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32 Lubin-Tate formal groups

The local Artin reciprocity theorem (Theorem 29.1) whose proof was completed in the
previous lecture implies that for every finite abelian extension of local fields L/K we have
a continuous surjective homomorphism

θL/K : K×�Gal(L/K)

whose kernel is the norm group N(L×) := NL/K(L×), which we note is an open subgroup
of K×, since it is the kernel of a continuous homomorphism whose image has the discrete
topology. The norm limitation theorem (Theorem 31.8) implies that every norm group is
the norm group of a finite abelian extension. To complete the proof of local class field
theory we need to prove the existence theorem (Theorem 27.8), which states that every
finite index open subgroup of K× arises as the norm group of a finite abelian extension
L/K; if it exists the field L is clearly unique, since it is the fixed field (Kab)θK(N(L×)).

The archimedean case is clear: any open subgroup of R×>0 must contain an open interval
about 1, say U = (1 − ε, 1 + ε) for some ε > 0, but then it also contains ∪n≥1Un = R×>0,
which has index 2, so the only open subgroups are since R×>0 and R×, corresponding to the
norm groups NC/R(C) and NR/R(R).

We henceforth assume K is a nonarchimedean local field, with valuation ring OK and
maximal ideal p. If we fix a uniformizer π for p = 〈π〉, then we have an isomorphism

K× ' O×K × 〈π〉,

and for every integer n ≥ 1 we have an open subgroup of K× defined by

Uπ,n := (1 + pn)〈π〉.

If Uπ,n is a norm group, then there is a finite abelian extension Kπ,n/K with N(K×π,n) =
Uπ,n.1 Local artin reciprocity implies that

[Kπ,n : K] = [K× : Uπ,n] = [O×K : 1 + pn] = (q − 1)qn−1,

where q := #OK/p is the cardinality of the residue field; so see the last equality, consider
the π-adic expansions of elements of O×K . Note that π ∈ N(K×π,n) for all n ≥ 1, and this
implies that Kπ,n is totally ramified: the maximal unramified subextension E of Kπ,n/K
must satisfy N(E×) ⊇ 〈π,O×K〉 = K×, since O×K ⊆ N(E×) for any unramified extension (by
Corollary 30.18) and π ∈ N(K×π,n) ⊆ N(E×), and this implies that Gal(E/K) is trivial and
therefore E = K, by local Artin reciprocity. It follows that Kπ,1/K is tamely ramified and
Kπ,n/K is wildly ramified for all n > 1.

To prove the local existence theorem it suffices to construct the fields Kπ,n and show that
they satisfy a certain compatibility with the local Artin homomorphism. More precisely,
we have the following theorem, in which we assume that all separable extensions of K,
including Kunr and Kab, are contained in a fixed separable closure Ksep.

Theorem 32.1. Let K be a nonarchimedean local field, p be the maximal ideal of OK , and
let q := #OK/p. Let Km be the unique unramified extension of K of degree m in Ksep and
let FrobK ∈ Gal(Kunr/K) denote the Frobenius element. Suppose that the following hold
for every uniformizer π of p:

1We use N(L×) as shorthand for NL/K(L×) for any finite extension L/K; in this case L = Kπ,n.
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(i) For every n ∈ Z≥1 there is an abelian extension Kπ,n/K of degree (q − 1)qn−1 for
which π ∈ N(K×π,n); define Kπ,n,m := Kπ,nKm and Uπ,n,m := (1 + pn)〈πm〉, and let

Kπ := ∪n≥1Kπ,n and Kab
π := KπK

unr.

(ii) There is a homomorphism θπ : K× → Gal(Kab
π /K) such that θπ(π)|Kunr = FrobK and

θπ(a)|Kπ,n,m = 1 for all a ∈ Uπ,n,m.

Suppose further that Kab
π and θπ do not depend on the choice of π. Then Kab

π = Kab and
θπ = θK , and every finite index open subgroup of K× is a norm group.

