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30 Galois cohomology and the invariant map for local fields

In order to complete our cohomological construction of the local Artin homomorphism we
need to refine our notion of cohomology for profinite groups, for two reasons. First, we need
to account for the topology, which we have already seen is critical to understanding Galois
groups of infinite extensions; recall that the main theorem of Galois theory holds only when
we restrict our attention to closed subgroups, see Theorem 26.22. Second, we want to be
able to apply results that we have so far proved only for finite groups to profinite groups
(by taking appropriate limits).

30.1 Cohomology of profinite groups

Definition 30.1. Let G be a topological group. A topological G-module A is an abelian
topological group on which G acts continuously. In other words, the map G×A→ A defined
by (g, a) 7→ ga is continuous. A discrete G-module A is a topological G-module whose
topology is discrete. A morphism of topological G-modules is a morphism of topological
abelian groups compatible with the G-action. For discrete G-modules this is the same thing
as a morphism of G-modules.

By convention, if we refer to a G-module A as a discrete G-module then we are endowing
it with the discrete topology (whether it already has a topology or not).

Example 30.2. Let G be a topological group. Every trivial G-module is a discrete G-
module, and if G is discrete, every G-module is a discrete G-module. The C×-module C
(the action is multiplication) is not a discrete C×-module, because {1} ⊆ C× is not open.

There are several inequivalent ways to define cohomology for topological G-modules,
but in the case of interest to us, where G is a profinite group and A is a discrete G-module,
the natural choice is continuous cohomology. We consider the cochain complex consisting of
continuous cochains, functions f : Gn → A that are continuous with respect to the product
topology on Gn and the topology on A (as usual, these need not be group homomorphisms),
and we let Cn(G,A) denote the the set of all continuous n-cochains, which is an abelian
group under addition (because addition in A is continuous). If G has the discrete topology
then continuous cochains are the same as cochains.

The coboundary maps dn : Cn(G,A) → Cn+1(G,A) are defined as before (see Defi-
nition 23.3); coboundaries of continuous functions are necessarily continuous because the
definition of dn uses only addition and the G-action on A, both of which are continuous
operations. Cohomology groups Hn(G,A) is then defined as (continuous) cocycles modulo
coboundaries as usual (see Definition 23.4). We note that H0(G,A) = AG as with usual
group cohomology, because constant functions are always continuous, but higher cohomol-
ogy groups may differ.

If α : A→ B is a morphism of topological G-modules, the map f 7→ α ◦ f induces maps
αn : Cn(G,A)→ Cn(G,B) on continuous cochains (we are composing continuous maps. It
follows that Lemma 23.6 still applies: the maps αn commute with the coboundary maps,
hence carry cocycles to cocycles and coboundaries to coboundaries, and thus induce ho-
momorphisms αn : Hn(G,A)→ Hn(G,B) in cohomology. We thus have functors Hn(G, •)
from the category of topological G-modules to the category of abelian groups.

Remark 30.3. Many authors use the notation Hn
c (G,A) or Hn

cts(G,A) to emphasize that
continuous cohomology is being used (as opposed to ordinary group cohomology or other
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types of cohomology for topological groups). As we will only be interested in the case
where G is profinite and A is a discrete G-module, in which case it always makes sense to
use continuous cohomology, so we will not make this distinction. To see why one might not
want to use continuous cohomology in other settings, note that if G is connected and A is a
discrete G-module, then every continuous cochain is a constant function and all cohomology
groups are trivial. Note that profinite groups lie at the opposite extreme, since they are
totally disconnected (see Theorem 26.17).

Lemma 30.4. Let G be a compact group and let A be a G-module. The following are
equivalent:

(i) A is a discrete G-module;

(ii) Every stabilizer Ga := {g ∈ G : ga = a} is open;

(iii) A =
⋃
N A

N , where N ranges over normal open subgroups of G.

Proof. Let π : G × A → A be the map (g, a) 7→ ga. (i) ⇒ (ii): for all a ∈ A we have
π−1(a)∩ (G×{a})) = Ga×{a} open in G×A, so Ga open in G. (ii) ⇒ (iii): if Ga is open
it has finite index (since G is compact) and only finitely many conjugates; the intersection
of these conjugates is a normal open subgroup N for which a ∈ AN . (iii) ⇒ (i): for each
a ∈ A we have a ∈ AN for some open N , and Ng × {b} ⊆ π−1(a) is open for every b in the
G-orbit of a; every (g, b) ∈ π−1(a) lies in such a set, so π−1(a) is a union of open sets.

Remark 30.5. The equivalence of (i) and (ii) in Lemma 30.4 does not require compactness.

Lemma 30.6. Let G be a topological group and let

0 −→ A
α−→ B

β−→ C −→ 0.

be an exact sequence of discrete G-modules. Then for every n ≥ 0 we have a corresponding
exact sequence of continuous cochains

0 −→ Cn(G,A)
αn

−→ Cn(G,B)
βn

−→ Cn(G,C) −→ 0.

Proof. The argument follows the proof of Lemma 23.7, but now we restrict to continuous
cochains. We first note that for any morphism of discrete G-modules γ : M → N and n ≥ 0
we have an induced map γn : Cn(G,M) → Cn(G,N) defined by f 7→ γ ◦ f ; the map γ ◦ f
is a continuous because both f and γ are (trivially so in the case of γ, since M is discrete).
In particular, the maps αn and βn are well defined.

