
18.786 Number Theory II Spring 2018

Problem Set #3 Due: 4/4/2018

Description

These problems are related to the material covered in Lectures 6-13. Your solutions
are to be written up in latex and submitted as a pdf-file with a filename of the form
SurnamePset3.pdf via e-mail to drew@math.mit.edu by noon on the date due.
Collaboration is permitted/encouraged, but you must identify your collaborators, and
any references consulted. If there are none, write “Sources consulted: none” at the
top of your problem set. The first person to spot each non-trivial typo/error in any of
the problem sets or lecture notes will receive 1-5 points of extra credit.1

Instructions: In many of the problems below we reference terms and definitions from
earlier problems, so be sure to read through the problems in order. You may use results
proved in an earlier problem in any later problem (even if you do not choose to solve the
earlier problem). Pick any combination of problems to solve that sum to 200 and write
up your answers in latex (be sure to include Problem 7, which is a survey).

Note on notation: H := {z ∈ C : Im(z) > 0}, D := {z ∈ C : |z| < 1}, Z(Γ) := Γ ∩ {±1}.

Problem 1. Classification of Fuchsian groups (66 points)

As in Problem 3 of Problem Set 2, we call z ∈ CP1 := C ∪ {∞} a limit point of a group
Γ ⊆ SL2(R) if there is a w ∈ CP1 and an infinite sequence of distinct γn ∈ Γ such that
lim γnw = z, and we use Λ(Γ) to denote the set of of all limit points of Γ.

Recall that Fuchsian groups are subgroups Γ of SL2(R) that satisfy any of the equiv-
alent properties listed in part (a) of Problem 3 on Problem Set 2; in particular, such a Γ
is discrete and its limit set Λ(Γ) is a closed subset of RP1 := R∪{∞}. Elliptic points are
elements of H fixed by an elliptic γ ∈ Γ, cusps are elements of RP1 fixed by a parabolic
γ ∈ Γ, and hyperbolic points are elements of RP1 fixed by a hyperbolic γ ∈ Γ.

Recall that in a topological space X a point x ∈ X is a limit point of a set S ⊆ X if
every punctured neighborhood of x contains a point in S. A set S ⊆ X is perfect if it
is equal to its set of limit points and nowhere dense if its interior is empty, equivalently,
every punctured neighborhood of x ∈ S contains a point not in S.

(a) Show that every x ∈ RP1 fixed by an element of Γ − Z(Γ) lies in Λ(Γ); in other
words, Λ(Γ) contains all cusps and hyperbolic points of Γ.

(b) Show that Γ is countable and H contains uncountably many non-elliptic points.

(c) Let Γ be a Fuchsian group. Show that for any non-elliptic point w ∈ H the set Λ(Γ)
is equal to the set of limit points of the Γ-orbit of w, and in particular is Γ-invariant.

(d) Show that if x ∈ Λ(Γ) is fixed by a hyperbolic γ ∈ Γ and y ∈ Λ(Γ) is not fixed by γ
then either limn→∞ γ

ny = x or limn→∞ γ
−ny = x, so x is a limit point of Λ(Γ).

(e) Show that if x ∈ Λ(Γ) is not a hyperbolic point and γ ∈ Γ is hyperbolic then x is a
limit of hyperbolic points (hint: choose w on the geodesic fixed by γ and use (c)).

1This is a long and completely new problem set; there are surely many points to be gained.



(f) Show that if #Λ(Γ) > 2 then Γ contains a hyperbolic element γ and Λ(Γ) is perfect,
and therefore uncountable.

(g) Show that if Λ(Γ) 6= RP1 is perfect then Λ(Γ) is nowhere dense. Use this to show
that Λ(SL2(Z)) = RP1.

It follows from what you have proved above that there are three kinds of Fuchsian groups:

• elementary : #Λ(Γ) ≤ 2.

• the first kind : Λ(Γ) = RP1.

• the second kind : Λ(Γ) is perfect and nowhere dense.

Problem 2. Finitely generated Fuchsian groups (66 points)

Let Γ be a Fuchsian group, w ∈ H a non-elliptic point, and Fw the corresponding
Dirichlet domain. Recall that the boundary of Fw is a union of geodesic segments of
the form Lγ := Fw ∩ γFw called sides; we require geodesic segments to have nonzero
(possibly infinite) length (so if Lγ is a point it is not a side).

