1 Geometry of the complex upper half plane

This is summary of the material from §1.1–1.4 of [1] presented in lecture, with proofs omitted.

1.1 Automorphisms of the upper half plane

The group $GL_2(\mathbb{C})$ acts on the Riemann sphere $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \infty$ via linear fractional transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d} \qquad (z \in \mathbb{P}^1(\mathbb{C}))$$

This defines a left group action of $GL_2(\mathbb{C})$ on $\mathbb{P}^1(\mathbb{C})$. The maps $z \mapsto \alpha z$ are meromorphic.

We now define the upper half plane

$$\mathbf{H} := \{ z \in \mathbb{C} : \mathrm{Im}(z) > 0 \}$$

For $z \in \mathbf{H}$ and $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$ we have

$$\operatorname{Im}(\alpha z) = \frac{\det(\alpha)\operatorname{Im}(\alpha z)}{|cz+d|^2}.$$

For det(α) > 0 we have $|cz+d| \neq 0$ and Im(αz) > 0, which implies that $\alpha \mapsto \alpha z$ is a holomorphic automorphism of **H** for all $\alpha \in GL_2^+(\mathbb{R}) := \{\alpha \in GL_2(\mathbb{R}) : det(\alpha) > 0\}.$

Theorem 1.1. The following hold:

- For every $z \in \mathbf{H}$ there exists $\alpha \in SL_2(\mathbb{R})$ such that $\alpha i = z$.
- $\operatorname{GL}_2^+(\mathbb{R})/\mathbb{R}^{\times} \simeq \operatorname{SL}_2(\mathbb{R})/\{\pm 1\} \simeq \operatorname{Aut}(\mathbf{H})$
- The $SL_2(\mathbb{R})$ -stabilizer of $i \in \mathbf{H}$ is $SL_2(\mathbb{R})_i = SO_2(\mathbb{R})$.

Proof. See [1, Theorem 1.1.3].

Recall that a topological group *G* is a group object in the category of topological spaces (this means the maps $G \times G \to G$ and $G \times G$ defined by $(g,h) \mapsto gh$ and $g \mapsto g^{-1}$ are continuous). All the topological groups we shall consider in this course are Hausdorff, but we won't bake that into the definition (some authors do). We view $GL_2(\mathbb{R})$ and all its subgroups and quotients as topological groups, where $GL_2(\mathbb{R})$ has the subspace topology induced by $GL_2(\mathbb{R}) \subseteq M_2(\mathbb{R}) \simeq \mathbb{R}^4$.

When a topological group G acts on a topological space X the action map $G \times X \to X$ defined by $(g, x) \mapsto gx$ is required to be continuous, in addition to satisfying the usual properties of a (left) group action. For each $g \in G$ the map $x \mapsto gx$ is an automorphism of X (a homeomorphism $X \to X$). For $x \in X$ we have the G-stabilizer G_x and G-orbit Gx defined by

 $G_x := \{g \in G : gx = x\} \subseteq G$ and $Gx := \{gx : g \in G\} \subseteq X$

and we use $G \setminus X$ to denote the topological space defined by the *G*-orbits of *X* (with the quotient topology), and we use G/G_x to denote the topological space consisting of the right G_x -cosets of *G* (with the quotient topology).

Theorem 1.2. Let G be a second countable locally compact Hausdorff topological group acting on a locally compact Hausdorff space X. Then for every $x \in X$ the map $gG_x \mapsto gx$ defines a homeomorphism $G/G_x \xrightarrow{\sim} X$. *Proof.* See [1, Theorem 1.2.1]. We will prove a more general theorem in the next lecture. \Box

Corollary 1.3. The map $\alpha SO_2(\mathbb{R}) \mapsto \alpha i$ is a homeomorphism $SL_2(\mathbb{R})/SO_2(\mathbb{R}) \xrightarrow{\sim} H$.

The corollary allows us to represent elements z of **H** as right cosets $\beta SO_2(\mathbb{R})$, in which case the action of $\alpha SL_2(\mathbb{R})$ on **H** is simply (left) matrix multiplication $\alpha z = \alpha \beta SO_2(\mathbb{R})$ rather than a linear fractional transformation.

1.2 Classification of linear fractional transformations

For $\alpha \in \operatorname{GL}_2^+(\mathbb{R})$ we define disc $(\alpha) := \operatorname{tr}(\alpha)^2 - 4 \operatorname{det}(\alpha)$ to be the discriminant of its characteristic polynomial $t^2 - \operatorname{tr}(\alpha)t + \operatorname{det}(\alpha)$, whose sign determines the type of eigenvalues α has (distinct complex conjugates, a single real (double) eigenvalue, or two real eigenvalues).

Definition 1.4. We call a nonscalar $\alpha \in GL_2^+(\mathbb{R})$

elliptic if disc(α) < 0, parabolic if disc(α) = 0, hyperbolic if disc(α) > 0.

We denote the extended upper half-plane by $H^* := H \cup \mathbb{R} \cup \{\infty\} \subseteq \mathbb{P}^1(\mathbb{C})$.

Theorem 1.5. For each nonscalar $\alpha \in GL_2^+(\mathbb{R})$ we have

- α is elliptic if and only if its fixed points are z and \overline{z} for some $z \in \mathbf{H}$.
- α is parabolic if and only if it has a unique fixed point $x \in \mathbf{H}^* \mathbf{H} = \mathbb{R} \cup \{\infty\}$.
- α is hyperbolic if and only if it has distinct fixed points $x_1, x_2 \in \mathbf{H}^* \mathbf{H} = \mathbb{R} \cup \{\infty\}$.

