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1 Geometry of the complex upper half plane

This is summary of the material from §1.1–1.4 of [1] presented in lecture, with proofs omitted.

1.1 Automorphisms of the upper half plane

The group GL2(C) acts on the Riemann sphere P1(C) = C∪∞ via linear fractional transforma-
tions:

�

a b
c d

�

z =
az + b
cz + d

(z ∈ P1(C))

This defines a left group action of GL2(C) on P1(C). The maps z 7→ αz are meromorphic.
We now define the upper half plane

H := {z ∈ C : Im(z)> 0}

For z ∈ H and α=
�

a b
c d

�

∈ GL2(R) we have

Im(αz) =
det(α) Im(αz)
|cz + d|2

.

For det(α)> 0 we have |cz+d| 6= 0 and Im(αz)> 0, which implies that α 7→ αz is a holomorphic
automorphism of H for all α ∈ GL+2 (R) := {α ∈ GL2(R) : det(α)> 0}.

Theorem 1.1. The following hold:

• For every z ∈ H there exists α ∈ SL2(R) such that αi = z.

• GL+2 (R)/R
× ' SL2(R)/{±1} ' Aut(H)

• The SL2(R)-stabilizer of i ∈ H is SL2(R)i = SO2(R).

Proof. See [1, Theorem 1.1.3].

Recall that a topological group G is a group object in the category of topological spaces (this
means the maps G×G→ G and G×G defined by (g, h) 7→ gh and g 7→ g−1 are continuous). All
the topological groups we shall consider in this course are Hausdorff, but we won’t bake that
into the definition (some authors do). We view GL2(R) and all its subgroups and quotients as
topological groups, where GL2(R) has the subspace topology induced by GL2(R) ⊆M2(R)' R4.

When a topological group G acts on a topological space X the action map G × X → X
defined by (g, x) 7→ g x is required to be continuous, in addition to satisfying the usual prop-
erties of a (left) group action. For each g ∈ G the map x 7→ g x is an automorphism of X (a
homeomorphism X → X ). For x ∈ X we have the G-stabilizer Gx and G-orbit Gx defined by

Gx := {g ∈ G : g x = x} ⊆ G and Gx := {g x : g ∈ G} ⊆ X

and we use G\X to denote the topological space defined by the G-orbits of X (with the quotient
topology), and we use G/Gx to denote the topological space consisting of the right Gx -cosets of
G (with the quotient topology).

Theorem 1.2. Let G be a second countable locally compact Hausdorff topological group acting
on a locally compact Hausdorff space X . Then for every x ∈ X the map gGx 7→ g x defines a
homeomorphism G/Gx

∼−→ X .
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Proof. See [1, Theorem 1.2.1]. We will prove a more general theorem in the next lecture.

Corollary 1.3. The map αSO2(R) 7→ αi is a homeomorphism SL2(R)/SO2(R) ∼−→ H.

The corollary allows us to represent elements z of H as right cosets βSO2(R), in which case
the action of αSL2(R) on H is simply (left) matrix multiplication αz = αβSO2(R) rather than a
linear fractional transformation.

1.2 Classification of linear fractional transformations

For α ∈ GL+2 (R) we define disc(α) := tr(α)2−4det(α) to be the discriminant of its characteristic
polynomial t2 − tr(α)t + det(α), whose sign determines the type of eigenvalues α has (distinct
complex conjugates, a single real (double) eigenvalue, or two real eigenvalues).

Definition 1.4. We call a nonscalar α ∈ GL+2 (R)

elliptic if disc(α)< 0, parabolic if disc(α) = 0, hyperbolic if disc(α)> 0.

We denote the extended upper half-plane by H∗ := H∪R∪ {∞} ⊆ P1(C).

Theorem 1.5. For each nonscalar α ∈ GL+2 (R) we have

• α is elliptic if and only if its fixed points are z and z̄ for some z ∈ H.