The injectivity of αn follows immediately from the injectivity of α. For f ∈ kerβn we
have β ◦ f = 0, so im f ⊆ kerβ = imα, and using the bijection α−1 : imα → A we can
define α−1 ◦ f ∈ Cn(G,A) whose image under αn is f ; thus kerβn ⊆ imαn. Conversely, for
any f ∈ Cn(G,A) we have β ◦ α ◦ f = 0 ◦ f = 0 and therefore imαn ⊆ kerβn.

It remains only to show that the map βn is surjective. Let us fix f ∈ Cn(G,C). The
fibers of f partition Gn into a disjoint union of open sets Uc indexed by c ∈ im f ⊆ C (since
f is continuous and C is discrete). For each c ∈ im f we now choose bc ∈ B such that
β(bc) = c (this is possible because β is surjective). We now define h ∈ Cn(G, b) by letting
it map Uc to bc; the fibers of h are then the same as those of f , so h is continuous, and we
have β ◦ h = f by construction, so βn(h) = f and it follows that βn is surjective.
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Corollary 30.7. Every short exact sequence of discrete G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of cohomology groups

0→ H0(G,A)
α0

−→ H0(G,B)
β0

−→ H0(G,C)
δ0−→ H1(G,A) −→ · · ·

and commutative diagrams of short exact sequences of discrete G-modules induce corre-
sponding commutative diagrams of long exact sequences of cohomology groups.

Remark 30.8. Lemma 30.6 and Corollary 30.7 do not hold for topological G-modules in
general, so with continuous cohomology we really need to restrict our attention to discrete
G-modules, otherwise we do not necessarily get δ-functors (families of functors that take
short exact sequences to long exact sequences).

Recall that if N is normal subgroup of G then for any G-module A we have inflation
maps Inf : Hn(G/N,AN ) → Hn(G,A) induced by the quotient map G → G/N and the
compatible inclusion AN → A; see Definition 29.22. More generally, if H ⊆ K are normal
subgroups of G, we can view K/H as a normal subgroup of G/H with corresponding
quotient G/K, and we get an inflation map Inf : Hn(G/K,AK) → Hn(G/H,AH). These
maps are natural in the inclusion H ⊆ K. That is, if H ⊆ K ⊆ L are normal subgroups of
G then the following triangle commutes

Hn(G/L,AL) Hn(G/K,AK)

Hn(G/H,AH).

←→Inf

←
→Inf

←→ Inf

We can express any profinite group G as the inverse limit G = lim←−N G/N over the inverse
system of quotients by open normal subgroups N , where the N are partially ordered by
reverse inclusion and the connecting maps are projections. The inflation maps give us a
corresponding direct system of cohomology groups Hn(G/N,AN ).

Recall that a direct system is a collection of objects Xi indexed by a directed set I (a
set with a partial order . in which every pair i, j ∈ I has an upper bound i, j . k ∈ I)
with morphisms fij : Xi → Xj for all i . j with fii = id and fik = fjk ◦ fij for i . j . k.
The direct limit X of a direct system is the disjoint union

∐
iXi (coproduct) modulo the

equivalence relation ∼ given by identifying xi ∈ Xi with xj ∈ Xj whenever fik(xi) = fjk(xj)
for some k & i, j. It comes equipped with natural maps φi : Xi → X given by composing
the natural inclusion Xi →

∐
i∈I Xi with the map xi 7→ [xi] that sends elements to their

equivalence classes. For a direct system of abelian groups the group operation is given
by [xi] + [xj ] = [fik(xi) + fjk(xj)], where xi ∈ Xi and xj ∈ Xj are equivalence class
representatives and k & i, j is any upper bound.

In our setting, we have a directed set of open normal subgroups N partially ordered
by reverse inclusion (so N1 . N2 if N1 ⊇ N2). Our profinite group G is the inverse limit
lim←−N G/N , and we now want to consider the direct limit lim−→N

Hn(G/N,AN ).

Theorem 30.9. Let G be a profinite group. For every discrete G-module A and n ≥ 0 we
have an isomorphism

Hn(G,A) ' lim−→
N

Hn(G/N,AN ),
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where the direct limit is over open N E G ordered by inclusion and the maps are inflation
maps. These isomorphisms are natural in the discrete G-module A.

Proof. Direct limits commute with kernels and cokernels, so it suffices to prove the analogous
statement for cochains, that is, we want to show that

Cn(G,A)
?' lim−→

N

Cn(G/N,AN ),

where the maps Cn(G/N1, A
N1) → Cn(G/N2, A

N2) for normal open subgroups N1 ⊇ N2

are given by inflating cocycles: given f ∈ Cn(G/N1, A
N1), its image in Cn(G/N2, A

N2) is
defined by composing f with the quotient map (G/N2)

n → (G/N1)
n.

There is an obvious homomorphism

ϕ : lim−→
N

Cn(G/N,AN )→ Cn(G,A).

Each element of lim−→N
Cn(G/N,An) is represented by a cochain f ∈ Cn(G/N,An) for some

open N E G. To get a cochain Gn → A we reduce inputs modulo N and apply f ; this
cochain is continuous because the quotient map is continuous (N is open) and f is contin-
uous. This defines a homomorphism because addition of cochains is addition in A.

