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33 Proof of the local existence theorem

Let K be a nonarchimedean local field. As explained in the previous lecture, to complete
our proof the existence theorem of local class field theory (Theorem 27.8), which states that
every finite index open subgroup of K× is a norm group, we need to construct a system of
totally ramified abelian extensions Kπ,n/K and a homomorphism θπ : K× → Gal(Kab

π /K)
satisfying the hypotheses of Theorem 32.1. More precisely, let p be the maximal ideal of
the valuation ring A := OK , let π be a uniformizer for p, and define:

• q := A/p is the cardinality of the residue field;

• Km/K is the unique extension of degree m in Kunr;

• Kπ,n,m := Kπ,nKm;

• Uπ,n,m := (1 + pn)〈πm〉 ⊆ K×;

• Kπ :=
⋃
n≥1Kπ,n;

• Kab
π := KπK

unr;

To satisfy the hypotheses of Theorem 32.1 we need the following to hold:

(i) [Kπ,n : K] = (q − 1)qn−1 and π ∈ N(K×π,n);

(ii) θπ(π)|Kunr = FrobK and θπ(a)|Kπ,n,m = 1 for all a ∈ Uπ,n,m;

(iii) Kab
π and θπ do not depend on the choice of π.

In the previous lecture we associated to any uniformizer π the set of power series

Φ(π) := {φ ∈ TA[[T ]] : φ ≡ πT mod T 2 and φ ≡ T q mod π}.

We showed that for each φ ∈ Φ(π) there is a unique Lubin-Tate formal group law Fφ such
that φ ∈ End(Fφ), and we defined an injective ring homomorphism

A ↪→ End(Fφ)

a 7→ [a]φ

where [a]φ ≡ aT mod T 2 and φ ◦ [a]φ = [a]φ ◦ φ (these properties uniquely determine [a]φ),
such that [π]φ = φ.

33.1 Constructing the extensions Kπ/K

As above, let K be a nonarchimedean local field with valuation ring A and let π be a
uniformizer for A, and let q = #A/(π) be the cardinality of the residue field. The absolute
value on K extends uniquely to an absolute value on Ksep, via Theorem 10.6. For any
φ ∈ Φ(π) and all α, β ∈ Ksep with |α|, |β| < 1 and any a ∈ A the series Fφ(α, β) and [a]φ(α)
converge to elements that lie in a finite extension of K (because α and β lie in a finite
extension of K which must be complete, by Theorem 10.6, even though Ksep is not).

For each φ ∈ Φ(π) we define the A-module

Λφ := {α ∈ Ksep : |α| < 1},

with addition given by α+Λφ β := Fφ(α, β) and A-multiplication by a ·Λφ α := [a]φ(α). For
any ψ ∈ Φ(π) the canonical isomorphism [1]φ,ψ : Fψ → Fφ induces an A-module isomorphism
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Λψ → Λφ, so the A-module structure of Λφ is really determined by π. In particular, up to a
canonical isomorphism that will not change the A-module structure of Λφ, we can assume
without loss of generality that φ(T ) = πT + T q is actually a polynomial, not just a power
series (this particular φ is clearly an element of Φ(π)).

We now define Λφ,n as the A-submodule of Λφ killed by πn, in other words, killed by

[π · · ·π]φ = [π]φ ◦ · · · ◦ [π]φ = φ ◦ · · · ◦ φ = φ(n).

This is a finite set (consider the case φ(T ) = πT + T q), of cardinality at most qn (in fact
equal to qn, as we will show below). Thus Λφ,n is a finite A-module.

Example 33.1. Consider the local field K = Qp with valuation ring A = Zp and uni-
formizer π = p, and let φ(T ) := (T + 1)p − 1 (this choice of φ is slightly more convenient
here than pT + T p). We have φ ≡ πT mod T 2 and φ ≡ T p mod π, so φ ∈ Φ(π), and

Λφ,n = {α ∈ Qp : φ(n)(α) = 1} = {α ∈ Qp : (α+ 1)p
n

= 1} ' {ζ ∈ Qp : ζp
n

= 1} = µpn(K)

is isomorphic to the group of pnth roots of unity, where addition in Λφ,n corresponds to
multiplication in µpn(K) (but note that Λφ,n does not itself contain any roots of unity,
indeed, its elements cannot be units because they have absolute values less than 1). As an
additive group, Λφ,n ' Z/pnZ, and the Zp-action is just multiplication modulo pn.