If Fw has only finitely many sides then Γ is called geometrically finite (this does not
depend on the choice of w). Problem 4 of Problem Set 2 proves that if Γ is geometrically
finite then it is finitely generated. The goal of this problem is to prove the converse.

As in Problem Set 2, we split sides of the form Lγ with γ2 = ±1 into two sides that
intersect at the midpoint of Lγ and group sides into pairs that are Γ-translates (and not
Γ-equivalent to any other sides). Let G(Γ) be the subset of Γ consisting of elements γ
that appear in a pair (L, γL). As proved in Problem Set 2, the set G(Γ) generates Γ.

Now suppose that Γ is finitely generated. Out goal is to show Fw has finitely many sides.

(a) Show that if Γ is finitely generated then any generating set for Γ contains a finite
subset that generates Γ. Let γ1, . . . γn be a minimal subset of G(Γ) generating Γ and
let L1, . . . , Ln be corresponding sides so that (Li, γiLi) is a side pair for 1 ≤ i ≤ n.

(b) Show that there exists a hyperbolic ball Bw about w whose interior contains arcs
of positive length on all of the sides L1, . . . , Ln, γ1L1, . . . γnLn, whose boundary
contains no vertices of Fw and is not tangent to any side of Fw. Then show that
only finitely many sides of Fw intersect Bw and that ΓBw is connected.

(c) Let s1, . . . , sm be the arcs that make up ∂Bw ∩ Fw. Pick an arc si and let e be
one of its endpoints. Show that for some γ ∈ G(Γ) the point γe is an endpoint
of some sj , so that si ∪ γ−1sj is a connected path. Show that by continuing in
this fashion in both directions one can construct a connected path Ci composed of
Γ-translates of the sj that separates H into two disjoint sets, and that ωiCi = Ci
for some ωi ∈ Γ− Z(Γ). We thus obtain Ci and ωi for each 1 ≤ i ≤ m.

(d) Let E1, . . . , Em be the components of Fw − Bw adjacent to s1, . . . , sm. Show that
every side of Fw disjoint from Bw intersects one of the Ei, so that it suffices to show
that each Ei intersects only finitely many sides of Fw. Then show that if no element
of Λ(Γ) is a limit point of Ei then Ei can intersect only finitely many sides of Fw.



(e) Show that the path Ci constructed in part (c) separates the interior of Ei from Γw,
so that any limit point of Ei that lies in Λ(Γ) must be an endpoint of Ci, and show
that Ci has 0, 1, or 2 endpoints, depending on whether ωi is elliptic, parabolic, or
hyperbolic, respectively.

(f) Show that if ωi is hyperbolic then Ei has no limit points in Λ(Γ).

(g) Show that if ωi is parabolic and Γ is not elementary then Ei lies inside Ci, but even
if Ei does have the end point of Ci as a limit point, Ei still intersects Fw in only
finitely many sides.

(h) Finally, show that if Γ is elementary then Fw has finitely many sides.

Problem 3. Fuchsian groups of the first kind (66 points)

For a Fuchsian group Γ we use XΓ to denote the Riemann surface Γ\H∗Γ, where H∗Γ is
the topological space obtained by adjoining the cusps of Γ to H (and giving them open
neighborhoods), and XΓ is equipped with the complex structure defined in [3, §1.8].

Recall that under the measure induced by the hyperbolic metric every fundamental
domain for Γ has the same area, and we say that Γ is cofinite if this volume is finite.
Siegel’s theorem [3, §1.9.1] implies that Γ is cofinite if and only if XΓ is compact.

In Problem 1 (and many texts), a Fuchsian group Γ of the first kind is one that
satisfies Λ(Γ) = RP1. Miyake [3, p. 28] uses this term to indicate that XΓ is compact.
The goal of this problem is to understand how these two notions are related.

(a) Show that if Γ is cofinite then it is geometrically finite, hence finitely generated.

(b) Show that if Γ is cofinite then Λ(Γ) = RP1.

(c) Show that elementary Fuchsian groups are geometrically finite but not cofinite.

(d) Show that for geometrically finite Fuchsian groups, if Λ(Γ) = RP1 then Γ is cofinite.