Proof. The field Kab
π is abelian (it is a compositum of abelian extensions), thus Kab

π ⊆ Kab.
We have θK(π) = FrobK , by Theorem 31.7, and π ∈ N(K×π,n), by (i), so θK(π) = FrobK
acts trivially on Kπ,n, since π ∈ N(K×π,n) = ker θKπ,n/K . By (ii), θπ(π) also acts trivially
on Kπ,n, since Kπ,n = Kπ,n,1 and π ∈ Uπ,n = Uπ,n,1. It follows that θK(π)|Kπ = θπ(π)|Kπ ,
since Kπ = ∪n≥1Kπ,n. We also have θπ(π)|Kunr = FrobK = θK(π)|Kunr , by (ii), therefore
θK(π)|

Kab
π

= θπ(π). This holds for every uniformizer π, so for any uniformizer π′ we have

θπ(π′) = θπ′(π
′) = θK(π′)|

Kab
π
.

under our assumption that Kab
π = Kab

π′ and θπ = θπ′ . The uniformizers generate K×,
therefore θπ(x) = θK(x)|

Kab
π

for all x ∈ K×.

We know that θπ(a) acts trivially on Kn,m for all a ∈ Uπ,n,m, by (ii), hence so does θK(a)
(by what we have just proved). Therefore Uπ,n,m ⊆ N(K×π,n,m), by local Artin reciprocity.
We also have

[K× : Uπ,n,m] = [O×K : 1 + pn][〈π〉 : 〈πm〉]
= (q − 1)qnm

= [Kπ,n : K][Km : K]

= [Kπ,m,n : K],

= [K× : N(K×π,m,n)]

where we have used Kπ,n ∩Km = K (since Kπ,n is totally ramified) and local Artin reci-
procity. Thus Uπ,n,m = N(K×π,n,m) is the norm group of Kπ,n,m.

For any finite abelian extension L/K, the norm group N(L×) is a finite index open
subgroup of K×. It thus contains 1 + pn for all sufficiently large n (these form a system
of neighborhoods about 1 with radii tending to zero), and it also contains π[L:K], since
NL/K(x) = x[L:K] for every x ∈ K×. Thus Uπ,n,m ⊆ N(L×) for some m,n ∈ Z≥1. By
Corollary 27.5 we have

L ⊆ Kπ,n,m = Kπ,nKm ⊆ KπK
unr = Kab

π ,

and therefore Kab
π = Kab. It follows that θπ = θK , since we have shown that θπ(x) and

θK(x) agree on Kab
π for all x ∈ K×.

Now consider any finite index open subgroup U ⊆ K×. The intersection U ∩ 〈π〉 must
be nontrivial because O×K has infinite index in K× ' O×K × 〈π〉; thus U contains 〈πm〉 for
some m. As noted above, the groups 1 + pn form a fundamental system of neighborhoods
about 1, so U contains 1 + pn for all sufficiently large n, and therefore Uπ,n,m ⊆ U for some
m,n ≥ 1. If we now let H := θKπ,n,m/K(U) and consider the fixed field L := KH

π,n,m, we
have N(L×) = U , by local Artin reciprocity, thus U is a norm group as claimed.
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To complete the proof of local class field theory, we need to construct fields Kπ,n and a
homomorphism θπ that satisfy the hypotheses of Theorem 32.1; in particular, our construc-
tion must produce a totally ramified extension Kπ := ∪n≥1Kπ,n such that Kab

π KπK
unr is

independent of π, as is the homomorphism θπ : K× → Gal(Kab
π /K). We will use the theory

of Lubin-Tate formal group laws to do this, following the presentation in [1, §1.2].

Remark 32.2. We should note that the totally ramified fields Kπ do depend on π; there
is no unique maximal totally ramified abelian extension of K. It is only the compositum
Kab
π := KπK

unr that is independent of π. This is directly analogous to the fact that
the decomposition K× ' O×K × 〈π〉 depends on π, in the sense that the isomorphism
x 7→ (x/πv(x), πv(x)) depends on π, even though K× does not.

