Description

These problems are related to the material covered in Lectures $14-17$. Your solutions are to be written up in latex and submitted as a pdf-file with a filename of the form SurnamePset $4 . p d f$ via e-mail to drew@math.mit.edu by noon on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators, and any references consulted. If there are none, write "Sources consulted: none" at the top of your problem set. The first person to spot each non-trivial typo/error in any of the problem sets or lecture notes will receive 1-5 points of extra credit. ${ }^{1}$

Instructions: Pick any combination of problems to solve that sum to 100 and write up your answers in latex (be sure to include Problem 4, which is a survey).

Problem 1. Modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$ (49 points)

Throughout this problem $\Gamma:=\mathrm{SL}_{2}(\mathbb{Z})$ denotes the full modular group. Let Γ_{∞} be the stabilizer of ∞, and let

$$
\mathcal{F}:=\{z \in \mathbf{H}:|z| \geq 1 \text { and }|\operatorname{Re}(z)| \leq 1 / 2\}
$$

denote the standard fundamental domain for Γ. For even $k>2$ we define the Eisenstein series $G_{k}(z)$ as the Poincaré series (see (2.6.2) in [1]):

$$
G_{k}(z):=F_{k}\left(z ; \phi_{0}, \chi_{0}, \Gamma_{\infty}, \Gamma\right):=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \overline{\chi_{0}(\gamma)}\left(\left.\phi_{0}\right|_{k} \gamma\right)(z),
$$

where $\phi_{0}=1$ is the identity function and χ_{0} is the trivial character. We also define the normalized Eisenstein series

$$
E_{k}(z):=-\frac{B_{k}}{2 k} G_{k}(x),
$$

where $B_{k} \in \mathbb{Q}$ is the k th Bernoulli number (note: this is not the E_{k} defined in $[1, \S 4.1]$).
(a) Let $k \geq 4$ be even. Prove that $E_{k}(z)$ has the following q-expansion at ∞ :

$$
E_{k}(z)=\frac{-B_{k}}{2 k}+q+\sum_{n=2}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $q:=e^{2 \pi i z}$ and $\sigma_{e}(n):=\sum_{d \mid n} d^{e}$.
(b) Let $\rho=e^{\pi i / 3}$. Prove that for any $k \in \mathbb{Z}$ and nonzero $f \in M_{k}(\Gamma)$ we have

$$
\operatorname{ord}_{\infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{\rho}(f)+\sum_{\tau \in \mathcal{F}-\{i, \rho\}} \operatorname{ord}_{\tau}(f)=\frac{k}{12} .
$$

Conclude that $\operatorname{dim} M_{k}=0$ unless $k \geq 4$ is even.

[^0](c) Let $\Delta:=\left(G_{4}^{3}-G_{6}^{2}\right) / 1728$. Prove that for even $k \geq 4$ the map $f \mapsto \Delta f$ defines an isomorphism $M_{k-12} \xrightarrow{\sim} S_{k}$. Conclude that $\operatorname{dim} M_{k}=1$ and $\operatorname{dim} S_{k}=0$ for $k=4,6,8,10,14$.
(d) Prove that if $4 a+6 b=k \equiv 0 \bmod 12$ then $3 \mid a$ and $G_{4}^{a} G_{6}^{b} / G_{6}^{k / 6}=\left(G_{4}^{3} / G_{6}^{2}\right)^{a / 3}$.
(e) Prove that for all even integers $k \geq 2$ we have
\[

\operatorname{dim} M_{k}(\Gamma)= $$
\begin{cases}0 & \text { if } k \text { is odd or negative }, \\ \lfloor k / 12\rfloor & \text { if } k \equiv 2 \bmod 12 \text { is positive and even. } \\ \lfloor k / 12\rfloor+1 & \text { if } k \not \equiv 2 \bmod 12 \text { is positive and even } .\end{cases}
$$
\]