The valuation ring A = OK is a DVR, and in particular a PID. The finite A-module
Λφ,n is a finitely generated torsion module over a PID and therefore isomorphic to a direct
sum of finite cyclic A-modules

A/(πm1)⊕ · · · ⊕A/(πmr),

where the integers m1 ≤ · · · ≤ mr are uniquely determined (every non-trivial A-ideal has
the form (πm) for some m ≥ 1 because A is a DVR). We want to determine the A-module
structure of Λφ,n as a direct sum of finite cyclic A-modules.

Proposition 33.2. Let A be the valuation ring of a local field K with uniformizer π. For
any φ ∈ Φ(π) and integer n ≥ 1 the A-module Λφ,n is isomorphic to A/(πn).

Proof. Let q := #A/(π) be the cardinality of the residue field. As noted above, without
loss of generality we may assume φ(T ) = πT + T q. This is a separable polynomial over A;
it thus has q distinct roots α, and πα = −αq implies α = 0 or |α| = |π|/(q − 1) < 1, so
α ∈ Λφ. It follows that Λφ,1 has cardinality q and is therefore isomorphic to A/(π) (this is
the smallest nonzero cyclic A-module, and it has cardinality q). This prove the lemma for
n = 1, we now proceed by induction.

The A-module homomorphism π : Λφ → Λφ defined by α 7→ [π]φ(α) = φ(α) is surjective,
since for any nonzero β ∈ Λφ the polynomial φ(T )−β = T q +πT −β is separable and thus
has a root α in Ksep with |α||αq−1 − π| = |β| < 1, which implies |α| < |β| < 1. It follows
that the induced map π : Λφ,n → Λφ,n−1 is surjective, and its kernel is clearly Λφ,1, so we
have an exact sequence

0 −→ Λφ,1 −→ Λφ,n
π−→ Λφ,n−1 −→ 0

We have Λφ,n−1 ' A/(πn−1) by the inductive hypothesis, and it follows that Λφ,n has
cardinality qn and is isomorphic to either A/(πn) or A/(π)⊕A/(πn−1). The latter cannot
occur because the kernel of multiplication by π on the A-module A/(π) ⊕ A/(πn−1) has
cardinality q2, not q, and we have already shown that Λφ,1 has cardinality q.
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Definition 33.3. Let K be a nonarchimedean local field, π be a uniformizer π, let φ ∈ Φ(π)
be the polynomial πT+T q, and let Λn := Λφ,n. We define Kπ,n := K(Λn) to be the extension
of K generated by the elements of Λn.

We will prove that Kπ,n is the splitting field of φ(n) over K, whose roots are precisely
the elements of Λn. We require the following lemma.

Lemma 33.4. Let K be a nonarchimedean local field with valuation ring A, and let F be a
power series in R := A[[X1, . . . , Xr]]. Suppose α1, . . . , αr ∈ Ksep satisfy |α1|, . . . , |αr| < 1.
Then for every σ ∈ Gal(Ksep/K) we have

F (σ(α1), . . . , σ(αr)) = σ(F (α1, . . . , αr)).

Proof. We first note that σ preserves absolute values, by Lemma 11.9. We can assume
that α1, . . . , αr and σ(α1), . . . , σ(αr) all lie in a finite Galois extension L/K and restrict
the action of σ to L. If we now consider the sequence of polynomials Fn := F mod R>n
obtained by considering only terms of total degree at most n. The equality

Fn(σ(α1), . . . , σ(αr)) = σ(Fn(α1, . . . , αr))

is immediate, since the field automorphism σ fixes all the coefficients of F . The sequence
(F (σ(α1), . . . , σ(αr)))n is Cauchy, since |σ(αi)| < 1, and L is complete, by Theorem 10.6,
so both sides of the equality above converge to the same element of L as n→∞.

Theorem 33.5. Let K be a nonarchimedean local field with valuation ring A and uni-
formizer π, let q := A/(π) be the cardinality of the residue field. The extension Kπ,n/K is
separable and we have isomorphisms (A/(πn))×

∼−→ Aut(Λn)
∼−→ Gal(Kπ,n/K) induced by

the maps u 7→ [u]φ 7→ σu, where σu is the permutation of Λn defined by α 7→ [u]φ(α) and

(i) [Kπ,n : K] = (q − 1)qn−1 and π ∈ N(K×π,n).

