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31 Proof of local Artin reciprocity

Let K be a nonarchimedean field with separable closure Ksep. In the previous lecture we
defined the invariant map

invK : H2(Gal(Ksep/K),Ksep×)
∼−→ Q/Z,

which for every finite Galois extension L/K induces an isomorphism

invL/K : H2(Gal(L/K), L×)
∼−→ 1

[L:K]Z/Z

via composition with the inflation map Inf : H2(Gal(L/K), L×)→ H2(Gal(Ksep/K),Ksep×),
and we showed that invK is canonical and natural in K; see Theorem 30.25

In this lecture we will use the invariant map to define the local Artin homomorphism
and prove the local version of Artin reciprocity.

31.1 The fundamental class

The invariant map is that it gives us a canonical generator for H2(Gal(L/K), L×) known
as the fundamental class.

Definition 31.1. Let L/K be a finite extension of nonarchimedean local fields with Galois
group G := Gal(L/K). The fundamental class uL/K ∈ H2(G,L×) is the inverse image of

1
[L:K] under the invariant map invL/K : H2(G,L×)

∼−→ 1
[L:K]Z/Z.

A key feature of the fundamental class is that is natural in both L and K, that is,
it commutes with the restriction and corestriction maps (see Definition 29.16) that relate
cohomology groups of Galois groups in towers of field extensions.

Lemma 31.2. Let K ⊆ E ⊆ L be a tower of finite Galois extensions of nonarchimedean
local fields with restriction map Res: H2(Gal(L/K), L×) → H2(Gal(L/E), L×) and core-
striction map CoRes: H2(Gal(L/E), L×)→ H2(Gal(L/K), L×). Then uE/K = [L :E]uL/K ,
Res(uL/K) = uL/E, and CoRes(uL/E) = [E :K]uL/K .

Proof. The first equality follows from [L :E] 1
[L:K] = 1

[E:K] . From Theorem 30.25 we have a
commutative diagram

H2(Gal(L/K), L×) H2(Gal(Ksep/K,Ksep×) Q/Z

H2(Gal(L/E), L×) H2(Gal(Ksep/E,Ksep×) Q/Z

←→Inf

←→ Res

←→invK

←→ Res ←→ [E:K]

←→Inf ←→invE

that implies Res(uL/K) = uL/E , since 1
[L:E] = [E :K] 1

[L:K] . We then have

CoRes(uL/E) = CoRes(Res(uL/K)) = [E :K]uL/K ,

by Proposition 29.21.
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We now observe that the G-module L× satisfies the hypotheses of Tate’s Theorem
(Theorem 29.26): for all subgroups H ≤ G we have H1(H,L×) = 0 and H2(H,L×) is cyclic
of order #H (to see this, apply Corollaries 30.11 and 30.24 to the extension L/LH). If we
take the fundamental class uL/K as our generator for H2(G,L×), Tate’s theorem gives us

canonical isomorphisms Ĥn(G,Z)
∼−→ Ĥn+2(G,L×) for all n ∈ Z.

In particular, for n = −2 we have

Ĥ−2(G,Z) ' Ĥ0(G,L×) = (L×)G/(NGL
×) = K×/N(L×),

where N denotes the field norm NL/K , which coincides with the action of NG =
∑

g∈G g.

Recall that Ĥ−2(G,Z) is, by definition, the homology group H1(G,Z). The following
theorem allows us to identify H1(G,Z) with the maximal abelian quotient of G, which we
recall is the quotient of G by its commutator subgroup

[G,G] := {ghg−1h−1 : g, h ∈ G}.

Theorem 31.3. For any group G, we have a canonical isomorphism Gab ∼−→ H1(G,Z),
where the G-action on Z is trivial and Gab is the maximal abelian quotient of G.