The homomorphism ϕ is injective, since its kernel is obviously trivial. We now show
that it is surjective. Let f : Gn → A be a continuous n-cochain. Its image is compact
and discrete, since G (and therefore Gn) is compact and A is discrete, and the image is
therefore finite. The stabilizer of the image is thus an open subgroup of G and therefore
contains an open normal subgroup N1 of G (the intersection of its conjugates), and we have
im f ⊆ AN1 . For each a ∈ im f , its inverse image f−1(a) is open and therefore contains an
n-fold product of open subgroups of G, each of which contains an open normal subgroup
and the intersection of these is an open normal subgroup Na for which f(Nn

a ) = a. Let N
be the intersection of N1 with ∩a∈im fNa; this is a finite intersection, since im f is finite,
so N is a normal open subgroup of G, and Nn is contained in every fiber of f ; it follows
that f is the composition of the quotient map Gn → (G/N)n and a continuous cochain
(G/N)n → AN (note im f ⊆ AN1 ⊆ AN since N ⊆ N1). Therefore f lies in the image of ϕ.

Naturality with respect to the discrete G-module A follows from from the fact that
the inflation maps on cochains are natural: any morphism of discrete G-modules A → B
yields a morphism of directed systems of cochains that commutes with the isomorphism ϕ
constructed above (for both A and B).

Corollary 30.10. For every profinite group G and discrete G-module A the cohomology
groups Hn(G,A) are torsion for all n > 0.

Proof. For every open N E G the group G/N is finite and Hn(G/N,AN ) is torsion, by
Proposition 29.11. A direct limit of torsion groups is obviously torsion.

Corollary 30.11 (Hilbert Theorem 90). Let L/K be a (possibly infinite) Galois exten-
sion of fields. Then H1(Gal(L/K), L×) = 0.

Proof. This follows immediately from Theorem 24.1 and Theorem 30.9.

Theorem 30.12. Let G be a profinite group and A = lim−→i
Ai a direct limit of discrete

G-modules Mi. Then A is a discrete G-module and Hn(G,A) ' lim−→i
Hn(G,Ai) for n ≥ 0.

18.786 Spring 2018, Lecture #30, Page 4

http://math.mit.edu/classes/18.786/LectureNotes29.pdf#theorem.2.11
http://math.mit.edu/classes/18.785/2017fa/LectureNotes24.pdf#theorem.2.1


Proof. We first note that every a ∈ A is represented by some ai ∈ Ai on which G acts with
an open stabilizer; it follows from Lemma 30.4 that A is a discrete G-module. To prove
the isomorphism in cohomology, as in the proof of Theorem 30.9, it suffices to prove it for
continuous cochains. There is an obvious homomorphism

ϕ : lim−→
i

Cn(G,Ai)→ Cn(G,A)

that sends fi : G
n → Ai to φi ◦ fi, where φi : Ai → A is the natural map given by the

direct limit lim−→i
Ai = A. The map ϕ is injective because its kernel is trivial: the zero maps

fi : G
n → Ai are all identified in the inverse limit lim−→i

Cn(G,Ai) because the zero elements
of Ai are identified in A.

To show that ϕ is surjective, we note that (as in the proof of Theorem 30.9), every
continuous cochain f : Gn → A has finite image, since G is compact and A is discrete. If we
let i be an upper bound in the directed indexing the Ai of the indices j of the Aj containing
each aj ∈ im f , then im f ⊆ Ai (recall that the existence of upper bounds is part of the
definition of a directed set). It follows that f = φi ◦ fi for some fi ∈ Cn(G,Ai) and ϕ is
therefore surjective.

As with G-modules, one can define a notion of compatibility for a continuous homomor-
phisms ϕ : G → G′ of profinite groups and homomorphisms φ : A → A′ of abelian groups:
we require ϕ(g)φ(a) = φ(ga) for all g ∈ G and a ∈ A. One can then use compatible pairs of
morphisms to define restriction and inflation maps between cohomology groups of discrete
G-modules as we did in Definitions 29.16 and Definition 29.22. Equivalently, one can define
these as direct limits of restriction and inflation maps defined for finite quotients (the no-
tions of G-module and discrete G-module coincide for profinite groups that are finite), via
Theorem 30.9.

One key point is that, as in the fundamental theorem of Galois theory, we must restrict
our attention to closed subgroups. Indeed, a subgroup of a profinite group is profinite if
and only if it is closed. This follows immediately from the fact that a topological group is
profinite if and only if it is totally disconnected and compact Hausdorff (Theorem 26.17).
Every subset of a totally disconnected space is totally disconnected, but a subset of a
compact Hausdorff space is compact Hausdorff if and only if it is closed.

We then obtain the following theorem.

Theorem 30.13 (Inflation-Restriction). Let H be a closed normal subgroup of a profi-
nite group G, let A be a discrete G-module, and let n ≥ 1. If H i(H,A) = 0 for 1 ≤ i < n
then the sequence

0 −→ Hn(G/H,AH)
Inf−→ Hn(G,A)

Res−→ Hn(H,A)

is exact.

Proof. Copy the proof of Theorem 29.23 using continuous cocycles (or simply note that
direct limits preserve exactness).