32.1 Formal groups

Let A be a commutative ring and A[[T ]] the ring of formal power series f(T ) =
∑

n≥0 anT
n

with coefficients in A. We should note that writing elements of A[[T ]] as sums of terms
anTn is purely a notational convenience, we could equivalently view elements of A[[T ]] as
sequences indexed by Z≥n that we add component wise and multiply using convolutions:
(fg)k :=

∑
i+j=k figj . In particular, we should not view elements of A[[T ]] as functions.

In addition to the ring operations, we also have a composition operation f ◦ g defined
whenever the constant term of g is zero (without this restriction the constant term of f ◦ g
would be undefined; we cannot formally sum infinitely many elements of A). This still
make sense when one of f or g is a power series in several variables. For any f ∈ A[[T ]] and
g ∈ A[[X1, . . . , Xr]] both with constant term zero we define

(f ◦ g)(X1, . . . , Xr) := f(g(X1, . . . , Xr)), (g ◦ f)(X1, . . . , Xr) := g(f(X1), . . . , f(Xr)).

We note that the ideal TA[[T ]] generated by T is precisely the set of univariate power series
with constant term 0.

Lemma 32.3. Let A[[T ]] be a formal power series ring over a commutative ring A. The
following hold:

(i) For all f ∈ A[[T ]] and g, h ∈ TA[[T ]] we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.

(ii) For each f ∈ TA[[T ]] there exists g ∈ TA[[T ]] such that f ◦ g = T if and only if the
coefficient of T in f is a unit in A.

(iii) The elements of TA[[T ]] for which the coefficient of T is a unit form a group under
composition, with identity T . In particular, f ◦ g = T if and only if g ◦ f = T .

Proof. For (i) we note that fn ◦ g = (f ◦ g)n for all n ≥ 0; this is clear for n = 0, 1 and for
n > 1 we may inductively compute

fn ◦ g = (ffn−1) ◦ g = (f ◦ g)(fn−1 ◦ g) = (f ◦ g)(f ◦ g)n−1 = (f ◦ g)n

If f = anT
n then f ◦ (g ◦ h) = an(g ◦ h)n = ang

n ◦ h = (f ◦ g) ◦ h, and this extends to
f =

∑
anT

n, since (f1 + f2) ◦ (g ◦ h) = f1 ◦ (g ◦ h) + f2 ◦ (g ◦ h) for all f1, f2 ∈ A[[T ]].
For (ii), let f =

∑
n≥1 fnT

n be given; we will attempt to construct g =
∑

n≥1 gnT
n such

that f ◦ g = T . We must have f1g1 = 1, which is possible if and only if f1 is a unit, which
we now assume. We next require f1g2 + f2g

2
1 = 0, which has a unique solution g2 because
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f1 is a unit. Continuing in this fashion, gn is the unique solution to an equation of the form
f1gn + · · · = 0, and this determines the coefficients of g ∈ A[[T ]] satisfying f ◦ g = T .

For (iii), it follows from (i) that we have a semigroup, it is clear that T is a right
identity, and (ii) implies the existence of right inverses; it follows that we have a group, so
right inverses are also left inverses (and unique) and T is the unique identity.

Definition 32.4. A (one parameter) formal group law over a commutative ring A is a
power series F ∈ A[[X,Y ]] in two variables such that

(i) F (X,Y ) = X + Y +
∑

i+j>1 aijX
iY j ;

(ii) F (X,F (Y,Z)) = F (F (X,Y ), Z).

A homomorphism of formal group laws φ : F → G is a power series φ ∈ TA[[T ]] such that

φ ◦ F = G ◦ φ.

