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Problem Set #2 Due: 3/14/2018

Description

These problems are related to the material covered in Lectures 6-9. Your solutions
are to be written up in latex and submitted as a pdf-file with a filename of the form
SurnamePset2.pdf via e-mail to drew@math.mit.edu by noon on the date due.
Collaboration is permitted/encouraged, but you must identify your collaborators, and
any references consulted. If there are none, write “Sources consulted: none” at the
top of your problem set. The first person to spot each non-trivial typo/error in any of
the problem sets or lecture notes will receive 1-5 points of extra credit.

Instructions: In some of the problems below we reference terms and definitions from
earlier problems, so be sure to read through the whole problem set first. You may use
results proved in an earlier problem in any later problem (even if you don’t choose to
solve the earlier problem). Pick a combination of problems to solve that sum to 100 and
write up your answers in latex, then complete the survey problem 5.

As in [1], we use H := {z ∈ C : Im(z) > 0} to denote the complex upper half plane.

Problem 1. Geodesic spaces (50 points)

Let (X, d) be a metric space. Recall that a path γ : [a, b] → X is a continuous function
whose domain is a real interval, which we may also denote γ : x → y, where x = γ(a)
and y = γ(b). The length of a path is

l(γ) := sup
a=t0<···<tn=b

n∑
i=1

d(γ(ti−1), γ(ti)).

where the supremum is taken over all finite subdivisions of [a, b]. A metric space is a
length space if for all x, y ∈ X we have d(x, y) = infγ : x→y l(γ).

(a) For a path γ : [a, b]→ H we define the hyperbolic length

`(γ) :=

∫ b

a

|γ′(t)|
Im(γ(t))

dt.

Show that d(x, y) := infγ : x→y `(γ) is a metric on H that makes (H, d) a length
space with l(γ) = `(γ). We call d the hyperbolic metric on H.

Definition. A geodesic path γ : [a, b]→ X is a distance preserving path; that is, we have
d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b]. A geodesic line (resp. geodesic ray) is a distance
preserving continuous map R → X (resp. R≥0 → X).1 By a geodesic path/line/ray
in X we mean the image of a geodesic path/line/ray. A geodesic space is a metric space
in which every pair of points can be connected by a geodesic path. A geodesic space
is straight if every geodesic path lies in a geodesic line, and uniquely geodesic if every
x, y ∈ X are connected by a unique geodesic path. A subset of a geodesic space is convex
if it contains all geodesic paths between points in the set.

1This definition differs from the shortest path definition used in class, and from the two definitions
most commonly used in Riemannian geometry (it is slightly stronger).



(b) Show that H is a geodesic space that is a uniquely geodesic space under both the
Euclidean metric |z1 − z2| and the hyperbolic metric defined above, but that it is
only straight for the hyperbolic metric, and automorphisms of H (as a Riemann
surface) are isometries only for the hyperbolic metric.

(c) Show that the topologies on H induced by the Euclidean metric and the hyperbolic
metric coincide.

(d) Show that Euclidean and hyperbolic open balls are convex under both the Euclidean
and hyperbolic metric, and give examples of subsets of H that are convex under one
metric but not the other (in both directions).

(e) Show that under the hyperbolic metric (i) for any distinct z1, z2 ∈ H the set

Cz1,z2 := {z ∈ H : d(z, z1) = d(z, z2)}

is a geodesic line γ : R→ H, (ii) H− Cz1,z2 is the union of two disjoint convex sets
that can meaningfully be called left and right half-planes (relative to γ), (iii) every
geodesic line arises in this way. Does this apply to all Riemann surfaces that are
straight uniquely geodesic spaces for a given metric?

Problem 2. Topological group actions (50 points)

Recall that locally compact groups are (by definition) Hausdorff and that whenever a
topological group acts on a topological space the action is understood to be continuous,
that is, the map (g, x) 7→ gx is a morphism of topological spaces G×X → X. A group
acting on a metric space (X, d) is said to act via isometries if x 7→ gx is an isometry for
every g ∈ G, in other words, d(x, y) = d(gx, gy) for all x, y ∈ X and g ∈ G.

