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29 Tate’s theorem

Over the next several lectures our goal is to complete the proof of class field theory that
we started in 18.785, beginning with local class field theory. In Lecture 27 we presented
the local version of Artin reciprocity which we restate below. As usual, Kab denotes the
maximal abelian extension of K inside a fixed separable closure of K.

Theorem 29.1 (Local Artin Reciprocity). Let K be a local field. There is a unique
continuous homomorphism

θK : K× → Gal(Kab/K)

with the property that for each finite extension L/K in Kab, the homomorphism

θL/K : K× → Gal(L/K)

given by composing θK with the natural map Gal(Kab/K)� Gal(L/K) satisfies:

• if K is nonarchimedean and L/K is unramified then θL/K(π) = FrobL/K for every
uniformizer π of OK ;

• θL/K is surjective with kernel NL/K(L×), inducing K×/NL/K(L×) ' Gal(L/K).

It is easy to see that Theorem 29.1 holds when K is archimedean: either L = K and the
theorem is trivially true or L = C and K = R, in which case θL/K maps NC/R(C×) = R>0

to the trivial element of Gal(C/R) and maps R<0 to the non-trivial element of Gal(C/R).
To treat the nonarchimedean case we will use a cohomological result of Tate to explicitly

construct the isomorphism K×/NL/K(L×) ' Gal(L/K) induced by θL/K as an isomorphism
of cohomology groups. This isomorphism will be functorial in L, allowing us to extend it to
a continuous homomorphism θK : K× → Gal(Kab/K), since we can view Gal(Kab/K) as
the profinite completion of the groups Gal(L/K) as L ranges over finite abelian extensions
of K, via Theorem 26.21.

We have already seen that K×/NL/K(L×) arises naturally as the Tate cohomology group

Ĥ0(Gal(L/K), L×); see Theorem 24.1. Our main task is to show that we may also view
Gal(L/K) as a Tate cohomology group that is naturally isomorphic to Ĥ0(Gal(L/K), L×).
If L/K is unramified, the two groups are clearly isomorphic, since they are both cyclic
groups of order [L : K], but we want to make this isomorphism explicit and functorial.

In this lecture we will focus on proving Tate’s theorem, which is the key cohomological
result that we need. In the next lecture we will use it to prove Theorem 29.1. We assume
the reader is familiar with the material on Tate cohomology in Section 23.4.

29.1 Shapiro’s Lemma

In order to prove Tate’s theorem we will need some standard results from group cohomology
that allow us to relate the cohomoglogy of subgroups H ≤ G to the cohomology of G. Recall
that a G-module is an abelian group equipped with a G-action, equivalently, a module over
the ring Z[G] (unless otherwise specified, we put the G-action on the left so that A is a left
Z[G]-module).

If A is a G-module then A is also an H-module, for any subgroup H of G; this is
known as restriction of scalars, and the corresponding H-module may be denoted ResGH(A),
although we will typically just write A when it is clear that we are viewing A as an H-
module. Conversely, given an H-module A we can use induction or co-induction to construct
a corresponding G-module.
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Definition 29.2. Let H be a subgroup of G. For any H-module A we have G-modules

IndGH(A) := Z[G]⊗Z[H] A and CoIndGH(A) := HomZ[H](Z[G], A),

where theG-action on IndGH(A) is given by g(α⊗a) := gα⊗a and theG-action on CoIndGH(A)
is given by gϕ = (α 7→ ϕ(αg)).1

Equivalently, IndGH(A) is the Z[G]-module obtained from the Z[H]-module A by exten-
sion of scalars via the ring homomorphism Z[H]→ Z[G] induced by the inclusion H ↪→ G,
and CoIndGH(A) is similarly obtained by co-extension of scalars.2

We have already seen this construction in the case that H is the trivial group, see
Definitions 23.17 and 23.25, and we proved that whenever G is finite we have a canonical
isomorphism IndG(A) ' CoIndG(A); see Lemma 23.27. This holds more generally.

Lemma 29.3. Let G be a group with a finite index subgroup H, and let A be an H-module.
We have a canonical isomorphism of G-modules

CoIndGH(A)
∼−→ IndGH(A)

ϕ 7→
∑

Hg∈H\G

g−1 ⊗ ϕ(g)

(g−1 7→ a)←[ g ⊗ a

where the sum is over a set of right coset representatives Hg of H in G.