When G = F we call φ an endomorphism of formal group laws. If there exist homomor-
phisms of formal group laws φ : F → G and ψ : G → F such that φ ◦ ψ = ψ ◦ φ = T , then
we call φ (and ψ) isomorphisms of formal group laws and write F ' G, and in the case
G = F we call φ an automorphism of formal group laws.

Lemma 32.5. A homomorphism φ : F → G of formal group laws over a commutative
ring A is an isomorphism if and only if the coefficient of T in φ is a unit in A.

Proof. By Lemma 32.3 part (ii), in order for φ to be an isomorphism the coefficient of T
in φ must be a unit, which we now assume. Let ψ ∈ TA[[T ]] be the inverse of φ under
composition. Then φ ◦ψ = T = ψ ◦φ, we just need to check that ψ ∈ Hom(G,F ). We have
G = G ◦ φ ◦ ψ = φ ◦ F ◦ ψ, so ψ ◦G = ψ ◦ φ ◦ F ◦ ψ = F ◦ ψ as desired.

If φ : F → G and ψ : G → H are homomorphisms of formal group laws, then so is
their composition ψ ◦ φ : F → H, and φ(T ) = T is an automorphism of formal group laws
that acts as the identity with respect to composition. If ϕ : A → B is a homomorphism
of commutative rings and F (X,Y ) = X + Y +

∑
i+j>1 aijX

iY j is a formal group law

over A, then the power series ϕ∗(F ) := X + Y +
∑

i,j≥1 ϕ(aij)X
iY j is a formal group law

over B, and if φ(T ) =
∑

i+j>1 aiT
i is a homomorphism of formal group laws φ : F → G,

then the power series ϕ∗(φ) :=
∑

i≥1 ϕ(ai)Ti is a homomorphism of formal group laws
ϕ∗(φ) : ϕ∗(F )→ ϕ∗(G).

Proposition 32.6. Let F ∈ A[[X,Y ]] be a formal group law. The following hold:

(i) F (X, 0) = X and F (0, Y ) = Y ;

(ii) The is a unique iF ∈ T [A[[T ]] such that F (T, iF (T )) = 0;

If A contains no nonzero torsion elements that are also nilpotent then we also have

(iii) F (X,Y ) = F (Y,X).

Proof. See Problem Set 2.

Formal groups laws that satisfy property (iii) of Proposition 32.6 are commutative; the
proposition implies if A is a reduced ring (an integral domain, for example), then all formal
group laws over A are commutative. This applies in all the rings of interest to us.
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Example 32.7. The additive formal group law Ga defined by Ga(X,Y ) = X + Y and the
multiplicative formal group law Gm defined by

Gm(X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1

are examples of formal group laws over any commutative ring A.

Example 32.8. Let F be a commutative formal group law over a commutative ring A.
For each integer n inductively define the power series [n]F ∈ TA[[T ]] by putting [0]F := 0,
inductively defining [n]F (T ) := F ([n − 1]F (T ), T ) and [−n]F (T ) := iF ([n]F (T )) for n ≥ 1.
One can show that [n]F (T ) is an endomorphism of the formal group law F , and that it is
an automorphism if and only if n is a unit in A×.

If F (X,Y ) is any formal group law on a commutative ring A, the binary operation

φ+F ψ := F (φ(T ), ψ(T ))

makes the set TA[[T ]] into a group: closure and associativity follow from the definition of
a formal group law, the identity element is 0 (by part (i) of Proposition 32.6), and inverses
are given by −F φ := iF ◦ φ, by part (ii) of Proposition 32.6.

Proposition 32.9. Let A be a commutative ring with no nonzero torsion nilpotents and
let F and G be formal group laws over A. The set of all homomorphisms φ : F → G is
an abelian group Hom(F,G) under the operation +G, and the set of all endomorphisms
φ : F → F with the addition operation +F and multiplication given by composition is a (not
necessarily commutative) ring End(F ) with multiplicative identity T and unit group Aut(F )
consisting of all automorphisms of the formal group law F .