Moreover, the field Kπ,n is a totally ramified abelian extension of K.

Proof. Let π1 be a nonzero root of φ(T ) in Ksep, and for 1 < m ≤ n choose a root πm of
φ(T ) − πm−1 so that φ(πm) = πm−1. The polynomial φ(T )/T = T q−1 + π is Eisenstein
and separable, so π1 generates a totally ramified extension K(π1)/K of degree q − 1, and
π1 is a uniformizer for the valuation ring of K(π1). For each m > 1 the polynomial
φ(T ) − πm−1 = T q + πT − πm−1 is Eisenstein and separable (by induction, πm−1 is a
uniformizer), so K(πm)/K(πm−1) is a totally ramified extension of degree q and πm is a
uniformizer for its valuation ring. We thus have a tower of field extensions

K ⊆ K(π1) ⊆ K(π2) ⊆ · · · ⊆ K(πn) ⊆ K(Λn) = Kπ,n,

with [K(π1) : K] = q = −1 and [K(πm) : K(πm−1] = q for 1 < m ≤ n− 1. It follows that

[Kπ,n : K] ≥ (q − 1)qn−1.

We now observe that Kπ,n = K(Λn) is the splitting field of φ(n), since every element of
Λn is a root of φ(n), by definition, and Λn has cardinality qn, by Proposition 33.2, which
is equal to the degree of φ(n). Therefore Kπ,n is a Galois extension of K, and the action
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of Gal(Kπ,n/K) on Λn is compatible with the A-module structure of Λn. Indeed, for each
σ ∈ Gal(Kπ,n/K) and a ∈ A and any α ∈ Λn we have

σ(aα) := σ([a]φ(α)) = [a]φ(σ(α)) =: aσ(α)

by Lemma 33.4. We thus have a group homomorphism Gal(Kπ,n/K) → AutA(Λn). This
homomorphism is injective, since Λn contains all the roots of φ(n) and each σ ∈ Gal(Kπ,n/K)
corresponds to a distinct permutation of these roots. It must also be surjective, because

Aut(Λn) ' Aut(A/(πn)) ' (A/(πn))×,

by Proposition 33.2, and #(A/(πn))× = (q−1)qn−1 ≤ [Kπ,n : K] = #Gal(Kπ,n/K). Notice
that for any cyclic A-module A/(πn) we can identify End(A/(πn)) with the ring A/(πn)
and Aut(A/(πn)) with the unit group (A/(πn))×, because every endomorphism of A/(πn)
is determined by its action on 1 + (πn).

It follows that Kπ,n = K(πn) and

Gal(Kπ,n/K) ' (A/(πn))×

is abelian, so Kπ,n/K is a totally ramified abelian extension of degree (q − 1)qn−1. The
A-action on Λn is (by definition) induced by aα := [a]φ(α), and this corresponds to the
natural A-action on A/(πn) (multiplication-by-a maps) under the A-module isomorphism
in Proposition 33.2. Automorphisms of Λn and A/(πn) are induced by units u ∈ A×, each of
which induces a permutation σu of Λn corresponding to an element of Gal(Kπ,n/K) under
the isomorphism above. We thus have (A/(πn)×

∼−→ Aut(Λn)
∼−→ Gal(Kπ,n/K) induced

by the maps u 7→ [u]φ → σu as claimed.
Now define f1(T ) = φ(T )/T and for m > 1 let fm = fm−1 ◦ φ. Then

fn(T ) = π + · · ·+ T (q−1)qn−1

is Eisenstein and

fn(πn) = fn−1(φ(πn)) = fn−1(πn−1) = · · · f1(π1) = 0.

The polynomial fn(T ) is monic of degree (q − 1)q(n−1) and K(πn) = Kπ,n is a degree
(q − 1)qn−1 extension of K, so fn(T ) is the minimal polynomial of πn. The constant term
of fn(T ) is π, thus by Proposition 4.51 we have

NKπ,n/K(πn) = (−1)(q−1)qn−1
π =

{
π if qn > 2,

−π if qn = 2.