Proof. We first note that for h ∈ H, g ∈ G and any ϕ ∈ CoIndGH(A) we have

(hg)−1 ⊗ ϕ(hg) = g−1h−1 ⊗ hϕ(g) = g ⊗ ϕ(g),

which shows that the isomorphism is well defined, independent of the choice of right coset
representatives. The rest of the proof is identical to the proof of Lemma 23.27.

Remark 29.4. Recall that an induced G-module is one of the form IndG(A) (or CoIndG(A),
if G is finite), where A is an abelian group. If H is a non-trivial subgroup of G and A is an
H-module the G-module IndGH(A) is typically not an induced G-module in this sense.

Lemma 29.5 (Shapiro’s Lemma). Let H be a subgroup of G and let A be an H-module.
For all n ≥ 0 we have canonical isomorphisms

Hn(G, IndGH(A)) ' Hn(H,A) and Hn(G,CoIndGH(A)) ' Hn(H,A).

If H has finite index in G then we also have canonical isomorphisms

Hn(G, IndGH(A)) ' Hn(H,A) and Hn(G,CoIndGH(A)) ' Hn(H,A).

Proof. By the associativity of tensor products, for all n ≥ 0 we have natural isomorphisms

Z[Gn]⊗Z[G] (Z[G]⊗Z[H] A) ' (Z[Gn]⊗Z[G] Z[G])⊗Z[H] A ' Z[Gn]⊗Z[H] A, (1)

1Note that g(hϕ) = g(α 7→ ϕ(αh)) = (α 7→ ϕ(αgh)) = (gh)ϕ as required. It is the right action of Z[G[
on itself that induces a left action of Z[G] on HomZ[H](Z[G], A).

2Extension and co-extension of scalars are the left and right adjoint functors of restriction of scalars.
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of abelian groups, where we are viewing Z[Gn] as both a left and right Z[G]-module, and as
a right Z[H]-module. These isomorphisms maps α⊗ (β ⊗ a) to αβ ⊗ a and thus commute
with the left G-action: g(α⊗ (β ⊗ a)) = gα⊗ (β ⊗ a) 7→ gαβ ⊗ a = g(αβ ⊗ a).

The Z[H]-module Z[Gn] is free, hence projective, so the standard resolution of Z by
G-modules is also a projective resolution of Z by H-modules. It follows that

Hn(G, IndGH(A)) = TorZ[G]
n (Z, IndGH(A)) ' TorZ[H]

n (Z, A) = Hn(H,A)

for all n ≥ 0, since (1) implies that computing Tor
Z[G]
n (Z, IndGH(A)) using the standard reso-

lution of Z by G-modules is the same thing as computing Tor
Z[H]
n (Z, A) using the standard

resolution of Z by G-modules viewed as a projective resolution of Z by H-modules.
The isomorphisms of cohomology groups are proved similarly. By tensor-hom adjunction

we have natural isomorphisms

HomZ[G](Z[Gn],HomZ[H](Z[G], A)) ' Hom(Z[Gn]⊗Z[G] Z[G], A) ' HomZ[H](Z[Gn], A)

that map ϕ to (α 7→ ϕ(α)(1)) and commute with the left G-action. Indeed, we have
gϕ = (α 7→ ϕ(αg)) 7→ (α 7→ ϕ(αg)(1)) = g(α 7→ ϕ(α)(1)). It follows that

Hn(G,CoIndGH(A)) = ExtnZ[G](Z,CoIndGH(A)) ' ExtnZ[H](Z, A) = Hn(H,A)

for all n ≥ 0. The last statement of the lemma follows from Lemma 29.3.

29.2 Dimension shifting

Dimension shifting is a technique that simplifies many proofs by exploiting the relationship
between a G-module A and the cohomologically trivial G-modules IndG(A) := Z[G] ⊗Z A
and CoIndG(A) := HomZ(Z[G], A). Recall that for any abelian group A, the G-action on
Z[G]⊗Z A is given by g(z⊗ a) := gz⊗ a and the G-action on HomZ(Z[G], A) is gϕ := (z 7→
ϕ(zg)), as specified in Definitions 23.25 and 23.17, respectively.

When A is also a G-module it is convenient to redefine the G-action on IndG(A) and
CoIndG(A) in a way that will allow us to view A as a G-module quotient of IndG(A) and
a G-submodule of CoIndG(A).