A morphism of topological spaces is proper if it is a closed map and inverse images of
compact sets are compact. A topological group G acts properly on a topological space X
if the action map (g, x) 7→ (x, gx) defines a proper morphism G×X → X ×X.

(a) Let G be a locally compact group acting on a locally compact metric space (X, d)
via isometries. Prove that the following are equivalent

(1) All x, y ∈ X have open neighborhoods U, V with {g ∈ G : gU ∩ V 6= ∅} finite.

(2) Every x ∈ X has an open neighborhood U with {g ∈ G : gU ∩ U 6= ∅} finite.

(3) For all compact A,B ⊆ X the set {g ∈ G : gA ∩B 6= ∅} is finite.

(4) For all compact A ⊆ X the set {g ∈ G : gA ∩A 6= ∅} is finite.

(5) G is discrete and acts properly on X.

(6) For every x ∈ X the orbit Gx is discrete and the stabilizer Gx is finite.

(b) Suppose we drop the assumption in (a) that X is a metric space (so we cannot speak
of isometries) and instead only assume X (and G) is locally compact Hausdorff.
Which of the six properties listed in (a) are equivalent to each other?

(c) Let G be a Hausdorff group acting on a Hausdorff space X. Let π : X → G\X be
the quotient map. Show that the following are equivalent:

(1) G\X is Hausdorff.



(2) All x, y ∈ X with π(x) 6= π(y) have open neighborhoods U, V with gU ∩ V = ∅
for all g ∈ G.

(3) The image of the action map G×X → X ×X is closed.

(d) Let G be a Hausdorff group that acts properly on a Hausdorff space X. Show that
the following hold:

(1) G\X is Hausdorff.

(2) Every orbit Gx is closed.

(3) Every stabilizer Gx is compact.

(4) For all x ∈ X the map G/Gx → Gx defined by g 7→ gx is a homeomorphism.

(e) Let the discrete group G = Z act on R2 − {(0, 0)} via n (x, y) := (2nx, y/2n), where
R2 − {(0, 0)} is equipped with the Euclidean metric. Determine which of the 6
properties listed in (a) and the 4 properties listed in (d) are enjoyed by G and X.
You should find that G and X satisfy some but not all of the properties of both
(a) and (d), implying that they do not satisfy the hypotheses of either (a) or (d).
Which hypotheses fail?

Problem 3. Fuchsian groups (50 points)

For any subgroup Γ of SL2(R) we call z ∈ CP1 := C ∪ {∞} a limit point of Γ if there is
a w ∈ CP1 and an infinite sequence of distinct γn ∈ Γ such that lim γnw = z, Let Λ(Γ)
to denote the set of of all limit points of Γ.

(a) Let Γ be a subgroup of SL2(R) and let H be the upper half plane equipped with the
hyperbolic metric defined in Problem 1. Show that the following are equivalent.

(1) G = Γ and X = H satisfy property (1) listed in part (a) of problem 2.

(2) Γ is discrete.

(3) Any sequence in Γ converging to 1 is eventually constant.

(4) For every real B > 0 the subset of Γ with matrix entries in [−B,B] is finite.

(5) Λ(Γ) is a closed subset of RP1 := R ∪ {∞}.

Such a group is called a Fuchsian group.

(b) Let Γ = 〈γ〉 be a cyclic subgroup of SL2(R) with γ 6= ±1 and consider the three
cases where γ is elliptic, parabolic, or hyperbolic. Compute Λ(Γ) in each case and
determine whether (or under what conditions) Γ is Fuchsian.

(c) Show that if a Fuchsian group Γ is abelian then Γ/Z(Γ) is cyclic.

(d) Show that the SL2(R)-normalizer of a nonabelian Fuchsian group is Fuchsian.

(e) Let Γ be a Fuchsian group. Show that the following are equivalent.

(1) #Λ(Γ) ≤ 2

(2) There is a finite Γ-orbit in H ∪ RP1.

(3) Γ/Z(Γ) is abelian or conjugate to 〈D,S〉, where D is diagonal and S := ( 0 −1
1 0 ).

Such a group is called an elementary Fuchsian group.