Proof. Recall that we have an exact sequence of G-modules

0 −→ IG
ι−→ Z[G]

ε−→ Z −→ 0,

where ε is the augmentation map
∑

g ngg 7→
∑

g ng and IG := ker ε is the augmentation

ideal. The G-module Z[G] = Z[G] ⊗Z Z = IndG(Z) is induced, hence Hn(G,Z[G]) = 0 for
all n > 0, by Lemma 23.26. In particular H1(G,Z[G]) = 0, so the long exact sequence in
homology given by Theorem 23.21 ends with

0 −→ H1(G,Z)
δ0−→ H0(G, IG)

ι0−→ H0(G,Z[G])
ε0−→ H0(G,Z) −→ 0

where δ0 is the connecting homomorphism given by the snake lemma. Taking coinvariants,
we have

H0(G, IG) = IG/I
2
G, H0(G,Z[G]) = Z[G]/IGZ[G] ' Z, H0(G,Z) = Z/IGZ ' Z,

so ε0 is a surjective homomorphism Z→ Z, hence an isomorphism, which implies that ι0 is
the zero map and δ0 : H1(G,Z)→ IG/I

2
G is an isomorphism.

We now show that IG/I
2
G is (canonically) isomorphic to Gab. Consider the map

ψ : G→ IG/I
2
G

g 7→ (g − 1) + I2
G.

It is a homomorphism, since gh− 1 = (g − 1)(h− 1) + (g − 1) + (h− 1) for g, h ∈ G and

ψ(gh) = (gh− 1) + I2
G = (g − 1) + (h− 1) + I2

G = ψ(g) + ψ(h)

The group IG/I
2
G is commutative, so [G,G] ⊆ kerψ, and ψ is surjective, since IG is generated

by {g − 1 : g ∈ G}. It follows that ψ induces a homomorphism ψ̄ : Gab → IG/I
2
G.

Now let π : G� G/[G,G] = Gab be the quotient map and consider the map

φ : IG → Gab

(g − 1) 7→ π(g).

18.786 Spring 2018, Lecture #31, Page 2

http://math.mit.edu/classes/18.786/LectureNotes29.pdf#theorem.2.26
http://math.mit.edu/classes/18.786/LectureNotes30.pdf#theorem.2.11
http://math.mit.edu/classes/18.786/LectureNotes30.pdf#theorem.2.24
http://math.mit.edu/classes/18.785/2017fa/LectureNotes23.pdf#theorem.2.26
http://math.mit.edu/classes/18.785/2017fa/LectureNotes23.pdf#theorem.2.21


which is clearly a surjective group homomorphism (note that IG is the free Z-module gen-
erated by {g − 1 : g ∈ G}). We have

φ((g − 1)(h− 1)) = φ((gh− 1)− (g − 1)− (h− 1)) = π(gh)π(g)−1π(h)−1 = 1,

since Gab is abelian, so I2
G ⊆ kerφ and φ induces a homomorphism φ̄ : IG/I

2
G → Gab. It

is clear that ψ̄ ◦ φ̄ and φ̄ ◦ ψ̄ are both identity maps, so ψ̄ and φ̄ are inverse isomorphisms
and IG/I

2
G ' Gab as claimed. This isomorphism is canonical, since we made no arbitrary

choices when defining ψ̄ and φ̄.

Definition 31.4. Let L/K be a finite Galois extension of nonarchimedean local fields with
G := Gal(L/K). The local Artin map θL/K : K×/N(L×)

∼−→ Gab is the inverse of the
isomorphisms

Gab ' H1(G,Z) = Ĥ−2(G,Z)
ΦL/K−→ Ĥ0(G,L×) = K×/N(L×),

where ΦL/K := ΦuL/K
is the isomorphism given by Tate’s Theorem (Theorem 29.26) when

we take the fundamental class uL/K as our generator for H2(G,L×). We may also view

θL/K as a surjective homomorphism K× → Gab with kernel N(L×).

Lemma 31.5. Let K ⊆ E ⊆ L be a tower of finite Galois extensions of nonarchimedean
local fields. The following diagrams commute:

E× Gal(L/E)ab

K× Gal(L/K)ab
←→

θL/E

←→ NE/K ←→
←→

θL/K

K× Gal(L/K)ab

K× Gal(E/K)ab
←→

θL/K

⇐⇐ ←� σ 7→σ|E

←→
θE/K

Proof. Let G := Gal(L/K) and H := Gal(L/E). The vertical maps in the first dia-
gram are corestriction maps induced by the inclusion H ⊆ G. The left vertical map is
CoRes: H0(H,L×) → H0(G,L×), defined by a 7→ NG/Ha (see Definition 29.18), which is
equivalent to the norm map NE/K : E× → K×. The right vertical map is the natural core-
striction map in homology CoRes: H1(H,Z)→ H1(G,Z), which is equivalent to the natural
map H/[H,H] → G/[G,G] that sends h[H,H] to h[G,G] (via the canonical isomorphism
•ab ' H1(•,Z) given by Theorem 31.3). From Lemma 31.2 and the compatibility of ΦL/K

with corestriction given by Theorem 29.26 we have

CoRes ◦ΦuL/E
= CoRes ◦ΦRes(uL/K) = ΦuL/K

◦ CoRes,

and the commutativity of the first diagram follows, since θL/E = Φ−1
L/E and θL/K = Φ−1

L/K .

You will prove the commutativity of the second diagram on the Problem Set.1

Definition 31.6. Let K be a nonarchimedean local field. The local Artin map θK is the
continuous homomorphism θK : K× → Gal(Kab/K) defined by the compatible system of
homomorphisms {θL/K}, where L ranges over finite abelian extensions of K; it is uniquely
determined by the property θK(a)|L = θL/K(a) for all a ∈ K× and finite abelian L/K.

1Alternatively, one can give a more direct proof by noting that the vertical maps in the second diagram
are residuacity and deflation maps (respectively), and then appeal to [1, Thm. 1] (or prove just the special
case n = −2 needed in this instance); we also refer the interested reader to the appendix of [2] which
describes the residuacity/deflation maps in more detail.
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Recall that the Galois group Gal(L/K) of a finite unramified extension of nonarchimedean
local fields has a canonical generator FrobL/K corresponding to the Frobenius automorphism
of the residue field extension; we used this in our definition of the invariant map for unram-
ified extensions. The (arithmetic) Frobenius element FrobK is the corresponding element of
Gal(Kunr/K) = lim←−L Gal(L/K), where L ranges over finite unramified extensions of K; it
is determined by the property FrobK |L = FrobL/K for all finite unramified extensions L/K.

Theorem 31.7. Let K be a nonarchimedean local field and let θK : K× → Gal(Kab/K) be
the local Artin map. Then θK(π)|Kunr = FrobK for every uniformizer π of K.

Proof. Let π be a uniformizer for K. It suffices to show that θL/K(π) = FrobL/K for every
finite unramified extension L/K. So let L/K be such an extension, let G := Gal(L/K),
and to simplify the notation, put σ := FrobL/K and n := [L :K]. We have Gab = G = 〈σ〉,
and it follows from the definition of θL/K that we need to show that πN(L×) is the image
of σ under the composition of isomorphisms

G = Gab ψ0−→ H1(G,Z) = Ĥ−2(G,Z)
ΦL/K−→ Ĥ0(G,L×) = K×/N(L×), (1)

where ψ0 is the isomorphism given by Theorem 31.3 and ΦL/K := ΦuL/K
is the isomorphism

ΦL/K : Ĥ−2(G,Z) → Ĥ0(G,L×) given by Theorem 29.26 (Tate’s theorem) when we take

the fundamental class uL/K = inv−1
L/K( 1

n) as our generator for H2(G,L×).
From the proof of Theorem 31.3 we see that ψ0 is the composition of the inverse of

the connecting homomorphism δ0 : H1(G,Z)
∼−→ H0(G, IG) = IG/I

2
G induced by the exact

sequence 0 → IG → Z[G] → Z → 0 with the isomorphism ψ : Gab ∼−→ IG/I
2
G defined by

σ 7→ (σ − 1) + I2
G, where IG is the augmentation ideal.

From the proof of Theorem 29.26, we see that ΦL/K is the composition of the con-

necting homomorphism δ̂0 : Ĥ−2(G,Z)
∼−→ Ĥ−1(G, IG) and the connecting homomorphism

δ̂L/K : Ĥ−1(G, IG)
∼−→ Ĥ0(G,L×) induced by the short exact sequence of G-modules

0 −→ L×
ι−→ L×(ϕ)

φ−→ IG −→ 0. (2)

Here ϕ : G2 → L× is a 2-cocycle representing the fundamental class uL/K ∈ H2(G,L×), and

L×(ϕ) := L× ⊕
n−1⊕
i=1

Zxσi ,

where the xσi are formal variables, and the G-action on L×(ϕ) is defined by

σixσj := xσi+j − xσi + ϕ(σi, σj), (3)

with x1 := ϕ(1, 1) ∈ L×. The map φ : L×(ϕ) → IG in the exact sequence (2) is defined by
a 7→ 0 for a ∈ L× and xi 7→ σi − 1 for 1 ≤ i < n.