Definition 29.6. For a G-module A we define the G-actions on IndG(A) := Z[G]⊗Z A by
g(z ⊗ a) := gz ⊗ ga and on CoIndG(A) := HomZ(Z[G], A) by gϕ := (z 7→ gϕ(g−1z)).

Note that Definition 29.6 changes the meaning of IndG(A) and CoIndG(A) when A is
a G-module. This change is justified by the Lemma 29.7 below, which implies that we
can still appeal to all the facts we have previously proved about induced and coinduced
G-modules. If we ever need to refer to the old definition we will do so by using the notation
A◦ to distinguish the abelian group A from the G-module A.

Lemma 29.7. Let A be a G-module and let A◦ denote the corresponding abelian group.
We have G-module isomorphisms

Φ: IndG(A)
∼−→ IndG(A◦), Φ(g ⊗ a) := g ⊗ g−1a

Ψ: CoIndG(A)
∼−→ CoIndG(A◦), Ψ(ϕ) := (g 7→ gϕ(g−1))
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Proof. For all g, h ∈ G and a ∈ A we have

Φ(g(h⊗ a)) = Φ(gh⊗ ga) = gh⊗ (gh)−1ga = gh⊗ h−1a = gΦ(h⊗ a),

so Φ is a G-morphism, and Φ−1(g ⊗ a) := g ⊗ ga is an inverse G-morphism. Similarly, for
all g, h ∈ G we have

Ψ(gϕ) = Ψ(h 7→ gϕ(g−1h)) = (h 7→ hgϕ(g−1h−1)) = (h 7→ Ψ(ϕ)(hg)) = gΨ(ϕ),

and Ψ is its own inverse, since Ψ(Ψ(ϕ)) = Ψ(g 7→ gϕ(g−1)) = (g 7→ gg−1ϕ(g)) = ϕ.

Recall that the augmentation ideal IG ⊆ Z[G] is the kernel of the augmentation map
ε : Z[G] → Z defined by

∑
ngg 7→

∑
ng (see Definition 23.23), and we have an exact

sequence of G-modules
0 −→ IG → Z[G]

ε−→ Z −→ 0, (2)

where the G-action on Z is trivial. As an exact sequence of Z-modules, this sequence splits.
Indeed, we have a Z-module isomorphism

Z[G] 'Z IG ⊕ Z
z 7→ (z − ε(z), ε(z))

z + n←[ (z, n).

This is not a G-module isomorphism because we are identifying Z with 1GZ ⊆ Z[G], which
is not a G-submodule. But HomZ(Z, A) is a G-submodule of HomZ(Z[G], A) = CoIndG(A).

Lemma 29.8. Let A be a G-module. The map π : IndG(A)→ A defined by z ⊗ a 7→ ε(z)a
is a surjective morphism of G-modules with kernel IG ⊗A.

The map ι : A → CoIndG(A) defined by a 7→ (z 7→ ε(z)a) for g ∈ G is an injective
morphism of G-modules with cokernel isomorphic to HomZ(IG, A).

Proof. We have gπ(z ⊗ a) = gε(z)a = ε(z)ga = ε(gz)ga = π(g(z ⊗ a)), and π is clearly
surjective (take z = 1) and Z-linear, so it is a surjective morphism of G-modules. We now
note that ker(π) = ker(ε)⊗A = IG ⊗A as claimed.

It is clear that ι is an injective morphism of Z-modules, and a morphism of G-modules,
since gι(a) = g(z 7→ ε(z)a) = (z 7→ gε(g−1z)a) = (z 7→ ε(z)ga) = ι(ga). In terms of
the Z-isomorphism Z[G] 'Z IG ⊕ Z defined above, the image of ι consists precisely of the
ϕ ∈ HomZ(Z[G], A) supported on Z, and it follows that coker(ι) ' HomZ(IG, A).

Lemma 29.8 gives us two exact sequences of G-modules associated to any G-module A.