If qn = 2 then (q − 1)qn−1 = 1 and Kπ,1 = K, in which case NKπ,n/K(π) = π, so in every
case π ∈ N(Kπ,n) and (i) holds.

The isomorphisms (A/(πn))×
∼−→ Aut(Λn)

∼−→ Gal(Kπ,n/K) given by u 7→ [u]φ 7→ σu
in Theorem 33.5 are natural in n, since we can reduce units u ∈ A× modulo any ideal πn

to get corresponding isomorphisms for any integer n ≥ 1. We thus have an isomorphism of
inverse systems

A× ' lim←−
n

A/(πn) ' lim←−
n

Gal(Kπ,n/K) ' Gal(Kπ/K),

where Kπ :=
⋃
nKπ,n.
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Definition 33.6. Let K be a nonarchimedean local field with valuation ring A, let π be a
uniformizer for A, let FrobK ∈ Gal(Kunr/K) be the Frobenius element, let Kπ :=

⋃
nKπ,n,

and define Kab
π := KπK

unr. We define the homomorphism θπ : K× → Gal(Kab
π /K) as

follows: for a = uπm ∈ K× with u ∈ A×, let θπ(a)|Kunr := FrobmK , and let θπ(a)|Kπ := σu−1 ,

where σu−1(α) := [u−1]φ(α) for all α ∈ Λn and n ≥ 1, with φ as in Definition 33.3.

It follows from Theorem 33.5 that the field Kπ is totally ramified, so Kπ ∩Kunr = K,
which allows us to define the action of θπ(a) on Kπ and Kunr independently. In our definition
of θπ(a)|Kπ we use σu−1 rather than σu in order to ensure that Kab

π is independent of π (as
we will be proved below), but this still defines an isomorphism A× → Gal(Kπ).

Theorem 33.7. Let K be a nonarchimedean local field with uniformizer π and let p := 〈π〉.
Let FrobK ∈ Gal(Kunr/K) be the Frobenius element, let Km/K be the unique extension of
degree m in Kunr, let Kπ,n,m := KmKπ,n, and let Uπ,n,m := (1 + pn)〈πm〉 ⊆ K×. Then

(ii) θπ(π)|Kunr = FrobK and θπ(a)|Kπ,n,m = 1 for all a ∈ Uπ,n,m and all n,m ≥ 1.

Proof. It follows immediately from the definition of θπ that θπ(π)|Kunr = FrobK , so we only
need to prove the second part of (ii).

Let a ∈ Uπ,n,m and write a as a = uπe with u ∈ 1 + pn and e ≥ 0 divisible by m. The
image of u in A/(πn) = A/pn is 1, so σu−1(α) = [u−1]φ(α) = [1]φ(α) = α for all α ∈ Λn
(here we are using the inverse of the isomorphism (A/(πn))× ' Aut(Λn) ' Gal(Kπ,n/K)
defined by u 7→ [u]φ 7→ σu given by Theorem 33.5). It follows that σu−1 |Kπ,n = 1, since

Kπ,n = K(Λn), and therefore

θπ(a)|Kπ,n = σu−1 |Kπ,n = 1.

For any α ∈ Km ⊆ Kunr we have θπ(a)(α) = FrobeK(α) = α, since for the unramified
extension Km/K of degree m, the Galois group Gal(Km/K) is cyclic of order m, generated
by the restriction of FrobK to Km. It follows that

θπ(a)|Km = (Frobek)|Km = 1,

and therefore θπ(a)|Kπ,n,m = 1, since Kπ,n,m = Kπ,nKm.

It remains only to show that the field Kab
π = KπK

unr and the homomorphism θπ do not
depend on the choice of π. To do this we essentially want to show that for any uniformizer
π′ = uπ, the field Kπ′ is a subfield of Kunr

π conjugate to Kπ via θπ(u)
If L/K is a finite unramified extension of local fields and q is the maximal ideal of

the valuation ring of L lying above the maximal ideal p of the valuation ring of K, the
valuation vq extends the valuation vp with index index eq = 1 (see Theorem 8.20); it follows
that the maximal unramified extension Kunr is a DVR whose discrete valuation restricts
to the discrete valuation on K. However, the valuation ring of Kunr is not complete, and
we want to work with power series over complete DVRs (so we can guarantee convergence
on elements of absolute value less than 1), so we instead work with the completion K̂unr of
Kunr, whose valuation ring is a complete DVR (with infinite residue field isomorphic to the
algebraic closure of the residue field of K, the same as Kunr).

