γ extending to ∆ as above. The following hold:

• If f is an automorphic/modular/cusp form of weight k for Γ1 with character χ then f |Γ1αΓ2
is an automorphic/modular/cusp form of weight k for Γ2 with character χ.

• For all finite index Γ1, Γ2, Γ3 ≤ Γ and α,β ∈∆ we have

( f |kΓ1αΓ2)|kΓ2βΓ3 = f |k(Γ1αΓ2 · Γ2βΓ3).

• The spaces Sk(Γ ,χ) ⊆ Mk(Γ ,χ) ⊆ Ak(Γ ,χ) are right Z[Γ\∆/Γ ]-submodules.

Proof. This is Theorem 2.8.1 in [1].
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Recall the Petersson inner product 〈 f , g〉, defined for f ∈ Sk(Γ ) and g ∈ Mk(Γ ).

Theorem 10.5. Let α ∈ GL+2 (R) and define α′ := det(α)α−1. Let Γ1, Γ2 be commensurable to a
lattice Γ ∈ SL2(R) with commensurator eΓ in GL+2 (R), and let k be an integer. We then have:

• 〈 f |kα, g〉= 〈 f , g|kα′〉 for all f ∈ Sk(Γ1) and g ∈ Mk(Γ2);

• 〈 f |kΓαΓ , g〉= 〈 f , g|kΓα′Γ 〉 for all f ∈ Sk(Γ ) and g ∈ Mk(Γ ).

Proof. This is Theorem 2.8.2 in [1].

Corollary 10.6. Let χ,ψ be distinct finite order characters of a lattice Γ ∈ SL2(R). Then 〈 f , g〉= 0
for all f ∈ Sk(Γ ,χ) and g ∈ Mk(Γ ,ψ).

Proof. Pick γ ∈ Γ so that χ(γ) 6=ψ(γ). Then γ′ := det(γ)γ−1 = γ−1 and

χ(γ)〈 f , g〉= 〈 f |kγ, g〉= 〈 f , g|kγ−1) =ψ(γ)〈 f , g〉,

by Theorem 10.5, which is possible only if 〈 f , g〉= 0.

Corollary 10.7. If f ∈ Ek(Γ ) then f |kΓαΓ ∈ Ek(Γ ) for all α ∈ eΓ
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