0 −→ IG ⊗Z A −→ IndG(A)
π−→ A −→ 0. (3)

0 −→ A
ι−→ CoIndG(A) −→ HomZ(IG, A) −→ 0. (4)

The fact that IndG(A) and CoIndG(A) have trivial homology/cohomology in degrees n ≥ 1,
and if G is finite, trivial Tate cohomology in all degrees n ∈ Z (see Corollary 23.28),
yields isomorphisms in the long exact sequences in homology/cohomology arising from the
short exact sequences above. The key point is that these isomorphisms allows us to relate
homology/cohomology groups in different degrees. This is called dimension shifting.
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Theorem 29.9 (Dimension shifting). Let A be a G-module and let H be any subgroup
of G. If G is finite then for all n ∈ Z we have

Ĥn+1(H,A) ' Ĥn(H,HomZ(IG, A)) and Ĥn−1(H,A) ' Ĥn(H, IG ⊗Z A).

and whether G is finite or not, for all n ≥ 1 we have

Hn+1(H,A) ' Hn(H,HomZ(IG, A)) and Hn+1(H,A) ' Hn(H, IG ⊗Z A).

Proof. If G is finite then by Corollary 23.28 the coinduced G-module CoIndG(A) and the
induced G-module IndG(A) have trivial Tate cohomology groups for all degrees n. This
remains true if we regard CoIndG(A) and IndG(A) as H-modules rather than G-modules,
because Z[G] is free as a Z[H]-module (take a direct sum over cosets). If we now consider
the long exact sequences in Tate cohomology (see Theorem 23.32) associated to the short
exact sequences (4) and (3), we obtain the isomorphisms in the theorem. When G is not
finite we instead apply Lemmas 23.19 and Lemmas 23.26.

Remark 29.10. Dimension shifting provides an alternate way to define Tate cohomology
(and standard cohomology and homology). Having defined Ĥ0(G,A) = AG/NGA for all
G-modules A, we put A1 := HomZ(IG, A) and define Ĥ1(G,A) := Ĥ0(G,A1). Continuing in
this fashion with An := HomZ(IG, An−1) and Ĥn(G,A) := Ĥn−1(G,A1) = · · · = Ĥ0(G,An),
we obtain Tate cohomology groups for all n ≥ 0; applying a similar strategy with IG ⊗Z A
addresses n < 0.

Proposition 29.11. Let G be a finite group and let A be a G-module. The Tate cohomology
groups Ĥn(G,A) are all torsion groups of exponent dividing #G.

Proof. By Theorem 29.9, it suffices to prove the case n = 0. For any a ∈ AG we have
NGa = (#G)a, thus every element of Ĥ0(G,A) = AG/NGA has order dividing #G.

Corollary 29.12. Let G be a finite group and let A be a G-module. If multiplication by
#G induces an isomorphism A → A then Ĥn(G,A) = 0 for all n ∈ Z. This applies, in
particular, when A is the additive group of a ring in which #G = 1 + · · · + 1 is a unit,
including all fields whose characteristic is not a prime divisor of #G.

Proof. If the G-module morphism A → A induced by multiplication by #G is an isomor-
phism, then multiplication by #G induces an isomorphism Ĥn(G,A) → Ĥn(G,A) for all
n ∈ Z (consider the long exact sequence in Tate cohomology corresponding to the short
exact sequence 0 → 0 → A → A → 0). But Proposition 29.11 implies that multiplica-
tion by #G induces the zero morphism Ĥn(G,A) → Ĥn(G,A) for all n ∈ Z, which is an
isomorphism if and only if Ĥn(G,A) = 0.

Corollary 29.13. Let G be a finite group and let A be a finitely generated G-module. Then
Ĥn(G,A) is finite for all n ∈ Z.

Proof. Since G is finite, being finitely generated as a G-module is the same thing as being
finitely generated as an abelian group, so we can assume A is a finitely generated abelian
group. We now observe that IG, IG ⊗Z A and HomZ(IG, A), are finitely generated abelian
groups: if {xi} is a finite set of generators for IG and {aj} is a finite set of generators for A
then {xi ⊗ aj} is a finite set of generators for IG ⊗Z A, and if we define fij by fij(xi) = aj
and fij(xk) = 0 for k 6= i then {fij} is a finite set of generators for HomZ(IG, A).
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By Theorem 29.9 it suffices to consider n = 0. The group Ĥ0(A,G) = AG/NGA is
finitely generated, since AG is (it is a Z-submodule of the noetherian Z-module A), and
Ĥn(G,A) is torsion, by Proposition 29.11, so it must be finite.

Remark 29.14. Corollary 29.13 implies that if G is cyclic and A is a finitely generated
G-module then the Herbrand quotient is always defined (see Definition 23.38).