Proof. The hypothesis on A implies G(X,Y ) = G(Y,X), by part (iii) of Proposition 32.6,
so +G is commutative. To prove the first statement we only need to show that Hom(F,G)
is closed under +G, since TA[[T ]] is an abelian group under +G. For any φ, ψ ∈ Hom(F,G),

(φ+G ψ)(F (X,Y )) = G(φ(F (X,Y )), ψ(F (X,Y ))) (definition of +G)

= G(G(φ(X), φ(Y )), G(ψ(X), ψ(Y ))) (φ, ψ ∈ Hom(F,G))

= G(φ(X), G(φ(Y ), G(ψ(X), ψ(Y )))) (associativity)

= G(φ(X), G(G(ψ(X), ψ(Y )), φ(Y ))) (commutativity)

= G(G(φ(X), G(ψ(X), ψ(Y ))), φ(Y )) (associativity)

= G(G(G(φ(X), ψ(X)), ψ(Y )), φ(Y )) (associativity)

= G(G(φ(X), ψ(X)), G(ψ(Y ), φ(Y ))) (associativity)

= G(G(φ(X), ψ(X)), G(φ(Y ), ψ(Y ))) (commutativity)

= G((φ+G ψ)(X), (φ+G ψ)(Y )) (definition of +G)

For the second statement, the associativity of composition of power series in TA[[T ]] is
given by Lemma 32.3, and it is clear that T is the identity with respect to composition, so
we just need to check the distributive law. For any φ, ψ, ϕ ∈ End(F ) we have

(φ+F ψ) ◦ ϕ = F (φ(T ), ψ(T ))(ϕ(T )) = F (φ(ϕ(T )), ψ(ϕ(T ))) = (φ ◦ ϕ) +F (ψ ◦ ϕ),

ϕ ◦ (φ+F ψ) = ϕ(F (φ(T, ψ(T )))) = F (ϕ(φ(T )), ϕ(ψ(T ))) = (ϕ ◦ φ) +F (ϕ ◦ ψ),

where we used the fact that ϕ ∈ End(F ) to get the second equality of the second line. The
fact that Aut(F ) is the unit group of End(F ) is immediate.
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32.2 Formal group laws over complete DVRs

Let us now specialize to the case where the A is a complete DVR. Let m be the maximal
ideal of A. If F (X,Y ) is a formal group law over A, for any x, y ∈ m the series F (x, y)
converges to an element of m; indeed, if we define Fn(X,Y ) := F (X,Y ) mod (Xn, Y n), the
sequence (Fn(x, y))n is Cauchy, since v(Fm(x, y) − Fn(x, y)) ≥ N for all m,n ≥ N , and
therefore converges in our complete ring A, and it converges to an element with positive
valuation (hence an element of m), since the constant term of F (X,Y ) is zero.

The binary operation
x+F y := F (x, y)

makes the set m into an abelian group with identity element 0 and inverse −F x := iF (x) via
parts (i) and (ii) of Proposition 32.6; note that associativity is implied by the definition of a
formal group law and commutativity is given by part (iii) of Proposition 32.6, since A is an
integral domain. The group F (m) := (m,+F ) is the group associated to F/A. Note that if
x, y lie in an ideal mn, then so does F (x, y), thus we have a filtration of F (m) by subgroups
F (mn) := (mn,+F ). The group F (m) is also a topological group (in the subspace topology
from A), since the group operation is defined by the power series F , which is continuous as
a map m×m→ m, as is the map m→ m defined by the power series iF .

If ϕ : A→ B is a homomorphism of complete DVRs (as topological rings), then we have
an induced homomorphism F (ϕ) : F (mA) → ϕ∗(F )(mB) of topological groups, where mA

and mB are the maximal ideals of A and B, respectively. This applies in particular when
ϕ is an inclusion map, so we can view a formal group law over A as a functor from the
category of complete DVRs extending A to the category of topological abelian groups.