Remark 30.14. At this point the reader might assume that everything we have done with
G-modules easily extends to discrete G-modules. This is not quite true. Recall that when
working with G-modules we frequently used the fact that we can view Z[G] and Z[Gn] as
G-modules. We used this in our definition of the standard resolution of Z by G-modules,
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and in our definition of induced G-modules Z[G]⊗ZA (which we used for dimension shifting
to the left). But if G is an infinite profinite group, then Z[G] is not a discrete G-module,
because every stabilizer is trivial and therefore not an open subgroup of G if G is infinite.

One can still define the notion of a coinduced discrete G-module: even though Z[G] is
not a discrete G-module, the group of continuous Z-module homomorphisms ϕ : Z[G]→ A
with G-action defined as before by gϕ(z) = ϕ(zg) is a discrete G-module (the key point is
that gϕ actually only depends on g modulo an open subgroup of G, because this is true of
the continuous homomorphism ϕ). But in general the G-module Z[G]⊗Z A does not have
a natural structure as a discrete G-module.1

The fact that Z[Gn] is in general not a discrete G-module makes it difficult to directly
define homology (and Tate cohomology) for discrete G-modules. But one can instead use
coinflation to construct maps Hn(G/V,AV ) → Hn(G/U,AU ) for open normal subgroups
V ⊆ U of G and n ≥ 0 and then define Hn(G,A) for n ≥ 0 as an inverse limit. We refer
the interested reader to [2, §9].

30.2 The invariant map

Throughout this section K is a nonarchimedean local field. If L/K is any Galois extension
(possibly infinite), then Gal(L/K) is a profinite group G, and the G-modules L× and O×L
are both discrete G-modules, since any α ∈ L× generates a finite extension K(α)/K that is
the fixed field of a finite index closed subgroup of G (by the fundamental theorem of Galois
theory, see Theorem 26.22. A finite index closed subgroup is open, so every stabilizer Gα
is open, which implies that L× and O×L are discrete G-modules, by Lemma 30.4.

Recall that every finite unramified extension of nonarchimedean local fields is cyclic (and
in particular, Galois), with Galois group isomorphic to that of the residue field extension;
this follows from Theorem 10.15 and the fact that finite extensions of finite fields are cyclic.
In general, every unramified extension of local fields is a Galois extension generated by roots
of unity, by Corollary 10.19.

To simplify the notation, we may write N for the norm map NL/K : L× → K× when the
extension L/K is clear from context.

Proposition 30.15. Let L/K be a finite unramified extension of nonarchimedean local
fields with Galois group G := Gal(L/K). Then Ĥn(G,O×L ) = 0 for all n ∈ Z. Moreover,

Ĥn(H,O×L ) = 0 for all n ∈ Z and all subgroups H ≤ G.

Proof. Since L/K is unramified, the inertia group is trivial and G is isomorphic to the
residue field extension, which is cyclic of order m := [L : K]. It suffices to prove the
proposition for n = 0, 1, since for cyclic groups G the Tate cohomology of every G-module is
2-periodic (Theorem 23.37). For any choice of uniformizer π for OL we have an isomorphism

L×
∼−→ O×L × π

Z

x 7→ (x/πv(x), πv(x)),

where v : L× → Z is the valuation of L. Since L/K is unramified, the valuation of L extends
the valuation of K with index 1, by Theorem 8.20, so every uniformizer for OK is also a
uniformizer for OL, and we can assume π ∈ OK . In this case G acts trivially on πZ, allowing

1This is one reason why many authors use the term induced for what we have been calling coinduced.
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us to view L× as the direct sum of the G-module O×L and the trivial G-module πZ ' Z. We
therefore have

Ĥn(G,L×) ' Ĥn(G,O×L )⊕ Ĥn(G,Z),

for all n ∈ Z, where theG-action on Z is trivial, by Corollary 23.33. We have Ĥ1(G,L×) = 0,
by Hilbert 90, so Ĥ1(G,O×L ) = 0.

For r ≥ 1 let U rL = 1 + qr and let U rK = 1 + pr, where q = (πL) is the maximal ideal
of OL and p is the maximal ideal of OK . Let ` := OL/q and k := OK/p be the residue
fields, so that G ' Gal(l/k). For r ≥ 1 we have G-module isomorphisms

O×L/U
1
L
∼−→ `× and U rL/U

r+1
L

∼−→ `

defined by u 7→ u mod q and 1 + aπr 7→ a mod q. Now H1(G, `×) = 0 by Hilbert 90,
and the Herbrand quotient Ĥ0((`×)/Ĥ1(`×) = 1 since `× is finite (by Lemma 23.43), so
Ĥ0(G, `×) = 0, and Ĥ0(G, `) = 0, by 24.1, thus the norm and trace maps of the residue
field extension `/k are both surjective. If we now consider the commutative diagrams

O×L `× U rL `

O×K k× U rK k

←→mod q

←→ N ←→ N

←→mod q

←→ N ←→ T

←→mod p ←→mod p

the surjectivity of N: `× → k× and T: ` → k imply the surjectivity of N: O×L → O
×
K .

Indeed, given u ∈ O×K we can pick v1 ∈ O×L such that N(v1 mod q) = u mod p, which implies
u/N(v1) ∈ U1

K . We can then pick w2 ∈ U1
L such that N(w2) ≡ u/N(v1) mod U2

K , and if
we put v2 = v1w2 then u/N(v2) ∈ U2

K . Continuing in this fashion, we can construct vr
such u/N(vr) ∈ U rK for all r ≥ 1, and if we let v ∈ O×L be the limit of the vr then

u/N(v) ∈ ∩rU rK = {1} and N(v) = u. It follows that Ĥ0(G,O×L ) = O×K/N(O×L ) is trivial.
This proves the first conclusion of the proposition.