The Frobenius element FrobK is a topological generator for Gal(Kunr/K) (it generates
a subgroup isomorphic to Z which is dense in Gal(Kunr/K) ' Ẑ), and the same applies
to its lift to Gal(K̂unr/K), which we also denote FrobK (the action of FrobK on K̂unr is
completely determined by its action on Kunr, since elements of K̂unr are Cauchy sequences
and FrobK acts on the sequence by acting on each term).
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Lemma 33.8. Let K be a nonarchimedean local field with valuation ring A, let B be the
valuation ring of K̂unr, and let σ := FrobK ∈ Gal(K̂unr/K) be the Frobenius element. We
have exact sequences

0 −→ A −→ B
x 7→σ(x)−x−→ B −→ 0

1 −→ A× −→ B×
x 7→σ(x)/x−→ B −→ 1

Proof. Let p be the maximal ideal of A, and let R be the valuation ring ofKunr with maximal
ideal m. For n ≥ 1 let An := A/pn and Rn := R/mn. Let τ be the map x 7→ σ(x)− x and
let τn denote the induced map Rn → Rn. We will show by induction that the sequence
0 −→ An −→ Rn

τn−→ Rn −→ 0 is exact; the exactness of the first sequence in the lemma
then follows, since A = lim←−An and B = lim←−Rn.

The case n = 1 follows from the exactness of 0 −→ k −→ k̄
τ1−→ k̄ −→ 0, where

k = A1 = A/p is the finite residue field, and τ1 is the map x 7→ x#k−x. Assuming we have
proved exactness for n− 1, consider the following commutative diagram with exact rows:

0 R1 Rn Rn−1 0

0 R1 Rn Rn−1 0

←→ ←→

←→ τ1

←→
←→ τn

←→

←→ τn−1

←→ ←→ ←→ ←→

The map R1 → Rn is the isomorphism from R1 to the kernel of the reduction map from Rn
to Rn−1. The snake lemma and the inductive hypothesis yield the kernel-cokernel sequence

0→ A1 → ker τn → An−1 → 0→ coker τn → 0,

thus coker τn = 0, and ker τn contains An and must be equal to it, since #An = #A1#An−1.
Replacing An with A×n and Rn with R×n and taking τ to be the map x 7→ σ(x)/x yields the
second exact sequence in the lemma.

For any power series F with coefficients in a field L and any σ ∈ Aut(K) we use σ(F )
to denote the power series obtained by applying σ to all the coefficients of F .

Proposition 33.9. Let K be a nonarchimedean local field with valuation ring A and uni-
formizer π, let B be the valuation ring of the completion K̂unr, let ι : A → B be the in-
clusion map, let σ := FrobK ∈ Gal(K̂unr/K) be the Frobenius element, and let φ ∈ Φ(π)
and ψ ∈ Φ(uπ). There is an isomorphism of formal group laws ϕ : ι∗Fφ → ι∗Fψ such
that σ(ϕ) = ϕ ◦ [u]φ and ϕ ◦ [a]φ = [a]ψ ◦ ϕ for all a ∈ A. The inverse isomorphism
ϕ−1 : ι∗Fψ → ι∗Fφ satisfies σ(ϕ−1) = ϕ ◦ [u−1]ψ and ϕ−1 ◦ [a]ψ = [a]φ ◦ ϕ−1 for all a ∈ A.

Proof. Via Lemma 33.8, choose v ∈ B× so that σ(v) = uv and let ϕ1 := vT ; we then have
σ(ϕ1) = uvT . We will inductively construct polynomials ϕn ∈ B[T ] that satisfy

ϕn ≡ ϕn−1 mod Tn and σ(ϕn) ≡ ϕn ◦ [u]φ mod Tn+1.

Given ϕn−1(T ), let b be the coefficient of Tn in σ(ϕn−1) − ϕn−1 ◦ [u]φ. Via Lemma 33.8,
choose a ∈ B so that σ(a)− a = b/(uv)n (note that uv ∈ B×, so b/(uv)n ∈ B). Now define
ϕn := ϕn−1 − avnTn. Then

σ(ϕn)− ϕn ◦ [u]φ ≡ (b− σ(avn) + avnun)Tn ≡ (b− σ(a)unvn + avnun)Tn ≡ 0 mod Tn+1.