(this is Corollary 4.1.4 in [1], you are being asked to give an alternative proof).
(f) Prove that $\left\{G_{4}^{a} G_{6}^{b}: a, b \in \mathbb{Z}_{\geq 0}\right.$ with $\left.4 a+6 b=k\right\}$ is a basis for $M_{k}(\Gamma)$ for all $k \in \mathbb{Z}$. (this is Theorem 4.1.8 in [1], you are being asked to give an alternative proof).
(g) Prove that the space $S_{k}(\Gamma)$ has a unique basis $\left\{f_{1}, \ldots, f_{d}\right\}$ such that $a_{i}\left(f_{j}\right)=\delta_{i j}$ for $1 \leq i, j \leq d$, where f_{j} has q-expansion $f_{j}=\sum_{i \geq 0} a_{i}\left(f_{j}\right) q^{i}$ at ∞, and show that $f_{j} \in \mathbb{Z}[[q]]$ (hint: use the E_{k} and Δ). This basis for $S_{k}(\Gamma)$ is called the Miller basis.
(h) Let $\left\{f_{1}, f_{2}\right\}$ be the Miller basis for $S_{38}(\Gamma)$. Compute the integers $a_{3}\left(f_{i}\right)$ for $1 \leq i \leq 2$ and express each f_{i} in terms of the basis for $M_{38}(\Gamma)$ given by part (f).
(i) Let $\mathbb{T}:=\mathbb{T}_{\mathbb{Z}}\left(\Gamma_{0}(1), \Delta_{0}(1)\right)$ be the Hecke algebra for $\Gamma=\Gamma_{0}(1)$ over \mathbb{Z}, with $\Delta_{0}(1)$ the set of integer matrices in $\mathrm{GL}_{2}^{+}(\mathbb{Q})$ (as in (4.5.1) of [1]). Let $T(n) \in \mathbb{T}$ be the Hecke operator $T(n):=\sum_{\operatorname{det} \alpha=n} \Gamma \alpha \Gamma$, where the sum is over double cosets in $\Delta_{0}(1)$. Show that for every even integer $k \geq 4$ and integer $n \geq 1$ we have $T(n)\left(E_{k}\right):=E_{k} \mid T(n)=\sigma_{k-1}(n) E_{k}$, and compute the matrix of $T(2)$ on the Miller basis for $S_{38}(\Gamma)$ (you can use sage to check your answer).

Problem 2. Computing Bernoulli numbers (49 points)

Recall from Problem 3 of Problem Set 8 that the Bernoulli numbers B_{n} arise as the coefficients of the exponential generating function

$$
\frac{x}{e^{x}-1}=\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}
$$

and satisfy the recursive formula defined by $B_{0}=1$ and

$$
B_{n}=-\frac{1}{n+1} \sum_{k=0}^{n-1}\binom{n+1}{k} B_{k} .
$$

For a nonzero rational number $r=a / b$ with $a, b \in \mathbb{Z}$ coprime we define its height $h(x):=\max (\log |a|, \log |b|)$.
(a) Let $n \geq 2$ be an even integer. Prove that $v_{p}\left(B_{n}\right) \geq-1$ for all primes p and that $v_{p}\left(B_{n}\right)=-1$ if and only if $p-1$ divides n. In other words, when written in lowest terms the denominator of the rational number B_{n} is $\prod_{(p-1) \mid n} p$.
(b) Let $n \geq 2$ be an even integer. Using the identity $\zeta(n)=(-1)^{n / 2-1} \frac{(2 \pi)^{n} B_{n}}{2 \cdot n!}$ and the bounds

$$
\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{12 n+1}}<n!<\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{12 n}}
$$