The second follows, since for any subgroup H of G we have H = Gal(L/LH) and may
apply the first conclusion to the finite unramified extension L/LH .

The “moreover” part of Proposition 30.15 says that the unit group of a finite unramified
extension of local fields is cohomologically trivial.

Definition 30.16. Let G be a finite group. A G-module A is cohomologically trivial if
Ĥn(H,A) = 0 for all n ∈ Z and subgroups H ≤ G.

Remark 30.17. G-modules A for which Ĥn(G,A) = 0 for all n ∈ Z are said to be acyclic.
In general, acyclic G-modules need not be cohomologically trivial (see Problem Set 1).

Corollary 30.18. For any finite unramified extension of nonarchimedean local fields L/K
the norm map O×L → O

×
K is surjective.

Proof. By Proposition 30.15, Ĥ0(Gal(L/K),O×L ) = (O×L )G/NGO×L = O×K/N(O×L ) = 0.

Corollary 30.19. Let L/K be a not necessarily finite unramified extension of a nonar-
chimedean local field K with Galois group G. Then Hn(G,O×L ) = 0 for all n > 0

Proof. For every open normal subgroup N of G, the fixed field LN is an unramified finite
extension of K with Gal(LN/K) ' G/N , and Hn(G/N, (O×L )N ) = 0 for all n > 0, by
Proposition 30.15. The corollary then follows from Theorem 30.9.
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Now let L/K be an unramified extension of of a nonarchimedean local field (possibly
infinite), let G = Gal(L/K), and let v : L× → Z be the discrete valuation of L. Consider
the following exact sequence of discrete G-modules

1 −→ O×L −→ L×
v−→ Z −→ 0,

where Z is a trivial G-module (because v(σα) = v(α) for all α ∈ L×, by Lemma 11.9).
By Corollary 30.19, both H1(G,O×L ) and H2(G,O×L ) are trivial, so the corresponding long
exact sequence in cohomology (by Lemma 30.7) contains an isomorphism

v : H2(G,L×)
∼−→ H2(G,Z).

If we now consider the exact sequence of trivial discrete G-modules

0 −→ Z −→ Q −→ Q/Z −→ 0,

we have Hn(G,Q) = 0 for all n > 0 (by Corollary 29.12 and Lemma 30.9), and the long
exact sequence in cohomology thus contains an isomorphism

δ : H1(G,Q/Z)
∼−→ H2(G,Z),

where δ is a connecting homomorphism (coming from the snake lemma). We also observe
that for the trivial discrete G-module Q/Z, the group H1(G,Q/Z) is simply the group of
continuous homomorphisms f : G→ Q/Z.

Recall that for any finite unramified extension L/K of nonarchimedean local fields, the
Galois group Gal(L/K) has a canonical generator, the Frobenius element FrobL/K , defined
as the unique element of Gal(L/K) that induces the Frobenius automorphism of the residue
field extension `/k (so FrobL/K(x) ≡ rmx#k mod q where q is the maximal ideal of OL).
For infinite unramified extensions, FrobL/K is the unique element of the profinite group
Gal(L/K) whose restriction to finite E/K is FrobE/K .

Definition 30.20. Let L/K be an unramified extension of nonarchimedean local fields
with Galois group G = Gal(L/K) and Frobenius element σ := FrobL/K . The invariant map
invL/K : H2(G,L×)→ Q/Z is defined by the composition

H2(G,L×)
v−→ H2(G,Z)

δ−1

−→ H1(G,Q/Z)
f 7→f(σ)−→ Q/Z.

The invariant map invL/K is functorial in L; that is, for any tower of unramified exten-
sions of nonarchimedean local fields K ⊆ L ⊆M the following diagram commutes:

H2(Gal(L/K), L×) Q/Z

H2(Gal(M/K),M×) Q/Z

←→
invL/K

←→ Inf ⇐⇐

←→
invM/K

This follows from the functoriality of the inflation map and the maps used to define invL/K .
We now fix a separable closure Ksep of our nonarchimedean local field K and let Kunr

denote the maximal unramified extension of K in Ksep.
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Theorem 30.21. Let K be a nonarchimedean local field. There is a unique isomorphism

invK : H2(Gal(Kunr/K),Kunr×)
∼−→ Q/Z

such that for all finite Galois extensions L/K in Kunr, composition with the inflation map
Inf : H2(Gal(L/K), L×)→ H2(Gal(Kunr/K),Kunr×) induces the isomorphism

invL/K : H2(Gal(L/K), L×)
∼−→ 1

[L:K]Z/Z.

Proof. For every unramified extension L/K the invariant map invL/K is injective, since the
maps v and δ−1 that appear in its definition are isomorphisms, and the map f → f(σ)
is injective because every continuous homomorphism f : G → Q/Z is determined by f(σ)
(both when L/K is finite and when it is not).