If we now put ϕ := limn ϕn, then σ(ϕ) = ϕ ◦ [u]φ as desired.
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We have ϕ(T ) ≡ vT mod T 2 with v ∈ B×, so there is a unique ϕ−1 ∈ TB[[T ] such that
ϕ ◦ ϕ−1 = T , by Lemma 32.3, and we note that ϕ−1(T ) ≡ v−1T mod T 2. Now define

ψ′ := σ(ϕ) ◦ φ ◦ ϕ−1 = ϕ ◦ [u]φ ◦ φ ◦ ϕ−1 = ϕ ◦ φ ◦ [u]φ ◦ ϕ−1.

The Frobenius element σ fixes the coefficients of φ and [u]φ (since they lie in A), and we
note that T = ϕ ◦ ϕ−1 = σ(ϕ) ◦ σ(ϕ−1) = ϕ ◦ [u]φ ◦ σ(ϕ−1), so ϕ−1 = [u]φ ◦ σ(ϕ−1), and
therefore

σ(ψ′) = σ(ϕ) ◦ φ ◦ [u]φ ◦ σ(ϕ−1) = σ(ϕ) ◦ φ ◦ ϕ−1 = ψ′,

which implies that ψ′ ∈ A[[T ]], and we have

ψ′(T ) ≡ σ(v)πv−1T ≡ uπT ≡ modT 2

and if q := A/〈π〉 is the cardinality of the residue field, then φ ◦ ϕ−1 ≡ (ϕ−1)q mod π and

ψ′(T ) ≡ (σ(ϕ) ◦ (ϕ−1)q)(T ) ≡ σ(ϕ) ◦ σ(ϕ−1)(T q) ≡ T q mod π,

which implies ψ′(T ) ≡ T q mod uπ, so ψ′ ∈ Φ(uπ). If ψ′ 6= ψ then we can replace ϕ with
ϕ′ := [1]ψ,ψ′ ◦ϕ, which will still satisfy σ(ϕ′) = ϕ′ ◦ [u]φ, since σ acts trivially on [1]ψ,φ, and
this changes ψ′ to ψ′ ◦ [1]ψ,ψ′ = ψ. We thus assume ψ′ = ψ, and have ψ = σ(ϕ) ◦ φ ◦ ϕ−1.

We now show that ϕ ◦ Fφ ◦ ϕ−1 = Fψ. We first note that

σ(ϕ ◦ Fφ ◦ ϕ−1) = σ(ϕ) ◦ Fφ ◦ σ(ϕ−1) = ϕ ◦ [u]φ ◦ Fφ ◦ [u−1]φ ◦ ϕ−1 = ϕ ◦ Fφ ◦ ϕ−1,

since [u]φ and [u−1]φ are inverse automorphisms of Fφ, by Proposition 32.16. It follows
that ϕ ◦ Fφ ◦ ϕ−1 ∈ A[[X,Y ]]. Let R := A[[X,Y ]]. It follows from Propositions 32.12
and 32.13 that Fψ ∈ A[[X,Y ]] is uniquely determined by Fψ(X,Y ) ≡ X + Y mod R>1 and
ψ ◦ Fψ = Fψ ◦ ψ. We now observe that

(ϕ ◦ Fφ ◦ ϕ−1(X,Y ) ≡ v(v−1X + v−1Y ) ≡ X + Y mod R>1

and

ψ ◦ (ϕ ◦ Fφ ◦ ϕ−1) = σ(ϕ) ◦ φ ◦ Fφ ◦ ϕ−1

= σ(ϕ) ◦ Fφ ◦ φ ◦ ϕ−1

= σ(ϕ) ◦ Fφ ◦ σ(ϕ−1) ◦ ψ
= (ϕ ◦ Fφ ◦ ϕ−1) ◦ ψ,

so ϕ◦Fφ◦ϕ−1 = Fψ, by uniqueness, and therefore ϕ◦Fφ = Fψ◦ϕ. Thus ϕ is an isomorphism
of formal group laws ι∗Fφ → ι∗Fψ as claimed, and ϕ−1 is the inverse isomorphism.