determine an effective upper bound for $h\left(B_{n}\right)$ as a function of n.
(c) Let $\mathrm{M}(b)$ denote the time to multiply two b-bit integers (the Schönhage-Strassen algorithm yields $\mathrm{M}(b)=O(b \log b \log \log b))$. Estimate the complexity of computing B_{n} using the recursive formula above, assuming that it takes $\mathrm{M}(b) \log b$ time to reduce a ratio of b-bit integers to a rational number in lowest terms (this is achieved by the fast Euclidean algorithm). Your answer should be an asymptotic upper bound (in big O-notation) on the number of bit operations required, as a function of n.
(d) Describe an algorithm to compute B_{n} using Newton iteration to compute $1 / f$ modulo x^{n+1}, where $f(x)=\left(e^{x}-1\right) / x=\sum_{n \geq 0} \frac{x^{n}}{(n+1)!}$, and estimate its complexity. Note that you can use Kronecker substitution to multiply two polynomials in $\mathbb{Z}[x]$ of degree at most d with coefficients of height b in time $O(\mathrm{M}(b d \log d))$ by replacing x with a suitable power of 2 .
(e) Let $n \geq 2$ be an even integer, let $d=\prod_{(p-1) \mid n} p$ be the denominator of B_{n} and let A be an approximation to $2 \cdot n!/(2 \pi)^{n}$ to b-bits of precision, such that $2^{b}>e^{h\left(B_{n}\right)}$. Let $P:=\left\lceil(A d)^{1 /(n-1)}\right\rceil$ and let $r:=\prod_{p \leq P}\left(1-p^{-n}\right)^{-1}$. Show that if $a=(-1)^{n / 2+1}\lceil d r A\rceil$ then $B_{n}=a / d$.
(f) Estimate the complexity of computing B_{n} using the algorithm suggested by (e).
(g) Illustrate the 3 algorithms to compute B_{n} considered in this problem for $n=8$.

Problem 3. Hecke operators on $\Gamma_{1}(N)$ (49 points)

Fix $N \in \mathbb{Z}_{>0}$. In lecture, we considered the Hecke algebra $\mathbb{T}\left(\Gamma_{0}(N), \Delta_{0}(N)\right)$, where

$$
\begin{aligned}
\Gamma_{0}(N) & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a \perp N\right\}, \\
\Delta_{0}(N) & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}^{+}(\mathbb{Z}): c \equiv 0 \bmod N, a \perp N\right\},
\end{aligned}
$$

see [1, 4.5]. We now want to consider the Hecke algebra $\mathbb{T}\left(\Gamma_{1}(N), \Delta_{1}(N)\right)$, where

$$
\begin{aligned}
& \Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N, a \equiv d \equiv 1 \bmod N\right\}, \\
& \Delta_{1}(N):=\left\{\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}^{+}(\mathbb{Z}): c \equiv 0 \bmod N, a \equiv 1 \bmod N\right\} .
\end{aligned}
$$

We also define the diamond operator $\langle d\rangle$ for each $d \in(\mathbb{Z} / N \mathbb{Z})^{\times}$, which acts on modular forms of weight k via $\left.f \mapsto f\right|_{k} \sigma_{d}$, where $\sigma_{d} \in \mathrm{SL}_{2}(\mathbb{Z})$ satisfies

$$
\sigma_{d} \equiv\left(\begin{array}{cc}
1 / d & 0 \\
0 & d
\end{array}\right) \bmod N .
$$

Throughout this problem χ denotes a Dirichlet character of modulus N, and for any integer m we write $m \mid N^{\infty}$ to indicate that every prime divisor of m is also a prime divisor of N.
(a) Show that

$$
M_{k}\left(\Gamma_{0}(N), \chi\right)=\left\{f \in M_{k}\left(\Gamma_{1}(N)\right):\langle d\rangle f=\chi(d) f \text { for all } d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\},
$$

so $\langle d\rangle$ acts on $M_{k}\left(\Gamma_{0}(N), \chi\right)$ via $f \mapsto \chi(d) f$. Conclude that $\langle d\rangle$ acts on $M_{k}\left(\Gamma_{1}(N)\right)$ and this action does not depend on the choice of σ_{d}.