29.3 Restriction and inflation

Recall that a morphism of G-modules φ : A → B induces natural homomorphisms of ho-
mology and cohomology groups

φn : Hn(G,A)→ Hn(G,B), and φn : Hn(G,A)→ Hn(G,B).

Indeed, Hn(G, •) and Hn(G, •) are functors from the category of G-modules to the category
of abelian groups, and φn := Hn(G,φ) and φn := Hn(G,φ); see Lemma 23.6 and Defini-
tion 23.20. If ϕ : H → G is a group homomorphism and A is a G-module, then we can
give A the structure of an H-module by defining ha := ϕ(h)a, and if we write Hn(H,A)
or Hn(H,A) we understand that we are regarding A as an H-module with the H-action
induced by ϕ : H → G (if there is no ϕ in sight, it is inclusion).

The map ϕ induces a homomorphism from the standard resolution of Z by H-modules
to the standard resolution of Z by G-modules, and thus induces natural homomorphisms

ϕn : Hn(H,ResGH(A))→ Hn(G,A), and ϕn : Hn(G,A)→ Hn(H,ResGH(A)).

Definition 29.15. Let ϕ : H → G be a group homomorphism, let A be an H-module, and
let B be a G-module. If φ : A → B is a homomorphism of abelian groups that is also a
morphism of H-modules A → B (where the H-module structure on B is induced by ϕ)
then φ is compatible with ϕ. Similarly, if φ : B → A is a homomorphism of abelian groups
that is also a morphism of H-modules B → A then we say that φ is compatible with ϕ.

If φ : A→ B is compatible with ϕ : H → G then we obtain natural homomorphisms

Hn(H,A)
φn−→ Hn(H,B)

ϕn−→ Hn(G,B),

and for φ : B → A compatible with ϕ : H → G we have natural homomorphisms

Hn(G,B)
ϕn−→ Hn(H,B)

φn−→ Hn(H,A).

In other words, if we consider the category of group modules with morphisms defined by
compatible pairs (ϕ, φ) as above, we obtain functors from the category of group modules to
the category of abelian groups. We now apply this functor to some particular morphisms.

Definition 29.16. Let A be a G-module and let H be a subgroup of G. The homomor-
phisms Res: Hn(G,A) → Hn(H,A) and CoRes: Hn(H,A) → Hn(G,A) induced by the
inclusion ϕ : H ↪→ G and the compatible identity maps φ : A 
 A are restriction and
corestriction maps, respectively.

If α : A→ B is a morphism of G-modules, the induced morphisms αn and αn in cohomol-
ogy/homology will automatically commute with Res and CoRes, respectively, because we
defined them functorially. We can thus view Res and CoRes as morphisms (natural trans-
formations) of functors Res : Hn(G, •)→ Hn(H, •) and CoRes: Hn(H, •)→ Hn(G, •).3

3The • in Hn(H, •) is a G-module that is then viewed as an H-module, so here Hn(H, •) is a functor
from the category of G-modules to the category of abelian groups (as it should be).
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Example 29.17. In degree 0 we have

• Res: AG → AH is the inclusion map;

• CoRes: AH → AG is the quotient map;

Note that H0(G,A) = AG = A/IGA is naturally a quotient of H0(H,A) = AH = A/IHA,
since the Z[H]-ideal IH is contained in the Z[G]-ideal IG. If G is finite these maps induce
corresponding maps on Tate cohomology groups in degrees 0 and −1.

When G is finite the restriction and corestriction maps can be extended to maps defined
on Tate cohomology groups (of all degrees n ∈ Z) via dimension shifting. However, it will
be useful for us to explicitly define restriction on H0(G,A) and corestriction on H0(G,A)
(and it will give us a more general result).

Definition 29.18. Let A be a G-module, let H be a finite index subgroup of G. Let S ⊆ G
be a set of left coset representatives for H, and let NG/H ∈ Z[G] denote the sum of the

elements of S, and let N−1
G/H denote the sum of their inverses. We define

Res : H0(G,A)→ H0(H,A)

a+ IGA 7→ N−1
G/Ha+ IHA.

This map does not depend on the choice of S because (gh)−1a−g−1a = (h−1−1)g−1a ∈ IHA
for all g ∈ S, h ∈ H, a ∈ A. If α : A→ B is a morphism of G-modules then

α0(Res(a)) = N−1
G/Hα0(a) + IHB = Res(α(a))

so Res is a morphism of homology functors H0(G, •) → H0(H, •). We also note that if G
is finite then Res maps elements in the kernel of NG to elements in the kernel of NH , and
thus also defines a morphism of Tate homology functors Ĥ0(G, •)→ Ĥ0(H, •).