Finally, for any a ∈ A we have

σ(ϕ ◦ [a]φ ◦ ϕ−1) = σ(ϕ) ◦ [a]φ ◦ σ(ϕ−1) = ϕ ◦ [u]φ ◦ [a]φ ◦ [u−1] ◦ ϕ−1 = ϕ ◦ [a]φ ◦ ϕ−1,

so ϕ ◦ [a]φ ◦ ϕ−1 ∈ A[[T ]]. Now [a]ψ ∈ A[[T ]] is uniquely determined by [a]ψ ≡ aT mod T 2

and [a]ψ ◦ Fψ = Fψ ◦ [a]ψ. We have ϕ ◦ [a]φ ◦ ϕ−1(T ) ≡ vav−1T ≡ aT mod T 2 and

(ϕ ◦ [a]φ ◦ ϕ−1) ◦ Fψ = ϕ ◦ [a]φ ◦ Fφ ◦ ϕ−1 = ϕ ◦ Fφ ◦ [a]φ ◦ ϕ−1 = Fψ ◦ (ϕ ◦ [a]φ ◦ ϕ−1),

so ϕ ◦ [a]φ ◦ ϕ−1 = [a]ψ, by uniqueness. Therefore ϕ ◦ [a]φ = [a]ψ ◦ ϕ for all a ∈ A.
We now observe that σ(ϕ) = ϕ ◦ [u]φ = [u]ψ ◦ ϕ and therefore

σ(ϕ−1) = σ(ϕ)−1 = ([u]ψ ◦ ϕ)−1 = ϕ−1 ◦ [u]−1
ψ = ϕ−1 ◦ [u−1]ψ,

and ϕ ◦ [a]φ = [a]ψ ◦ ϕ =⇒ [a]φ = ϕ−1 ◦ [a]ψ ◦ ϕ =⇒ [a]φ ◦ ϕ−1 = ϕ−1 ◦ [a]ψ for all a ∈ A,
which shows that the inverse isomorphism ϕ−1 : ι∗Fψ → ι∗Fφ has the desired properties.
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Theorem 33.10. Let K be a nonarchimedean local field with valuation ring A and uni-
formizer π. Then

(iii) Kab
π := KπK

unr and θπ : K× → Gal(Kab
π /K) are independent of π.

Proof. Consider any uniformizer π′ = uπ with u ∈ A×. Let φ ∈ Φ(π) by πT + T q and
let ψ ∈ Φ(π′) be π′T + T q, where q = #(A/〈π〉). Let B be the valuation ring of K̂unr,
and let σ := FrobK ∈ Gal(K̂unr/K). Now let ϕ ∈ B[[T ]] be the isomorphism given by
Proposition 33.9, so that σ(ϕ) = ϕ ◦ [u]φ and ϕ ◦ [a]φ = [a]ψ ◦ ϕ for all a ∈ A. Then

σ(ϕ) ◦ [π]φ = ϕ ◦ [u]φ ◦ [π]φ = ϕ ◦ [uπ]φ = ϕ ◦ [π′]φ = [π′]ψ ◦ ϕ.

Recalling that [π]φ = φ and [π′]ψ = ψ, by Proposition 32.16, we have σ(ϕ) ◦ φ = ψ ◦ ϕ.
Proposition 33.9 also implies σ(ϕ−1) = ϕ−1 ◦ [u−1]ψ and ϕ−1 ◦ [a]ψ =]a]φ ◦ϕ−1 for all a ∈ A,
so we similarly obtain

σ(ϕ−1) ◦ [π′]ψ = ϕ−1 ◦ [u−1]ψ ◦ [π′]ψ = ϕ−1 ◦ [u−1π′]ψ = ϕ−1 ◦ [π]ψ = [π]φ ◦ ϕ−1

and therefore σ(ϕ−1) ◦ ψ = φ ◦ ϕ−1.
Now consider any α ∈ Λφ,1. If φ(α) = 0 then ψ(ϕ(α)) = σ(ϕ)(φ(α)) = σ(ϕ)(0) = 0.

Conversely, if ψ(α) = 0 then φ(ϕ−1(α)) = σ(ϕ−1)(ψ(ϕ)) = σ(ϕ−1)(0) = 0. It follows that ϕ
induces a bijection from Λφ,1 to Λψ,1, and we therefore have

K̂unr(Λψ,1) = K̂unr(ϕ(Λφ,1)) ⊆ K̂unr(Λφ,1) = K̂unr(ϕ−1(Λψ,1)) ⊆ K̂unr(Λψ,1).