If φ : F → G is a homomorphism of formal group laws over A, then φ(x) converges to
an element of m for all x ∈ m (since φ has constant term zero), and we have an induced
group homomorphism

φ : F (m)→ G(m)

a 7→ φ(a).

If ϕ : A→ B is any ring homomorphism, we have a commutative diagram

F (mA) F (mB)

G(mA) G(mB).

←→ φ

←→F (ϕ)

←→ ϕ∗(φ)

←→G(ϕ)

We can thus view φ as a morphism of functors (a natural transformation).

Example 32.10. Let A be a complete DVR with maximal ideal m and residue field k :=
A/m. Then Ga(m) = m ⊆ A and we have an exact sequence of topological groups

0 −→ Ga(m) −→ A −→ k −→ 0.

We have Gm(m) ' 1 + m ⊆ A× and an exact sequence of topological groups

1 −→ Gm(m)
a7→1+a−→ A× −→ k× −→ 1.

The endomorphisms [n]Ga(T ) = nT and [n]Gm(T ) = (1 + T )n − 1 corresponds to the
multiplication-by-n and n-power maps on m and 1 + m, respectively.
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32.3 Lubin-Tate group laws

We now specialize further and assume that A is a complete DVR with finite residue field;
this is equivalent to assuming that A is the valuation ring of a nonarchimedean local field,
by Proposition 9.6.

Definition 32.11. Let A be a complete DVR with finite residue field of cardinality q. For
each uniformizer π of A we define the set

Φ(π) := {φ ∈ TA[[T ]] : φ(T ) ≡ πT mod T 2 and φ(T ) ≡ T q mod π}.

One should think of elements of Φ(π) as “Frobenius endomorphisms”; we will show that
for each φ ∈ Φ(π) there is a unique formal group law Fφ(X,Y ) such that φ ∈ End(Fφ). If
ϕ : A → A/(π) is the natural map from A to its residue field, then ϕ∗(φ) is the q-power
Frobenius map x 7→ xq.

For a power series ring R over a commutative ring A (in any number of variables), let
Rn denote the A-submodule consisting of homogeneous polynomials of degree n; we have an
obvious A-module isomorphism R '

∏
nRn given by collecting terms of the same degree.

We define the A-submodules R≤n :=
∏
i≤nRi and R>n :=

∏
i>nRi; the latter is simply the

R-ideal generated by Rn+1.

Proposition 32.12. Let A be a complete DVR with finite residue field of cardinality q and
uniformizer π, let φ, ψ ∈ Φ(π), let r be a positive integer, and let R := A[[X1, . . . , Xr]]. For
every F1 ∈ R1 there is a unique F ∈ R such that F ≡ F1 mod R>1 and φ ◦ F = F ◦ ψ.

Proof. We will show by induction that there is a unique Fn ∈ R≤n for which we have (i)
Fn ≡ F1 mod R>1, (ii) φ ◦ Fn ≡ Fn ◦ ψ mod R>n, and (iii) Fn ≡ Fn−1 mod R>n−1 if n > 1.
We may then take F := limn→∞ Fn and the proposition follows.

For n = 1 we have φ ◦ F1 ≡ πF1 ≡ F1 ◦ ψ mod R>1, so (ii) holds, (i) is given, and (iii)
is vacuous; it is clear that F1 is the unique solution for n = 1. For n > 1 the inductive
hypothesis implies that there is a unique homogeneous polynomial Pn+1 ∈ Rn+1 such that

φ ◦ Fn − Fn ◦ ψ ≡ Pn+1 mod R>n+1.

Since φ, ψ ∈ Φ(π) we have

φ ◦ Fn − Fn ◦ ψ ≡ Fn(X1, . . . , Xr)
q − Fn(Xq

1 , . . . , X
q
r ) ≡ 0 mod π

since x 7→ xq is an automorphism modulo π, so π divides φ◦Fn−Fn ◦ψ and therefore Pn+1.
We also note that πn − 1 has valuation 0 and is thus invertible in A, so we may define

Fn+1 := Fn +
Pn+1

πn+1 − π
∈ R≤n+1.