(e) Assume Γ is not elementary, and let N(Γ) be the (hyperbolic) convex hull of Λ(Γ)
in H, and let D(Γ) be a Dirichlet domain. Show that N(Γ) ∩D(Γ) has finite area
if and only if Γ is geometrically finite, and N(Γ) = H if and only if Λ(Γ) = RP1.

(f) Prove that for finitely generated Fuchsian groups Γ, the Riemann surface XΓ is
compact if and only if Λ(Γ) = RP1.

Remark. In Poincaré’s original exposition, Fuchsian groups were assumed to be finitely
generated. Some authors still make this assumption (possibly implicitly), in which case
the two definitions of first kind that we have been considering are equivalent. However,
there are infinitely generated Fuchsian groups that are not cofinite for which Λ(Γ) = RP1;
the next problem provides an explicit construction of such groups.

Problem 4. Schottky groups (66 points)

Recall that the upper half plane H is isomorphic (both as a Riemann surface and as
a hyperbolic geodesic space) to the unit disk D via the map ρ : H → D defined by
z 7→ (z − i)/(z + i). In this problem it will be more convenient to work with the unit



disk, where geodesics are either diameters or semicircles orthogonal to the boundary
and horocycles are circles tangent to the boundary. Horocycles bound neighborhoods of
points on the boundary of D (in the topology of the extended disk D := {z ∈ C : |z| = 1},
corresponding to the topology of the extended upper half plane H ∪ R ∪ {∞}) and are
orthogonal to all geodesics ending at the tangent point; horocycles tangent to 1 ∈ D
correspond to horizontal lines in H (which bound neighborhoods of ∞).

Recall that the automorphism group of H and D (as Riemann surfaces) is the group
of orientation preserving isometries PSL2(R) = SL2(R)/{±1}. In this problem we shall
view elements γ ∈ SL2(R) as representatives of their class ±γ in PSL2(R). The action
of γ ∈ SL2(R) on w ∈ D is defined by

γw := ρ(γρ−1(w))

where γ acts on ρ−1(w) ∈ H in the usual way via linear fractional transformation.
For each γ ∈ SL2(R) we define

D(γ) := {w ∈ D : d(w, γ0) ≤ d(w, 0)},

where d denotes hyperbolic distance. For γ ∈ SO2(R) we have D(γ) = D, since in this
case γ fixes 0, but otherwise D(γ) is a closed half plane that does not contains 0 and its
boundary is a geodesic semicircle. We use D0(γ) to denote the interior of D(γ).

(a) Show that γ ∈ PSL2(R) is hyperbolic (resp. parabolic) if and only if D(γ) and
D(γ−1) are disjoint (resp. tangent), and that γD(γ−1) = D − D0(γ) for all non-
trivial non-elliptic γ.

Definition. A generalized Schottky group S(γ1, . . . , γr) (with respect to 0) is a subgroup
of PSL2(R) generated by non-elliptic non-trivial γ1, . . . , γn such that for all i 6= j we have

(D(γi) ∪D(γ−1
i )) ∩ (D(γj) ∪D(γ−1

j )) = ∅. (1)

If the sets D(γi)∪D(γ−1
i ) are also pairwise non-tangent, then S(γ1, . . . , γr) is a Schottky

group (note that D(γi) and D(γ−1
i ) are still allowed to be tangent to each other). The

alphabet of S(γ1, . . . , γr) is the set of 2r letters {γ±1
i : 1 ≤ i ≤ n}. A reduced word of

S(γ1, . . . , γr) is a finite sequence of letters a1, . . . , an with ai 6= a−1
i+1 for 1 ≤ i < n. For

each reduced word a1, . . . , an we define

D(a1, . . . , an) := a1 . . . an−1D(an),

which we note is a closed geodesic half plane in D.

(b) Show that for all distinct reduced words a1, . . . , an and a′1, . . . , a
′
n of a generalized

Schottky group S(γ1, γ2) we have:

(i) a1 · · · an(D−D0(a−1
n )) ( D(a1);

(ii) D(a1, . . . , an) ( D(a1, . . . , an−1) for n ≥ 2;

(iii) D0(a1, . . . , an) ∩D0(a′1, . . . , a
′
n) = ∅.