We also define

CoRes: H0(H,A)→ H0(G,A)

a 7→ NG/Ha.

This map does not depend on the choice of S because a ∈ H0(H,A) = AH is H-invariant.
As above, CoRes is a morphism of cohomology functors H0(H, •) → H0(G, •), and when
G is finite, a morphism of Tate cohomology functors Ĥ0(H, •)→ Ĥ0(G, •).

We extend these maps to all degrees n ≥ 0 as follows. We have the following commu-
tative diagram with exact rows arising from the long exact sequences in homology induced
by the exact sequence (3) applied to both G and H:

0 H1(G,A) H0(G, IG ⊗Z A) H0(G, IndG(A))

0 H1(H,A) H0(H, IG ⊗Z A) H0(H, IndG(A))

←→ ←→

←→ ∃! Res

←→

←→ Res ←→ Res

←→ ←→ ←→

The trivial groups on the left arise from the fact that the G-module IndG(A) has trivial
homology in degrees n ≥ 1 (both as a G-module and as an H-module) by Lemma 23.26,
and therefore H1(G, IndG(A)) = H1(H, IndG(A)) = 0.
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Having defined Res: H1(G,A) → H1(H,A) for all G-modules A, for each n ≥ 2 we
proceed as above, except now we get trivial groups on both the left and the right and this
is just dimension shifting (Theorem 29.9).

Extension of the corestriction map in cohomology to degrees n > 0 proceeds similarly:
we use a commutative diagram arising from the long exact sequence in cohomology induced
by the short exact sequence (4) to define CoRes: H1(H,A)→ H1(G,A), and use dimension
shifting in degrees n ≥ 2.

Remark 29.19. Having defined restriction and corestriction as morphisms of both homol-
ogy and cohomology functors, we can view them both as morphisms of families of homology
and cohomology functors, which we recall are δ-functors (see Definition 23.9), meaning that
they naturally transform short exact sequences of G-modules to long exact sequences in
homology and cohomology. Restriction and corestriction are both morphisms of δ-functors.
Verifying this involves checking compatibility with the connecting homomorphisms obtained
from the snake lemma; see the proof of Theorem 23.8 for an example of how this is done.
In the case of Tate cohomology one also needs to check compatibility with the connecting
homomorphism between cohomology groups in degrees −1 and 0; see the proof of Theo-
rem 23.32 for an example.

Remark 29.20. It is easy to verify that the restriction and corestriction functors are both
transitive with respect to the inclusionH ⊆ G. That is, ifH ⊆ K ⊆ G is a tower of subgroup
inclusions and ResGH denotes Res : Hn(G, •)→ Hn(H, •) or Res : Hn(G, •)→ Hn(H, •) then
ResGH = ResKH ◦ResGK , and a similar statement holds for corestriction. We won’t use this.

Proposition 29.21. Let A be a G-module and let H ≤ G be a subgroup of finite index.
The composition CoRes ◦Res corresponds to the multiplication-by-[G :H] endomorphism on
Hn(G,A) and Hn(G,A) for all n ≥ 0. When G is finite it induces multiplication-by-[G :H]
on Ĥn(G,A) for all n ∈ Z.

Proof. On H0(G,A) ' AG we have the map AG → AH → AG, where the first map is
inclusion and the second map is a 7→ NG/Ha, where NG/H ∈ Z[G] is the sum of any set

of left coset representatives for H. But for a ∈ AH multiplication by NG/H is the same as

multiplication by [G :H]. When G is finite the induced map on Ĥ0(G,A) = AG/NGA is
also multiplication by [G :H].

On H0(G,A) ' AG we have AG → AH → AG, the first map is a+IGA 7→ N−1
G/Ha+IHA

and the second quotienting by IGA. But (N−1
G/H − [G :H])a ∈ IGA, so this is also equivalent

to multiplication by [G :H].
If G is finite multiplication by [G : H] on AG induces multiplication by [G : H] on

AG/NGA = Ĥ0(G,A) and multiplication by by [G :H] on AG restricts to multiplication by
[G :H] on the kernel of NG : AG → AG, which is Ĥ0(G,A).

The proposition now follows by dimension shifting (Theorem 29.9).