If L/K is a finite unramified extension then G := Gal(L/K) = 〈σ〉, where σ := FrobL/K
has order [L :K]. We have an f ∈ H1(G,Q/Z) = Hom(G,Q/Z) defined by f(σ) = 1

[L:K] ,

so the image of invL/K contains the group 1
[L:K]Z/Z of order m := [L : K] = #G, and this

containment must be an equality because H1(G,Q/Z) ' H2(G,Z) ' Ĥ0(G/Z) ' Z/mZ. It
follows that invL/K : H2(Gal(L/K), L×)→ 1

[L:K]Z/Z is an isomorphism, and that invKunr/K

is an isomorphism, since K has unramified extensions of degree n for every n ∈ Z, by
Corollary 10.19.

The map invK := invKunr/K induces all the invariant maps invL/K for finite unram-
ified extensions L/K, by the functoriality noted above, follows that invK has all the
properties stated in the theorem. We now observe that for G := Gal(Kunr/K) we have
H2(G,Kunr×) ' lim−→H

H2(G/H,Kunr×)H , where H ranges over open normal subgroups
of G, by Theorem 30.9. It follows that invK is uniquely determined by the maps invL/K it

induces, where L := (Kunr)H ranges over all finite unramified extensions as H ranges over
all open normal subgroups of G.

Proposition 30.22. Let L/K be a (not necessarily unramified) finite separable extension
of nonarchimedean local fields of degree n. There is a canonical homomorphism φ such that
the following diagram commutes

H2(Gal(Kunr/K),Kunr×) H2(Gal(Lunr/L), Lunr×)

Q/Z Q/Z.

←→φ

←→ invK ←→ invL

← →[n]

where [n] denotes the multiplication by n map. When L/K is Galois, the kernel of φ can
be canonically identified with a subgroup of H2(Gal(L/K), L×) isomorphic to 1

nZ/Z.

Proof. We have Lunr = L ·Kunr, since unramified extensions of local fields are obtained by
adjoining roots of unity (see Corollary 10.19). We first consider the case that L/K is a Galois
extension. We have H1(Gal(Lunr/K), Lunr×) = 0 by Corollary 30.11, so Theorem 30.13
gives us an exact sequence

0 −→ H2(Gal(L/K), L×)
Inf−→ H2(Gal(Lunr/K), Lunr×)

Res−→ H2(Gal(Lunr/L), Lunr×),

We similarly obtain an exact sequence

0 −→ H2(Gal(Kunr/K),Kunr×)
Inf′−→ H2(Gal(Lunr/K), Lunr×)

Res′−→ H2(Gal(Lunr/Kunr), Lunr×).
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We now define φ := Res ◦ Inf ′, which we note still makes sense even if L/K is not Galois
(the maps Res and Inf ′ are always defined, even if Inf is not). When L/K is Galois we have
the following commutative diagram with exact rows

0 ker(φ) H2(Gal(Kunr/K),Kunr×) H2(Gal(Lunr/L), Lunr×)

0 H2(Gal(L/K), L×) H2(Gal(Lunr/K), Lunr×) H2(Gal(Lunr/L), Lunr×)

← →

←→ ϕ

← →

←→ Inf′

←→φ

⇐⇐

←→ ←→Inf ←→Res

which canonically defines the injective map ϕ : ker(φ) → H2(Gal(L/K), L×) given by the
inclusion Inf ′(kerφ) ⊆ ker(Res) = im(Inf) when L/K is Galois

We now drop the assumption that L/K is Galois. The discrete valuation vL of L extends
the discrete valuation vK of K with index equal to the ramification index e of the extension
L/K, by Theorem 8.20. Let σK := FrobK and σL := FrobL. Let f be the degree of the
associated residue field extension, so that n = [L :K] = ef .

Writing out the definitions of invK and invL yields the following commutative diagram:

H2(Gal(Kunr/K),Kunr×) H2(Gal(Kunr/K),Z) H1(Gal(Kunr/K),Q/Z) Q/Z

H2(Gal(Lunr/L), Lunr×) H2(Gal(Lunr/L),Z) H1(Gal(Lunr/L),Q/Z) Q/Z.

←→ φ

←→vK

←→ [e]◦φ

←→δ
−1

←→ [e]◦φ

←→g 7→g(σK)

←→ [ef ]

←→vL ←→δ−1 ←→g 7→g(σL)

The commutative square on the left is induced by the commutative square

Kunr× Z

Lunr× Z

←→

←→vK

←→ [e]

←→vL

where the vertical map on the left is inclusion; note that Z [e]−→ Z is a morphism of trivial
discrete G-modules that is also a morphism of Z-modules and thus induces the same map
in cohomology (multiplication by e). The commutative square in the middle is just a pair
of isomorphisms, and the commutative square on the right follows from the fact that for
g ∈ H1(Gal(Kunr/K),Q/Z), we have g(σL) = g(σfK) = fg(σK), since g is a homomor-
phism because Q/Z is a trivial Gal(Kunr/K)-module (note that the group operation in
Gal(Kunr/K) is multiplicative while the group operation in Q/Z additive).

Having proved that commutativity of the diagram in the statement of the proposition
containing isomorphisms invK and invL, it is clear that ker(φ) is isomorphic to 1

nZ/Z, the
kernel of [n] : Q/Z → Q/Z. When L/K is Galois the injective map ϕ allows us to view
ker(φ) as a canonical subgroup of H2(Gal(L/K), L×) isomorphic to 1

nZ/Z.