Problem 4. Dirichlet domains (100 points)

Throughout this problem Γ ⊆ SL2(R) is a Fuchsian group. Recall that given any z0 ∈ H
that is not an elliptic point we can construct a Dirichlet domain

Fz0 := {z ∈ H : d(z, z0) ≤ d(z, γz0) for all γ ∈ Γ},

where d is the hyperbolic distance metric on H. We proved in class that Fz0 is a
convex locally finite fundamental domain for Γ whose boundary ∂F is a union of geodesic
segments Lγ := Fz0 ∩ γFz0 called sides, whose intersections are vertices; we include
vertices in R ∪ {∞} that are the common endpoint of two geodesic rays. Recall that
sides are required to have nonzero (possibly infinite) length. Locally finite means that
every compact A ⊆ H intersects only finitely many Γ-translates of Fz0 .

(a) Let F be a Dirichlet domain for Γ and let T := {γ ∈ Γ : F ∩ γF 6= ∅}. Show that T
generates Γ and includes all elliptic elements of Γ.

We now refine our notion of sides and vertices as follows. For sides Lγ with γ2 = ±1
we have γLγ = Lγ and γ thus fixes the midpoint of Lγ (and swaps its end points). In this
case it will be convenient to view Lγ as two distinct sides that intersect at the midpoint
of Lγ , which we now consider a vertex.

Each vertex of F lies in two sides of F , one of which we unambiguously distinguish
as the clockwise side of v1 (the one on the right if we look at v1 from the interior of F ).

Let S denote the set of sides of a Dirichlet domain F , and define

P := {(γ, L, L′) : L′ = γL} ⊆ Γ× (S × S).

Let G(P ) be the projection of P to Γ modulo Z(Γ) (keep only one of γ and −γ).

(b) Define a relation ∼ on S by letting L ∼ L′ if and only if (γ, L, L′) ∈ P for some
γ ∈ Γ. Show that this is an equivalence relation that partitions S into pairs of the
form {(γ, L, L′), (γ−1, L′, L)} with L = F ∩ γ−1F and L′ = F ∩ γF .

(c) Show that G(P ) generates Γ/Z(Γ) and that if S is finite then G(P ) is finite.

(d) Let v1 be a vertex of F . Show that there is an open neighborhood U of v1 that
contains no other vertices of F and intersects no sides of F that do not contain v1,
and a finite list of elements 1 = δ0, δ1, . . . , δn ∈ Γ such that the sets δiF are all
distinct and U ⊆ ∪ni=0δiF with v1 ∈ δiF for 0 ≤ i ≤ n.

(e) Let v1 be a vertex of F , let L1 be the clockwise side of F , let L′1 = γ1L1 be the
unique side of F paired with L1 via (c) (such a γ1 exists, it need not be unique),
and let v2 = γ1v1. Show that v2 is a vertex of F , so we can similarly let L2 be its
clockwise side, let L′2 = γ2L2 be the paired side, and define v3 = γ2v2. Continuing
in this fashion, we get a sequence of vertices v1, v2, . . . and group elements γ1, γ2, . . .
Show that after finitely many steps we return to vm = v1.

(f) With vi and γi as in part (e), let δ = (γm · · · γ1)−1. Show that the value of m in
part (e) divides n + 1, where n is as in part (d), that F ∩ Γv1 = {v1, . . . , vm−1}
(with the vi as in part (e)), and that δ fixes v1 and has order e := (n + 1)/m. We
call δe = 1 the vertex cycle relation for v1. Show that if v′1 = γv1 is a vertex of F
then the cycle relation for v′1 is (γ−1δγ)e = γ−1δeγ = 1. Let R(P ) be the set of
vertex cycle relations for vertices in F .



(g) Show that Γ/Z(Γ) is isomorphic to the free group on G(P ) with relations R(P ).

(h) For Γ = SL2(Z), compute a Dirichlet domain using z0 = 2i and compute generators
and relations for Γ/Z(Γ) = PSL2(Z) using the above method.

(i) Do the same for Γ = Γ(2) := {γ ∈ SL2(Z) : γ ≡ 1SL2(Z) mod 2}.

Problem 5. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

2/26 Automorphisms of H

2/28 Fuchsian groups

3/5 Dirichlet domains

3/7 Quotients by Fuchsian groups

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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