We now observe that

Ĥ−1(G, IG) = Ĥ0(G, IG) = H0(G, IG) = IG/I
2
G,

since NGIG = 0, so δ̂0 = δ0 and therefore

ΦL/K ◦ ψ0 = (δ̂L/K ◦ δ̂0) ◦ (δ−1
0 ◦ ψ) = δ̂L/K ◦ ψ.
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As noted above, we have ψ(σ) = [σ − 1] := (σ − 1) + I2
G, so we only need to show that

δ̂L/K([σ − 1]) = [π], where we now view δ̂L/K as an isomorphism IG/I
2
G
∼−→ K×/N(L×).

Recall from Theorem 23.32 that δ̂L/K : Ĥ0(G, IG) → Ĥ0(G,L×) is defined by applying
the snake lemma to the diagram

L×G L×(ϕ)G (IG)G 0

0 (L×)G (L×(ϕ))G (IG)G

← →

←→ N̂G

←→φ̂

←→ N̂G

←→

←→ N̂G

←→ ←→ι̂ ←→

and we want to compute the element of K× = (L×)G obtained by tracing [σ − 1] ∈ (IG)G
along the highlighted path. The pre-image of [σ − 1] in L×(ϕ)G is, by the definition of φ,
the class [xσ]. We thus want to compute

θ−1
L/K(σ) = (ΦL/K ◦ ψ0)(σ) = (δ̂L/K ◦ ψ)(σ) = N̂G[xσ] = NGxσ ∈ K×.

Applying the group action on L×(ϕ) defined in (3), we have

NGxσ =

n−1∑
i=0

σixσ =

n−1∑
i=0

(
xσi+1 − xσi + ϕ(σi, σ)

)
=

n−1∑
i=0

ϕ(σi, σ).

To compute the sum on the right (a product in the multiplicative group L×) we need to
pick a 2-cocycle ϕ : G2 → L× that represents the fundamental class uL/K = inv−1

L/K( 1
n); we

will get the same answer modulo N(L×), no matter which ϕ we pick.
Recall from Definition 30.20 that invL/K is defined by the composition

H2(G,L×)
v−→ H2(G,Z)

δ−1

−→ H1(G,Q/Z)
f 7→f(σ)−→ Q/Z,

where v is induced by the discrete valuation on L×. The connecting homomorphism

δ : H1(G,Q/Z)
∼−→ H2(G,Z),

is induced by the short exact sequence of trivial G-modules 0 → Z → Q → Q/Z → 0. We
have H1(G,Q/Z) = Hom(G,Q/Z), since Q/Z is a trivial G-module (so every crossed homo-
morphism is a homomorphism and every principal crossed homomorphism is trivial), and
since invL/K(uL/K) = 1

n , the image of uL/K in Hom(G,Q/Z) must be the homomorphism

f : G→ Q/Z defined by σ 7→ 1
n .

To compute δ(f) we need to again trace through a snake lemma diagram, which in this
case consists entirely of trivial G-modules.

C1(G,Z)
B1(G,Z)

C1(G,Q)
B1(G,Q)

C1(G,Q/Z)
B1(G,Q/Z)

0

0 Z2(G,Z) Z2(G,Q) Z2(G,Q/Z)

←→

←→ d1

← →

←→ d1

←→

←→ d1

←→ ←→ ←→

where Cn(G, •), Bn(G, •), Zn(G, •) denote n-cochains, n-coboundaries, n-cocycles. It fol-
lows that δ(f) ∈ H2(G,Z) is represented by the coboundary of a 1-cocycle f̂ : G → Q
(modulo B1(G,Q)) that agrees with f modulo Z. So let f̂ : G→ Q be the homomorphism
defined by σ 7→ 1

n (as above, for trivial G-modules homomorphisms are the same thing
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as 1-cocycles). Applying the coboundary formula and remembering that the G-action is
trivial, we find that δ(f) is represented by the 2-cocycle

d1(f̂)(σi, σj) = σif̂(σj)− f̂(σiσj) + f̂(σi) = i+j
n −

i+j mod n
n =

{
0 if i+ j < n,

1 if i+ j ≥ n.