We now want extend the invariant map invK we have defined to arbitrary separable
extensions of K. For this we require what Neukirch calls the class field axiom [1].

Theorem 30.23 (Class field axiom). Let L/K be a cyclic extension of nonarchimedean
local fields with Galois group G := Gal(L/K) of order n. Then for all k ∈ Z we have

#Ĥk(G,L×) =

{
n if k ≡ 0 mod 2

1 if k ≡ 1 mod 2.
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Proof. We have Ĥk(G,L×) ' Ĥk+2(G,L×) for all k ∈ Z, by Theorem 23.37, since G is
cyclic, and #Ĥ1(G,L×) = 1 by Theorem 24.1, so it suffices to show #Ĥ0(G,L×) = n.

We will construct a cohomologically trivial finite index G-submodule A of O×L , which
will obtain from a finite index G-submodule M of OL. Let G = 〈σ〉, choose α ∈ L× so that
{σiα} is a K-basis for L (such an α exists by the normal basis theorem), and pick a ∈ K×
so that aα ∈ OL (if α = β/γ with β, γ ∈ OL we can take a = NL/K(γ)). We then have
zi := aσiα ∈ OL for 0 ≤ i < n, and

M :=
n⊕
i=1

ziOK ⊆ OL

is a G-submodule of OL isomorphic to OK [G] (the isomorphism sends zi to σi).
Let p = (π) and q be the maximal ideals of OK and OL, respectively, and let m := vq(z0).

We have vq(zi) = m for 0 ≤ i < n (since vq(σ
iα) = vq(α)), and vq(π

m) ≥ vq(zi) for 0 ≤ i < n.
It follows that πmOL ⊆M , so

[OL : M ] ≤ [OL : πmOL] = mvq(π)#Fq

is finite, and for all i ≥ 0 we have

(1 + πm+iM)(1 + πm+iM) ⊆ (1 + π2m+2i)OL ⊆ 1 + πm+iM.

For each i ≥ 0 we thus have multiplicative G-modules

Ai := 1 + πm+iM ⊆ O×L ,

that each have finite index in O×L , and we have G-modules isomorphisms

Ai/Ai+1 'M/πM ' Fp[G],

where the first is [ai] 7→ [π−m−i(ai − 1)] and the second is defined by [zi] 7→ σi ∈ Fp[G].
The G-module Fp[G] is cohomologically trivial (see Problem Set 1), so each Ai/Ai+1 is
cohomologically trivial, as is A/Ai ' M/πiM ' R[G], where R = (OK/pi) and A := A0.
By Lemma 30.27 below, A ' lim←−iA/Ai is cohomologically trivial, and in particular, the
Herbrand quotient of A is trivial, that is

h(A) := #Ĥ0(G,A)/#Ĥ0(G,A) = 1,

which implies h(O×L ) = 1, since A has finite index in O×L , by Corollary 23.48. We now
observe that we have an exact sequence of G-modules

0 −→ O×L → L×
vq−→ Z −→ 0,

where Z is a trivial G-module with h(Z) = n, by Corollary 23.46, and therefore

h(L×) = h(O×L )h(Z) = n

by Corollary 23.41. This implies #Ĥ0(G,L×) = h(L×)#Ĥ0(G,L
×) = n ·1, since we already

noted that Ĥ0(G,L
×) = Ĥ−1(G,L×) ' Ĥ1(G,L×) is trivial.

Corollary 30.24. Let L/K be a finite Galois extension of nonarchimedean local fields.
Then H2(Gal(L/K), L×) is cyclic of order n = [L :K].
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Proof. We first note that the extension L/K is solvable: the maximal unramified subex-
tension of L is a cyclic extension of K, by Theorem 10.15, the maximal tamely ramified
subextension of M is a Galois extension of K that is a Kummer extension of the maxi-
mal unramified subextension, by Theorem 11.8, and L/M is either trivial or totally wildly
ramified, in which case Gal(L/M) is a p-group, hence solvable.

We proceed by induction on n. If L/K is cyclic the corollary follows from Theo-
rem 30.23. Otherwise n > 1 and we have a tower K ( E ( L of Galois extensions
with #H2(Gal(L/E), L×) = [L :E] and #H2(Gal(E/K), E×) = [E :K] by the inductive
hypothesis. We have H1(Gal(L/K), L×) = 0 (by Hilbert 90), so Theorem 29.23 gives us an
exact inflation-restriction sequence:

0 −→ H2(Gal(E/K), E×)
Inf−→ H2(Gal(L/K), L×)

Res−→ H2(Gal(L/E), L×),

and therefore

#H2(Gal(L/K), L×) ≤ #H2(Gal(E/K), E×) ·#H2(Gal(L/E), L×)

≤ [E :K] · [L :E] = [L :K] = n.

By Proposition 30.22, H2(Gal(L/K), L×) contains a cyclic subgroup of order n, and by
the inequality above, it must equal this subgroup.

We now show that Theorem 30.21 and Proposition 30.22 still hold when Kunr is replaces
by Ksep, inducing compatible invariant maps for all Galois extensions L/K.