(c) Show that a generalized Schottky group S(γ1, γ2) is a geometrically finite Fuchsian
group with no elliptic elements with Dirichlet domain

(D−D0(g1)) ∩ (D−D0(g−1
1 )) ∩ (D−D0(g2)) ∩ (D−D0(g−1

2 )),

and that S(γ1, γ2) is isomorphic to the free group on two letters.



(d) Show that a Schottky group S(γ1, γ2) is a geometrically finite Fuchsian group of the
second kind (this need not hold for generalized Schottky groups, see Problem 6).

(e) Let γ1, γ2, . . . ∈ PSL2(R) be non-trivial non-elliptic elements satisfying (1) for i 6= j.
Show that Γ = 〈γ1, γ2, . . .〉 is a Fuchsian group that is not geometrically finite and
therefore (by Problem 2) not finitely generated, and is in fact free on γ1, γ2, . . ..

The groups Γ arising in (d) provide a potential source of Fuchsian groups of the
first kind (meaning Λ(Γ) = RP1 as in Problem 1) for which XΓ is not compact. Our
goal is to construct such a Γ, following the recipe given by Basmajian in [1]. The tricky
part is ensuring that we actually get a Fuchsian group of the first kind (Γ as a limit of
generalized Schottky groups, all of which are Fuchsian groups of the second kind).

A Fuchsian group Γ is called a pair of pants if the quotient space Γ\D is topologically
a sphere with three holes. Let us call a Schottky group S(γ1, γ2) crossed if when we
order the sets D(γ±1

i ) along the boundary of D, we find that D(γ1) and D(γ−1
1 ) are not

adjacent (in which case the same applies to D(γ2) and D(γ−1
2 )).

(f) Show that a Schottky group S(γ1, γ2) that is not crossed is a pair of pants, in which
case it may have 0, 1, 2 holes that are cusps (fixed points of a parabolic element),
which we call cusp-holes. Assuming that S(γ1, γ2) is a pair of pants, show that

(i) S(γ1, γ2) has no cusp-holes if and only if γ1, γ2 are hyperbolic (as is γ1γ2);

(ii) If S(γ1, γ2) has 1 cusp-hole we can choose γ1 hyperbolic and γ2 parabolic, with
γ1γ2 hyperbolic;

(iii) If S(γ1, γ2) has 2 cusp-holes we can choose γ1, γ2 parabolic, with γ1γ2 hyper-
bolic.

For a Schottky group S(γ1, γ2) that is a pair of pants, the quotient space D/S(γ1, γ2)
has three boundaries (one for each hole), and we want to choose γ1, γ2 so that γ1, γ2, γ1γ2

can be matched with the holes via their fixed points. For hyperbolic elements γ, we want
its axis A(γ), the geodesic connecting its fixed points, to bound a hole, and for parabolic
elements γ we want its cusp to be the hole. When γ1, γ2 are chosen as in (e) so that
γ1, γ2, γ1γ2 correspond to the holes in this way, we call them standard generators for the
pair of pants S(γ1, γ2). Notice that in every case γ1γ2 is hyperbolic, and γ1 is parabolic
if and only if S(γ1, γ2) has 2 cusp-holes. Henceforth we assume that all pairs of pants
are specified as Schottky groups S(γ1, γ2) using standard generators.

To construct what Basmajian calls a tight flute, we start with a pair of pants S(α1, β1)
with two cusp-holes, to which we glue a second pair of pants S(α2, β2) with one cusp-
hole along the images of A(α1β1) and A(α2); under suitable constraints this will yield a
Schottky group S(α1, α2, β2) with β1 = α−1α2 that contains S(α1, β1) = S(α1, α2) and
S(α2, β2). We then glue a third pair of pants S(α3, β3) along the images of A(α2β2) and
A(α3) to obtain S(α1, α2, α3, β3), and continue in this fashion: in step n ≥ 2 we glue
a pair of paints S(αn, βn) with one cusp along the images of A(αn−1βn−1) and A(αn)
to obtain S(α1, . . . , αn, βn). In the limit we obtain a tight flute Γ = 〈α1, α2, α3 . . .〉, as
depicted in Figure 1 of [1] that satisfies the hypothesis of (d) above.