We now define Hecke operators $T(n), T(a, d) \in \mathbb{T}\left(\Gamma_{1}(N), \Delta_{1}(N)\right)$, with $a \mid d \perp N$, via

$$
T(n):=\sum_{\operatorname{det} \alpha=n} \Gamma_{1}(N) \alpha \Gamma_{1}(N), \quad T(a, d):=\Gamma_{1}(N) \sigma_{a}\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \Gamma_{1}(N),
$$

where the sum for $T(n)$ is over double cosets of $\Gamma_{1}(N)$ in $\Delta_{1}(N)$.
(b) Show that $\mathbb{T}\left(\Gamma_{1}(N), \Delta_{1}(N)\right)$ is commutative and for any $\alpha \in \Delta_{1}(N)$ we can choose $\alpha_{1}, \ldots, \alpha_{n} \in \Delta_{1}(N)$ so that $\Gamma_{1}(N) \alpha \Gamma_{1}(N)=\sqcup_{i} \Gamma_{1}(N) \alpha_{i}=\sqcup_{i} \alpha_{i} \Gamma_{1}(N)$.
(c) Prove that every Hecke operator $\Gamma_{1}(N) \alpha \Gamma_{1}(N)$ with $\alpha \in \Delta_{1}(N)$ can be uniquely expressed in the form

$$
T(m) T(a, d)=T(a, d) T(m)
$$

with $m \mid N^{\infty}$ and $a \mid d \perp N$.
(d) Show that $\mathbb{T}\left(\Gamma_{1}(N), \Delta_{1}(N)\right)=\langle T(p), T(q, q): p, q$ prime, $q \perp N\rangle$ and that we also have $\mathbb{T}_{\mathbb{Q}}\left(\Gamma_{1}(N), \Delta_{1}(N)\right)=\langle T(n)\rangle$.
(e) For each $n \in \mathbb{Z}_{>0}$ let $\Delta^{n}:=\left\{\alpha \in \Delta_{1}(N): \operatorname{det} \alpha=n\right\}$ so that $\Delta_{1}(N)=\sqcup_{n \geq 0} \Delta^{n}$. For each positive integer $a \perp N$ fix a choice of $\sigma_{a} \in \mathrm{SL}_{2}(\mathbb{Z})$. Show that for each $n \in \mathbb{Z}_{>0}$ we have

$$
\Delta^{n}=\bigsqcup_{\substack{a d=n \\
a \perp N}} \bigsqcup_{0 \leq b<d} \Gamma_{1}(N) \sigma_{a}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) .
$$

Conclude that for each $f \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ we have

$$
\left.f\right|_{k} T(n)=n^{k-1} \sum_{\substack{a d=n \\ a \perp N}} \sum_{0 \leq b<d} \chi(a) d^{-k} f\left(\frac{a z+b}{d}\right),
$$

and

$$
\left.f\right|_{k} T(d, d)=d^{k-2} \chi(d) f .
$$

(f) Show that when we restrict the action of $\mathbb{T}\left(\Gamma_{1}(N), \Delta_{1}(N)\right)$ to $M_{k}\left(\Gamma_{0}(N), \chi\right)$ we have

$$
T(m) T(n)=\sum_{d \mid \operatorname{gcd}(m, n)} d^{k-1} \chi(d) T\left(m n / d^{2}\right),
$$

and derive the identity

$$
\sum_{n \geq 1} T(n) n^{-s}=\prod_{p}\left(1-T(p) p^{-s}+\chi(p) p^{k-1-2 s}\right)^{-1}
$$

where both of the equalities above are identities of operators on $M_{k}\left(\Gamma_{0}(N), \chi\right)$.
(g) Prove the following identity of operators on $M_{k}\left(\Gamma_{1}(N)\right)$:

$$
p^{k-1}\langle p\rangle=T(p)^{2}-T\left(p^{2}\right),
$$

valid for all primes p.

Problem 4. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it ($1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$4 / 2$	Hecke algebras				
$4 / 4$	Modular groups				
$4 / 9$	Hecke algebras for modular groups				
$4 / 11$	Eigenforms and L-functions				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

References

[1] T. Miyake, Modular forms, Springer, 2006.

[^0]: ${ }^{1}$ This is a long and completely new problem set; there are surely many points to be gained.