Theorem 30.25. Let K be a nonarchimedean local field. There is a unique isomorphism

invK : H2(Gal(Ksep/K),Ksep×)
∼−→ Q/Z

such that for all finite Galois extensions L/K in Ksep, composition with the inflation map
Inf : H2(Gal(L/K), L×)→ H2(Gal(Ksep/K),Ksep×) induces an isomorphism

invL/K : H2(Gal(L/K), L×)
∼−→ 1

[L:K]Z/Z

that coincides with the invariant map invL/K previously defined when L/K is unramified.
Moreover, for every finite separable extension L/K the following diagram commutes

H2(Gal(Ksep/K),Ksep×) H2(Gal(Ksep/L),Ksep×)

Q/Z Q/Z.

←→Res

←→ invKo ←→ invLo

← →[n]

where [n] denotes the multiplication by n map, and when L/K is Galois we have an iso-
morphism of exact sequences

0 H2(Gal(L/K), L×) H2(Gal(Ksep/K),Ksep×) H2(Gal(Ksep/L),Ksep×) 0

0 1
[L:K]

Z/Z Q/Z Q/Z 0.

←→ ←→Inf

←→ invL/Ko

←→Res

←→ invKo ←→ invLo

←→

← → ← → ← →[n] ← →
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Proof. Corollary 30.24 implies that for all finite Galois extensions L/K the injective map
ϕ : ker(φ) → H2(Gal(L/K), L×) constructed in the proof of Proposition 30.22 is actually
an isomorphism, allowing us to canonically identify H2(Gal(L/K), L×) with a subgroup of
H2(Gal(Kunr/K),Kunr×).

The inflation maps Inf : H2(Gal(L/K), L×) → H2(Gal(Ksep/K),Ksep×) are all injec-
tive, by Corollary 30.11 and Theorem 30.13, and H2(Gal(Ksep/K),Ksep×) is naturally
isomorphic to the direct limit of the directed system formed by the inflation maps between
finite Galois extensions of K. It follows that the inflation map

Inf : H2(Gal(Kunr/K),Kunr×)→ H2(Gal(Ksep/K),Ksep×)

is an isomorphism. This implies we can replace Kunr with Ksep and Lunr with Lsep = Ksep in
both Theorem 30.21 and Proposition 30.22, and the homomorphism φ = Res ◦ Inf ′ defined
in the proof of Proposition 30.22 reduces to Res because Inf ′ is the identity map.

The commutativity and exactness of the second diagram follows; note that the restriction
map must be surjective because the multiplication map [n] : Q/Z→ Q/Z is.

30.3 Cohomological triviality of inverse limits

In this section we prove that an inverse limit of cohomologically trivial G-modules is coho-
mologically trivial; we used this fact in the proof of the class field axiom (Theorem 30.23).
We first note the following theorem, which you will have an opportunity to prove on the
problem set.

Theorem 30.26. Let G be a finite group and let A be a G-module. Then A is cohomologi-
cally trivial if and only if for every prime p dividing #G there is a p-Sylow subgroup H ≤ G
and an integer n such that Ĥn(H,A) = Ĥn+1(H,A) = 0.

Proof. See Problem Set 1.

Lemma 30.27. Let G be a finite group. Suppose we have an inverse system of cohomolog-
ically trivial G-modules

· · · −→ Ai+1
αi−→ Ai −→ · · · −→ A1

α0−→ A0,

then the inverse limit A := lim←−iAi is cohomologically trivial.

Proof. We first note that an inverse limit of G-modules is indeed a G-module: if (ai) ∈
∏
iAi

represents an element of A (so the map Ai+1 → Ai sends ai+1 to ai), then G acts component-
wise: g(ai) = (gai), and the natural maps φi : A → Ai given by the inverse limit are
morphisms of G-modules since gφi((ai)) = gai = φi((gai)) = φi(g(ai)).

By Theorem 30.26, it suffices to prove that Ĥn(H,A) = Ĥn+1(H,A) = 0 for some
n ∈ Z, for every subgroup H of G (in fact we only need to consider p-Sylow subgroups H,
but this makes no difference to us). So let H be a subgroup of G. Then Ĥn(H,Ai) = 0 for
all n ∈ Z and i ≥ 0, since the Ai are cohomologically trivial.

For each n > 0 and subgroup H ≤ G our hypothesis implies equality of coboundaries
and cocycles: Bn(H,Ai) = Zn(H,Ai) for all i ≥ 0. By Lemma 23.6, the G-morphisms
αi induce a compatible system of morphisms of cochains αni : Cn(H,Ai+1) → Cn(H,Ai)
defined by f 7→ αi ◦ f that commute with the boundary operators. We claim that

Cn(H,A) ' lim←−
i

Cn(H,Ai).
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Indeed, we have inverse isomorphisms f 7→ (φi ◦ f) and (fi) 7→ (~g 7→ (fi(~g)) (note that
αi(fi+1(~g)) = fi(~g) for i ≥ 0, so the second map is well defined). These isomorphisms
commute with the boundary operators because the morphisms φi and αi do. Therefore
Bn(H,A) = Zn(H,A), since Bn(H,Ai) = Zn(H,Ai) for all i ≥ 0. The lemma follows.

Remark 30.28. In general we do not have Ĥn(G, lim←−iAi) = lim←−i Ĥ
n(G,Ai); the key issue

is that the inverse limit functor is only left exact. But if one assumes that the connecting
morphisms in the inverse system and the induced morphisms in Tate cohomology are all
surjective, then the Tate cohomology functors will commutes with inverse limits.
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