In [1, §5] Basmajian gives an explicit criterion for the existence of standard generators
for each of the pairs of pants S(α, β) required by the construction above, and criteria
that determine when the tight flute Γ will be a Fuchsian group of the first kind. For a
hyperbolic element γ we define the translation length T (γ) as the hyperbolic distance



d(z, γz) for any z ∈ D on the axis A(γ). We then define the collar width c(γ) of a
non-trivial non-elliptic γ ∈ PSL2(R) as

c(γ) =

{
log cothT (γ)/4 if γ is hyperbolic,

log 2 otherwise,

where coth(x) := ex+e−x

ex−e−x is the hyperbolic cotangent. Let us define the axis A(γ) of a
parabolic element γ with cusp x as the unique horocycle about x bounding a region with
hyperbolic measure 1 in H/〈γ〉.

In the construction of the tight flute Γ described above, we want the axes A(αn) to
be nested so that they approach a point on the boundary in the limit; see the bottom
diagram in Figure 2 of [1], in which L1 = A(α1) corresponds to a horocycle depicted as a
horizontal line in the upper half plane (in the unit disk it would be a circle tangent to the
boundary lying entirely outside of L1) and the Ln = A(αn) for n > 1 are nested geodesic
semicircles. We call such a sequence of Ln = A(αn) a nested sequence of geodesics (even
though L1 = A(α1) is a horocycle, not a geodesic).

The axes A(αn) determine a sequence of distances dn := d(Ln, Ln+1), where dis-
tance is measured along an orthogonal geodesic. The following theorem shows that the
sequence of distances completely determines all the collar widths.

Theorem (Basmajian [1]). Let γ1, γ2 ∈ PSL2(R) be non-trivial non-elliptic elements
with γ1 hyperbolic and d := d(A(γ1), A(γ2)) the distance between their axes (measured
along an orthogonal geodesic). Then γ1, γ2 are standard generators for a pair of pants if
and only if c(γ1)+c(γ2) ≤ d, with equality if and only if the pair of pants has a cusp-hole.

Finally we note the following the following consequence of Theorems 1-4 (and the
proof of Theorem 1) in [1].

Theorem (Basmajian). Let d > log 2 be a real number and let α1, α2, . . . be elements of
PSL2(R) with α1 parabolic, αn hyperbolic for n > 1, such that the A(αn) are a nested
sequence of geodesics with d(A(αn), A(αn+1)) = d for all n ≥ 1. Then Γ := 〈α1, . . . , αn〉
is a Fuchsian group of the first kind that is not finitely generated. Moreover, for any
such d > log 2 there exist such αn.

(g) Construct the first three elements of a sequence α1, α2, α3, . . . satisfying the hypoth-
esis of the theorem. You should specify the αi as 2 × 2 matrices whose entries are
real numbers specified to some reasonable precision, along with their fixed points,
and demonstrate that they satisfy the required constraints on their collar widths
and distances between axes.

Problem 5. Automorphic forms in an adelic setting (66 points)

Let AQ denote the adele ring of Q (Definition 25.7), which we recall contains Q (embedded
diagonally as the subgroup of principal adeles), let A∞Q := {a ∈ AQ : ‖a‖∞ = 0} denote
the subgroup of finite adeles. We embed each completion of Q in AQ in the obvious way
(x 7→ (0, . . . , 0, x, 0, . . . 0)), and similarly for Zp ⊆ Qp.

(a) Show that we have isomorphisms of topological groups

GL2(AQ) ' GL2(A∞)×GL2(R) ' GL2(A∞Q )GL2(R) = GL2(R)GL2(A∞Q ),

and thus may view any subgroup of GL2(R) or GL2(A∞Q ) as a subgroup of GL2(AQ).

https://math.mit.edu/classes/18.785/2017fa/LectureNotes25.pdf


Let Ẑ =
∏
p Zp ' lim←−n Z/nZ denote the profinite completion of Z, which we view as a

subring of A∞Q (via the embeddings of Zp ⊆ Qp). For any positive integer N we define

K0(N) := {
(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 mod N} ⊆ GL2(A∞Q ),

Γ0(N) := K0(N) ∩GL+
2 (Z) ⊆ SL2(Z)

(b) Show that
GL2(AQ) = GL2(Q)GL+

2 (R)K0(N),

thus we can write any a ∈ GL2(AQ) as g = γσκ with γ ∈ GL2(Q), σ ∈ GL+
2 (R),

and κ ∈ K0(N), not necessarily uniquely. (hint: use strong approximation).