In every case, the fixed points of α on $\mathbb{P}^1(\mathbb{C})$ lie in the extended upper half-plane \mathbf{H}^* , and they lie in the upper half-plane if and only if α is elliptic.

Proof. This follows immediately from an analysis of the eigenvalues in each case. \Box

For $x, x' \in \mathbb{R} \cup \{\infty\}$ we define

$$\operatorname{GL}_2(\mathbb{R})^{(p)}_{x} := \{ \alpha \in \operatorname{GL}_2^+(\mathbb{R})_x : \alpha \text{ is parabolic or scalar} \}, \quad \operatorname{GL}_2^+(\mathbb{R})_{x,x'} := \operatorname{GL}_2^+(\mathbb{R})_x \cap \operatorname{GL}_2^+(\mathbb{R})_{x'}$$

Lemma 1.6. We have

- $\operatorname{GL}_2^+(\mathbb{R})_i = \operatorname{SO}_2(\mathbb{R});$
- $\operatorname{GL}_2^+(\mathbb{R})_{\infty} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, d \in \mathbb{R}^{\times}, b \in \mathbb{R}, ad > 0 \right\};$
- $\operatorname{GL}_2^+(\mathbb{R})_{\infty}^{(p)} = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & a \end{smallmatrix}\right) : a \in \mathbb{R}^\times, b \in \mathbb{R} \right\};$
- $\operatorname{GL}_2^+(\mathbb{R})_{0,\infty} = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} : a, d \in \mathbb{R}^{\times}, ad > 0 \right\}.$

Moreover, for $z \in \mathbf{H}$ the stabilizer $\operatorname{GL}_2^+(\mathbb{R})_z$ is conjugate to $\operatorname{GL}_2^+(\mathbb{R})_i$, for $x \in \mathbf{H}^* - \mathbf{H}$ the stabilizer $\operatorname{GL}_2^+(\mathbb{R})_x$ is conjugate to $\operatorname{GL}_2^+(\mathbb{R})_\infty$ with $\operatorname{GL}_2^+(\mathbb{R})_x^{(p)}$ conjugate to $\operatorname{GL}_2^+(\mathbb{R})_\infty^{(p)}$, and for distinct $x, x' \in \mathbf{H}^* - \mathbf{H}$ the double stabilizer $\operatorname{GL}_2(\mathbb{R})_{x,x'}^+$ is conjugate to $\operatorname{GL}_2^+(\mathbb{R})_{0,\infty}^\infty$. In all cases, the conjugating element can be chosen to lie in $\operatorname{SL}_2(\mathbb{R})$.

Proof. See [1, Lemma 1.3.2].

1.3 The invariant metric and measure on the upper half plane

Let $z = x + iy \in H$. The invariant metric ds and invariant measure on H are defined by

$$ds(z) = rac{\sqrt{dx^2 + dy^2}}{y^2}$$
 and $dv(z) = rac{dxdy}{y^2}$

We call the image $C_{z_0 \to z_1}$ of an injective function $\phi : [0,1] \to \mathbf{H}$ that is C^{∞} at all but finitely many points a path from $z_0 = \phi(0)$ to $z_1 = \phi(1)$. If we put $\phi(t) = x(t) + iy(t)$, the length of $C_{z_0 \to z_1}$ is

$$\ell(C_{z_0 \to z_1}) := \int_0^1 ds(\phi(t)) = \int_0^1 \frac{\sqrt{(dx(t)/dt)^2 + (dy(t)/dt)^2}}{y(t)} dt,$$

which does not depend on the choice of ϕ , as long as it has image $C_{z_0 \rightarrow z_1}$.

A circle or line in **H** orthogonal to \mathbb{R} is called a geodesic.

Lemma 1.7. For any two distinct $z_0, z_1 \in \mathbf{H}$, there is a unique shortest path $C_{z_0 \to z_1}$ from z_0 to z_1 , which lies on a geodesic. For any $z_0 \in \mathbf{H}$ and r > 0 the set $\{z \in \mathbf{H} : \ell(C_{z_0,z}) = r\}$ is a circle in \mathbf{H} orthogonal to every geodesic that contains z_0 .

Proof. See Lemma 1.4.1 and Corollary 1.4.2 in [1]

The isomorphism $\mathbf{H} \simeq \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2(\mathbb{R})$ allows us to uniquely represent $\alpha \in \mathrm{SL}_2(\mathbb{R})$ in the form $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = h_z k_{\theta}$, where $z = x + iy = \alpha i \in \mathbf{H}$ and $\theta = -\arg(ci + d)$, with

$$h_z = y^{-1/2} \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{R}), \qquad k_\theta = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \in SO_2(\mathbb{R}).$$

We now define a measure on $SL_2(\mathbb{R})$ by

$$d\alpha = \frac{dxdyd\theta}{2\pi y^2}.$$

This measure is $SL_2(\mathbb{R})$ -invariant: one can check that $d\alpha = d\alpha\beta = d\beta\alpha$ for all $\alpha, \beta \in SL_2(\mathbb{R})$; moreover, we have chosen the scaling so that $d\alpha$ is compatible with $d\nu$.

Theorem 1.8. $SL_2(\mathbb{R})$ is unimodular, and for any measurable $f : H \to \mathbb{C}$ we have

$$\int_{\mathbf{H}} f(z) d\nu(z) = \int_{\mathrm{SL}_2(\mathbb{R})} f(\alpha i) d\alpha$$

Proof. This is [1, Thm. 1.4.5].

References

[1] Toshitsune Miyake, *Modular forms*, Springer, 2006.