Now Pn+1 ≡ 0 mod R>n, so Fn+1 ≡ Fn mod R>n, thus (iii) and (i) hold for n+ 1. We have

φ ◦ Pn+1 − ψ ◦ Pn+1 ≡ πPn+1(X1, . . . , Xr)− Pn+1(πX1, · · · , πXr) mod R>n+1

≡ (π − πn+1)Pn+1 mod R>n+1,

since Pn+1 is homogeneous of degree n+ 1, and therefore

φ ◦ Fn+1 − Fn+1 ◦ ψ ≡ φ ◦ Fn +
φ ◦ Pn+1

πn+1 − π
− Fn ◦ ψ −

Pn+1 ◦ ψ
πn+1 − π

mod R>n+1

≡ Pn+1 +
φ ◦ Pn+1 − Pn+1 ◦ ψ

πn+1 − π
mod R>n+1

≡ 0 mod Rn+1,

so (ii) holds as well, and the uniqueness of Pn+1 implies the uniqueness of Fn+1.
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Proposition 32.13. Let A be a complete DVR with finite residue field and uniformizer π.
For every φ ∈ Φ(π) there is a unique formal group law Fφ over A such that φ ∈ End(Fφ).

Proof. By Proposition 32.12, there is a unique Fφ ∈ R := A[[X,Y ]] satisfying the constraints
Fφ ≡ X + Y mod R>1 and φ(Fφ(X,Y )) = Fφ(φ(X), φ(Y )) which must hold for any formal
group law F over A for which φ ∈ End(F ). We only need to check that Fφ is actually a
formal group law: we also require F (X,F (Y, Z)) = F (F (X,Y ), Z).

The power series G(X,Y, Z) := Fφ(X,Fφ(Y, Z) and G′(X,Y, Z) := Fφ(Fφ(X,Y ), Z)
satisfy G ≡ X + Y + Z ≡ G′ mod R>1 and

φ ◦G = φ(Fφ(X,Fφ(Y,Z))) = Fφ(φ(X), Fφ(φ(Y ), φ(Z))) = G ◦ φ
φ ◦G′ = φ(Fφ(Fφ(X,Y ), Z)) = Fφ(Fφ(φ(X), φ(Y )), φ(Z)) = G′ ◦ φ

Proposition 32.12 implies that there is a unique G ∈ A[[X,Y, Z]] congruent to X + Y + Z
modulo R>1 that satisfies φ(G(X,Y, Z)) = G(φ(X), φ(Y ), φ(Z)), so we must have G′ = G
and therefore F (X,F (Y, Z)) = F (F (X,Y ), Z) as desired.

Formal group laws of the form Fφ given by Proposition 32.13, where φ ∈ Φ(π) for some
uniformizer π of a complete DVR A with finite residue field are known as Lubin-Tate formal
group laws (for the uniformizer π).

Definition 32.14. Let A be a complete DVR with finite residue field and uniformizer
π. For φ, ψ ∈ Φ(π) and a ∈ A, let [a]φ,ψ be the unique element of TA[[T ]] that satisfies
[a]φ,ψ ≡ aT mod T 2 and φ◦ [a]φ,ψ = [a]φ,ψ ◦ψ given by Proposition 32.12. Let [a]φ := [a]φ,φ.

Proposition 32.15. Let A be a complete DVR with finite residue field and uniformizer π.
For all φ, ψ ∈ Φ(π) the following hold:

(i) [a]φ,ψ ∈ Hom(Fψ, Fφ) for all a ∈ A;

(ii) [1]φ,ψ gives a canonical isomorphism Fψ
∼−→ Fφ.