(c) Show that there is a natural isomorphism of topological coset/double-coset spaces

Γ0(N)\GL+
2 (R) ' GL2(Q)\GL2(AQ)/K0(N).

(d) Let K+
∞ = SO2(R) and Z+

∞ := Z(GL+
2 (R)) (scalar matrices). Show that we have a

natural isomorphism of topological spaces

Γ0(N)\H ' GL2(Q)\GL2(AQ)/K0(N)K+
∞Z

+
∞

and that Γ0(N) is a finitely generated Fuchsian group of the first kind, implying
that X0(N) := XΓ0(N) is a compact Riemann surface (see Problem 3).

Let k ∈ Z>0 be even. For any cusp form f ∈ Sk(Γ0(N)), we define the function
ϕf : GL2(AQ)→ C by writing g ∈ GL2(AQ) in the form g = γσκ as in (b) and putting

ϕf (g) := (f|kσ)(i),

where (f|kσ)(z) := det(σ)k/2j(σ, z)−kf(σz) is the slash operator and j(
(
a b
c d

)
, z) := cz+d.

(e) Show that ϕf is well defined, in other words, for all γ, γ′ ∈ GL2(Q), σ, σ′ ∈ GL+
2 (R),

κ, κ′ ∈ K0(N) such that γσκ = γ′σ′κ′, we have (f|kσ)(i) = (f|kσ
′)(i).

Define ξ : K+
∞ → C by ξ(rθ) := eikθ for rθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ K+

∞ = SO2(R).

(f) Let K := K0(N)K+
∞. Show that ϕ := ϕf satisfies the following:

(i) ϕ(γg) = ϕ(g) for all γ ∈ GL2(Q) and g ∈ GL2(AQ) (automorphy).

(ii) ϕ(grθκ) = ξ(rθ)ϕ(g) for all g ∈ GL2(AQ), rθ ∈ K+
∞, κ ∈ K0(N), so the

C-vector space spanned by {ϕ(gh) : h ∈ K} has finite dimension (K-finite).

(iii) ϕ(λg) = ϕ(g) for all scalar λ ∈ GL2(AQ) and g ∈ GL2(AQ) (central action).

(iv) For every g ∈ GL2(A∞Q ) the map H→ C given by

z 7→ ϕ(gσ)j(σ, i)k det(σ)−k/2,

where σ ∈ GL+
2 (R) satisfies σi = z, is well-defined and holomorphic (Z-finite).

(v) There exist c, r ∈ R>0 such that for all g ∈ GL2(A∞Q ) the function φg on

GL+
2 (R) defined by σ 7→ ϕ(gσ) satisfies the bound

|φg(σ)| ≤ c‖σ‖r,

with ‖σ‖ := tr(σTσ)1/2 (moderate growth), and in fact φg is bounded on
GL+

2 (R) (cuspidal).



(g) Show that any smooth function ϕ : GL2(AQ)→ C satisfying conditions (i)-(v) above
arises as ϕf for some f ∈ Sk(Γ0(N)). Such functions are cuspidal automorphic forms
on AQ for K0(N).

Remark. Our definition of K-finiteness depends not only on K, but also on the choice
of the function ξ (a fundamental idempotent). Our definition of Z-finiteness is specific
to the GL2 setting, where holomorphicity is equivalent to being an eigenfunction for the
Casimir element ∆, which together with 1 generates the center Z(g) of the universal
enveloping algebra for the complexified Lie algebra g := gl2⊗RC; in general one specifies
a finite index ideal of Z(g) that annihilates ϕ. An automorphic form on GL2(AQ) is
cuspidal if for all g ∈ GL2(AQ) we have∫

Q\AQ

ϕ(( 1 x
0 1 )g) dx = 0.

See [2, Cor. 12.4] for a proof that this is equivalent to the (cuspidal) condition in (v).

Remark. The GL2(AQ) automorphic forms for K0(N) described in this problem admit

many generalizations, including: (1) replace Q with a number field F and Ẑ with ÔF ,
(2) replace GL2 with a connected linear algebraic group G and Γ0(N) with an arithmetic
subgroup of G(F ) (and adjust K0(N) and GL+

2 (R) accordingly), (3) allow a character χ
(and adjust the fundamental idempotent and the central action condition accordingly).