• α is parabolic if and only if it has a unique fixed point x ∈ H∗ −H= R∪ {∞}.

• α is hyperbolic if and only if it has distinct fixed points x1, x2 ∈ H∗ −H= R∪ {∞}.

In every case, the fixed points of α on P1(C) lie in the extended upper half-plane H∗, and they lie
in the upper half-plane if and only if α is elliptic.

Proof. This follows immediately from an analysis of the eigenvalues in each case.

For x , x ′ ∈ R∪ {∞} we define

GL2(R)
(p)
x := {α ∈ GL+2 (R)x : α is parabolic or scalar}, GL+2 (R)x ,x ′ := GL+2 (R)x ∩GL+2 (R)x ′

Lemma 1.6. We have

• GL+2 (R)i = SO2(R);

• GL+2 (R)∞ =
��

a b
0 d

�

: a, d ∈ R×, b ∈ R, ad > 0
	

;

• GL+2 (R)
(p)
∞ =

��

a b
0 a

�

: a ∈ R×, b ∈ R
	

;

• GL+2 (R)0,∞ =
��

a 0
0 d

�

: a, d ∈ R×, ad > 0
	

.

Moreover, for z ∈ H the stabilizer GL+2 (R)z is conjugate to GL+2 (R)i , for x ∈ H∗ −H the stabilizer

GL+2 (R)x is conjugate to GL+2 (R)∞ with GL+2 (R)
(p)
x conjugate to GL+2 (R)

(p)
∞ , and for distinct x , x ′ ∈

H∗ −H the double stabilizer GL2(R)+x ,x ′ is conjugate to GL+2 (R)0,∞. In all cases, the conjugating
element can be chosen to lie in SL2(R).

Proof. See [1, Lemma 1.3.2].
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1.3 The invariant metric and measure on the upper half plane

Let z = x + i y ∈ H. The invariant metric ds and invariant measure on H are defined by

ds(z) =

p

d x2 + d y2

y2
and dv(z) =

d xd y
y2

We call the image Cz0→z1
of an injective function φ : [0,1] → H that is C∞ at all but finitely

many points a path from z0 = φ(0) to z1 = φ(1). If we put φ(t) = x(t) + i y(t), the length of
Cz0→z1

is

`(Cz0→z1
) :=

∫ 1

0

ds(φ(t)) =

∫ 1

0

p

(d x(t)/d t)2 + (d y(t)/d t)2

y(t)
d t,

which does not depend on the choice of φ,as long as it has image Cz0→z1
.

A circle or line in H orthogonal to R is called a geodesic.

Lemma 1.7. For any two distinct z0, z1 ∈ H, there is a unique shortest path Cz0→z1
from z0 to z1,

which lies on a geodesic. For any z0 ∈ H and r > 0 the set {z ∈ H: `(Cz0,z) = r} is a circle in H
orthogonal to every geodesic that contains z0.

Proof. See Lemma 1.4.1 and Corollary 1.4.2 in [1]

The isomorphism H ' SL2(R)/SO2(R) allows us to uniquely represent α ∈ SL2(R) in the
form α=

�

a b
c d

�

= hzkθ , where z = x + i y = αi ∈ H and θ = −arg(ci + d), with

hz = y−1/2
� y x

0 1

�

∈ SL2(R), kθ =
�

cosθ sinθ
− sinθ cosθ

�

∈ SO2(R).

We now define a measure on SL2(R) by

dα=
d xd ydθ

2πy2
.

This measure is SL2(R)-invariant: one can check that dα = dαβ = dβα for all α,β ∈ SL2(R);
moreover, we have chosen the scaling so that dα is compatible with dv.

Theorem 1.8. SL2(R) is unimodular, and for any measurable f : H→ C we have
∫

H

f (z)dv(z) =

∫

SL2(R)
f (αi)dα

Proof. This is [1, Thm. 1.4.5].
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