Here Fφ and Fψ are the Lubin-Tate formal group laws for the uniformizer π corresponding
to φ and ψ, respectively.

Proof. (i) Let ϕ := [a]φ,ψ and R := A[[X,Y ]]. We have ϕ ≡ aT mod T 2, so ϕ ∈ TA[[T ]],
and

ϕ ◦ Fψ ≡ aX + aY ≡ Fφ ◦ ϕ mod R>1.

We have φ ◦ ϕ = ϕ ◦ ψ with φ ∈ End(Fφ) and ψ ∈ End(Fψ), so

φ ◦ (ϕ ◦ Fψ) = (φ ◦ ϕ) ◦ Fψ = (ϕ ◦ ψ) ◦ Fψ = ϕ ◦ (ψ ◦ Fψ) = ϕ ◦ (Fψ ◦ ψ) = (ϕ ◦ Fψ) ◦ ψ
φ ◦ (Fφ ◦ ϕ) = (φ ◦ Fφ) ◦ ϕ = (Fφ ◦ φ) ◦ ϕ = Fφ ◦ (φ ◦ ϕ) = Fφ ◦ (ϕ ◦ ψ) = (Fφ ◦ ϕ) ◦ ψ.

Proposition 32.12 now implies ϕ ◦ Fψ = Fφ ◦ ϕ, so [a]φ,ψ = ϕ ∈ Hom(Fψ, Fφ).
(ii) By (i) and Lemma 32.5, [1]φ,ψ is an isomorphism Fψ → Fφ, and it is clearly canonical

(since 1 is).

Proposition 32.16. Let A be a complete DVR with finite residue field and uniformizer π.
For each φ ∈ Φ(π) the map a 7→ [a]φ is an injective ring homomorphism A ↪→ End(Fφ) that
sends π to φ and A into the centralizer of φ.
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Proof. It follows from Proposition 32.15 that [a]φ ∈ End(Fφ) for all a ∈ A; the map a 7→ [a]φ
is clearly injective, since [a]φ ≡ aT mod T 2. It follows from Proposition 32.12 that every
ϕ ∈ End(Fφ) for which φ ◦ ϕ = ϕ ◦ φ is uniquely determined by its reduction modulo T 2.
This applies in particular to every ϕ of the form [a]φ, since the condition φ ◦ [a]φ = [a]φ ◦ φ
was used to define [a]φ. For all a, b ∈ A we have

[a]φ +Fφ [b]φ ≡ aT + bT ≡ [a+ b]φ mod T 2

[a]φ ◦ [b]φ ≡ abT ≡ [ab]φ mod T 2

and therefore [a]φ +Fφ [b]φ = [a+ b]φ and [a]φ ◦ [b]φ = [ab]φ. We also have [1]φ ≡ T mod T 2,
and φ ◦ T = φ ◦ T , so we must have [1]φ = T . It follows that the map a 7→ [a]φ is a ring
homomorphism. Finally, [π]φ ≡ πT ≡ φ mod T 2, and φ ◦ φ = φ ◦ φ, so [π]φ = φ, and [a]φ
commutes with φ (both by construction and because A is commutative) for all a ∈ A.

It follows from Proposition 32.16 that if A is complete DVR with finite residue field
and maximal ideal m, then for any choice of uniformizer π and any φ ∈ Φ(π), the group
Fφ(m) = (m,+Fφ) has an A-module structure defined by ax := [a]φ(x), for any a ∈ A
and x ∈ m, in which π corresponds to the endomorphism φ whose reduction modulo π is
the Frobenius map x 7→ xq, where q := #(A/m). Proposition 32.15 implies that up to a
canonical isomorphism, the A-module Fφ(m) depends only on π, not on the choice of φ.

If B/A is a finite extension of complete DVRs with finite residue fields, and mB is the
maximal ideal of B, then Fφ(mB) is also an A-module, via the embedding A ↪→ End(Fφ).
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