Problem 6. The modular group (66 points)

In this problem we consider the modular group Γ(1) := SL2(Z) and some of its subgroups.
We use Γ(N) to denote the subgroup of Γ(1) congruent to the identity modulo a positive
integer N . For any subgroup Γ of SL2(Z) we use Γ to denote Γ/Z(Γ) ⊆ PSL2(Z).

(a) Show that Γ(1) is a Fuchsian group of the first kind in two ways: (i) show directly
that Λ(Γ(1)) = RP1 using results of Problem 1, (ii) show that X(1) := XΓ(1) has
hyperbolic volume π/3 and is therefore compact.

(b) Show that every elliptic element of Γ(1) is conjugate to a power of R :=
(

1 −1
1 0

)
or

S :=
(

0 −1
1 0

)
, and every parabolic element is conjugate to a power of T := ( 1 1

0 1 ).
Then show that Γ(1) is isomorphic to the free group on ±R and ±S (and thus
has the presentation 〈r, s | r3 = s2 = 1〉), and show that its commutator subgroup
Γ(1)′ := 〈αβα−1β−1 : α, β ∈ Γ(1)〉 has index 6 and is isomorphic to the free group
on two letters (with no relations).

(c) Show that Γ(2) is a generalized Schottky group S(T 2, U2), where U := ( 1 0
1 1 ), and

Γ(2)/H is a pair of pants with 3 holes corresponding to the cusps of T 2, U2, T 2U2

(c.f. part (e) of problem 4). Conclude that Γ(2) is isomorphic to the free group on
two letters.

(d) Show that Γ(N) is a normal subgroup of Γ. Conclude that Γ(2) and Γ(1)′ are
isomorphic normal index 6 subgroups of Γ(1). Are they equal? If not, describe their
intersection and determine the least integer N (if any) for which Γ(1)′ ⊆ Γ(N).

For a subgroup Γ of Γ(1) let en(Γ) count the Γ-inequivalent elliptic points of order n,
and let e∞(Γ) count the Γ-inequivalent cusps.



(e) Prove that for any finite index subgroup Γ of Γ(1) the following formula holds

g(Γ) := g(XΓ) = 1 +
[Γ(1) : Γ]

12
− e2(Γ)

4
− e3(Γ)

3
− e∞(Γ)

2
.

Your proof should rely only on material covered in the first two chapters of [3].

(f) Compute an explicit (and reasonably sharp) lower bound on g(Γ(N)) as a function
of N and determine its asymptotic growth. Use this to explicitly determine the sets
of integers {N : g(Γ(N)) = g} for g ≤ 5 (you can compute use Sage to compute
g(Γ(N)) for any particular N , but these sets will be quite small in any case and easy
to determine by hand in any case; the key point is to prove your sets are complete).

(g) Let Γ := Γ(1)′ be the commutator subgroup of Γ(1). Compute g(Γ) using your
formula, and use Theorems 2.5.2, 2.5.4 of [3] to compute dimSk(Γ) for 1 ≤ k ≤ 6.

Definition. A congruence subgroup Γ is a subgroup of SL(2,Z) that contains Γ(N) for
some positive integer N . The least such N is the level of Γ.

(h) Prove that for all N ≥ 1, the group Γ(1)/Γ(N) ' SL2(Z/NZ) contains a subgroup
of index 7 only when 7|N , in which case it projects on to an index 7 subgroup of
SL(2,Z/7Z). Conclude that every congruence subgroup of index 7 has level 7.

(i) Consider the subgroup Γ :=
〈
( 1 5

0 1 ),
(

0 −1
1 0

)
, ( 2 3

1 2 )
〉

of SL(2,Z) found in [4], which
evidently has a cusp of width 5. Prove that if Γ contains Γ(N) then the width of
every cusp of Γ divides N . Then show that Γ has index 7 in SL(2,Z) and is therefore
not a congruence subgroup, and compute g(Γ) using your formula.

Problem 7. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

3/12 Automorphic forms

3/14 Meromorphic differentials

3/19 Genus and Dimension formulas

3/21 Poincaré and Eisenstein Series



Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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