Here we are using the fact that a finite separable extension of a complete DVR is complete,
by Theorem 10.6 (the elements of Λφ, 1 and Λψ,1 are separable, by Theorem 33.5), which is
needed to guarantee the two inclusions above (evaluating a convergent power series over a
complete field yields an element of the field; consider the Cauchy sequence of partial sums).
We thus have K̂unr(Λφ,1) = K̂unr(Λψ,1). Taking intersections with Ksep on both sides of
this equality yields Kunr(Λφ,1) = Kunr(Λψ,1) and therefore KunrKπ,1 = KunrKπ′,1.

We now prove by induction on n ≥ 1 that σn(ϕ) ◦ φ(n) = ψ(n) ◦ ϕ. The base case was
proved above. For n > 1 we have

σn(ϕ) ◦ φ(n) = σn−1(σ(ϕ) ◦ φ ◦ φ(n−1)) = σ(n−1)(ψ ◦ ϕ ◦ φ(n−1)) = ψ ◦ σ(n−1)(ϕ) ◦ φ(n−1)

and ψ ◦ σ(n−1)(ϕ) ◦ φ(n−1) = ψ ◦ ψ(n−1) ◦ ϕ = ψ(n) ◦ ϕ by the inductive hypothesis. We
similarly have σ(n)(ϕ−1) ◦ ψ(n) = φ(n) ◦ ϕ−1.

For any α ∈ Λφ, if φ(n)(α) = 0 then ψ(n)(ϕ(α)) = σn(ϕ)(φ(n)(α)) = σn(ϕ)(0) = 0, and
conversely, if ψ(n)(α) = 0 then φ(n)(ϕ−1(α)) = σ(ϕ−1)n(ψ(n)(α)) = σn(ϕ−1)(0) = 0. Thus
ϕ induces a bijection Λphi,n → Λψ,n for all n ≥ 1 and therefore K̂unr(Λφ,n) = K̂unr(Λψ,n)
and KunrKπ,n = KunrKπ′,n for all n ≥ 1. We therefore have

Kab
π = KπK

unr =
⋃
n≥1

Kπ,nK
unr =

⋃
n≥1

Kπ′,nK
unr = Kab

π′ ,

which implies that the field Kab
π is independent of π.

Let us now consider the homomorphisms θπ : K× → Gal(Kab
π /K) (see Definition 33.6).

We have θπ(π′) = θπ(uπ) = θπ(u)θπ(π). By definition, θπ(u) acts trivially on Kunr and acts
as σu−1 on Kπ, meaning that it sends α ∈ Λφ,n to [u−1]φ(α), while θπ(π) acts trivially on
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Kπ and as FrobK on Kunr (which implies that θπ(π)(ϕ(α)) = σ(ϕ)(α) for any α ∈ Kπ).
For any α ∈ Λφ,n we have

θπ(π′)(ϕ(α)) = θπ(u)(θπ(π)(ϕ(α))) = θπ(u)(σ(ϕ)(α)) = σ(ϕ)(θπ(u)(α)) = σ(ϕ)(σu−1(α))

= σ(ϕ)([u−1]φ(α)) = (ϕ ◦ [u]φ ◦ [u−1]φ)ϕ(α) = ϕ(α).

It follows that θπ(π′) acts trivially on Λψ,n, hence on Kπ′,n for all n ≥ 1; therefore θπ(π′)
acts trivially on Kπ′ =

⋃
n≥1Kπ′,n. Thus θπ(π′)|K′π

= 1 and θπ(π′)|Kunr = FrobK , and

therefore θπ(π′) = θπ′(π
′), since this is precisely the definition of θπ′(π

′). Our choice of
π′ = uπ was arbitrary, so θπ(π′′) = θπ′′(π

′′) for every uniformizer π′′ of K. The uniformizer
π was also arbitrary, so the same argument applies to π′, that is, θπ′(π

′′) = θπ′′(π
′′) for

every uniformizer π′′ of K. Thus θπ(π′′) = θπ′′(π
′′) = θπ′(π

′′) for every uniformizer π′′ of K.
The uniformizers generate K×, so θπ = θπ′ and this shows that θπ is independent of π.
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