The map v : H2(G,L×) → H2(G,Z) simply sends the class represented by a 2-cocycle
G2 → L× to the class of its composition with the discrete valuation v. It follows that

ϕ(σi, σj) :=

{
1 if i+ j < n,

π if i+ j ≥ n,

represents the fundamental class uL/K ∈ H2(G,L×). We can now compute

NGxσ =

n−1∏
i=0

ϕ(σi, σ) = 1 · 1 · · · 1 · π = π

and the theorem follows (note that the abelian group L× is multiplicative, so the expression
for NGxσ in the G-module L×(ϕ) written above as a sum is really a product in L×).

We have now proved the local Artin reciprocity theorem stated in Theorem 29.1: the
existence of a continuous homomorphism with the required properties follows immediately
from Definition 31.6 and Theorem 31.7, and we proved uniqueness in Proposition 27.12.

31.2 The norm limitation theorem

We conclude with a theorem that shows we cannot hope to extend the local Artin reciprocity
theorem to nonabelian extensions, because in general, finite Galois extensions L/K of a local
field K are not determined by norm groups K×/N(L×). Indeed, the norm group depends
only on the maximal abelian subextension (even when L/K is not Galois).

Theorem 31.8 (Norm Limitation). Let L/K be a finite extension of nonarchimedean
local fields and let E/K be the maximal abelian subextension. Then N(L×) = N(E×),
where N denotes the norm map down to K.

Proof. By transitivity of the norm map, NL/K = NE/K ◦ NL/E , so N(L×) ⊆ N(E×), we
just need to show that equality holds. If L/K is Galois then the isomorphisms given by the
local Artin maps

θE/K : K×/N(E×)
∼−→ Gal(E/K)ab = Gal(E/K),

θL/K : K×/N(L×)
∼−→ Gal(L/K)ab = Gal(E/K),

imply N(L×) = N(E×).
For the general case, let M/K be a finite Galois extension of K containing L, and put

G := Gal(M/K) and H := Gal(M/L). Then M [G,G] is the maximal abelian subextension
of M/K, and

E = M [G,G] ∩ L = M [G,G] ∩MH = M [G,G]H ,

so Gal(M/E) = [G,G]H. Noting that [H,H] = H ∩ [G,G], we have a diagram
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L× Hab H/[H,H]

K× Gab G/[G,G]

K× Gal(E/K) G/([G,G]H),

← �
θM/L

←→ N ←
↩

→ ι

⇐ ⇐
←
↩

→

← �
θM/K

⇐⇐ ←� π

⇐ ⇐

←�

←�
θE/K ⇐⇐

where commutativity of the two squares on the left is given by Lemma 31.5 and the middle
column is part of an exact sequence

1 −→ Hab ι−→ Gab π−→ Gal(E/K) −→ 1

Consider any a ∈ N(E×). Then a ∈ ker θE/K , so θM/K(a) ∈ kerπ = im ι. The map θM/L is
surjective, so there is a b ∈ L× such that

θM/K(a) = ι(θM/L(b)) = θM/K(N(b)),

and therefore a/N(b) ∈ ker θM/K = N(M×). Now let c ∈ M× satisfy N(c) = a/N(b) and
observe that a = N(b)N(c) = N(bNM/L(c)) ∈ N(L×) as desired.

References

[1] K. Horie and M. Horie, Deflation and residuation for class formation, J. Algebra, 2001.

[2] T. P. Pollio and A. S. Rapinchuk, The multinorm principle for linearly disjoint Galois
extensions, J. Number Theory 133 (2013), 802–821.

18.786 Spring 2018, Lecture #31, Page 7

https://doi.org/10.1006/jabr.2001.8938
https://doi.org/10.1016/j.jnt.2012.07.014
https://doi.org/10.1016/j.jnt.2012.07.014

	
	Proof of local Artin reciprocity
	The fundamental class
	The norm limitation theorem