Definition 29.22. Let A be a G-module and let H be a normal subgroup of G. Then
AH and AH are G-modules that are trivial as H-modules, hence G/H modules. The
homomorphisms Inf : Hn(G/H,AH) → Hn(G,A) induced by the quotient ϕ : G � G/H
and the compatible inclusion φ : AH ↪→ A are inflation maps. Replacing φ : AH ↪→ A with
the quotient map φ : A� AH yields coinflation maps CoInf : Hn(G,A)→ Hn(G/H,AH).

In degree zero inflation and coinflation are identity maps (note that (AH)G/H = AG

and (AH)G/H = AG). As with restriction and corestriction, if α : A→ B is a morphism of
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G-modules, the induced morphisms αn and αn in cohomology and homology commute with
Inf and CoInf (by functoriality), and we have morphisms of functors Inf : Hn(G/H, •H)→
Hn(G, •) and CoInf : Hn(G, •) → Hn(G/H, •H). One can show that they are also mor-
phisms of δ-functors (see Remark 29.19).

The restriction and inflation maps in cohomology are easy to understand explicitly.
If f : Gn → A is an n-cocycle representing γ ∈ Hn(G,A), restricting f to Hn ⊆ Gn

yields an n-cocycle representing Res(γ) ∈ Hn(H,A). If f : (G/H)n → AH represents
γ ∈ Hn(G/H,AH), then composing f with the map Gn → (G/H)n induced by the quotient
map G→ G/H yields an n-cocycle representing Inf(γ) ∈ Hn(G,A).

Theorem 29.23 (Inflation-Restriction). Let H be a normal subgroup of G, let A be
a G-module, and let n ≥ 1. Suppose H i(H,A) = 0 for 1 ≤ i < n. Then the sequence

0 −→ Hn(G/H,AH)
Inf−→ Hn(G,A)

Res−→ Hn(H,A)

is exact.

Proof. We proceed by induction on n ≥ 1. In the base case n = 1, and the hypothesis
is vacuously satisfied. Let f : G/H → AH be a 1-cocycle representing an element of the
kernel of Inf. The composition of f with G → G/H is a coboundary (g 7→ ga − a) with
a ∈ AH , so f = (ḡ 7→ ḡa − ḡ) is a coboundary and Inf : H1(G/H,AH) → H1(G,A) is
injective. Restricting the composition of a cocycle f : G/H → AH with G → G/H to H
yields a constant 1-cocycle, which must be the zero map; therefore im Inf ⊆ ker Res. Now
let f : G → A be a 1-cocycle representing an element in the kernel of Res. The restriction
of f to H is then a coboundary, which must be of the form h 7→ ha− a for some a ∈ A. If
we now define f̄ : Gn → A by f̄(g) := f(g)− ga+ a, then f̄ vanishes on all h ∈ H and

f̄(gh) = gf̄(h) + f̄(g) = f̄(g)

for all g ∈ G and h ∈ H, so f̄ factors through G/H. We also have

f̄(hg) = hf̄(g) + f̄(h) = hf̄(g),

so im f̄ ⊆ AH and f represents an element in the image of Inf. This proves the base case.
For the inductive step we apply dimension shifting. We can assume the theorem holds

in dimension n (for all G, H E G, A) and need to show that it holds in dimension n + 1.
By Theorem 29.9, we have H i+1(H,A) ' H i(H,HomZ(IG, A)) for all i > 0, so if A satisfies
the hypothesis of the theorem for n+ 1 then Hom(IG, A) satisfies it for n. Therefore

0 −→ Hn(G/H,HomZ(IG, A)H)
Inf−→ Hn(G,HomZ(IG, A))

Res−→ Hn(H,HomZ(IG, A))

is exact, by the inductive hypothesis. It follows that the isomorphic sequence

0 −→ Hn+1(G/H,AH)
Inf−→ Hn+1(G,A)

Res−→ Hn+1(H,A)

is also exact. Here we are using the fact that HomZ(IG, A)H ' HomZ(IG/H , A
H) as G/H-

modules and applying dimension shifting to the G/H-module AH as well.

Remark 29.24. There is is an analog of Theorem 29.23 that yields an exact sequence

Hn(G,A)
CoRes−→ Hn(H,A)

CoInf−→ Hn(G/H,AH) −→ 0.

in homology, but we will not use this.
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29.4 Tate’s theorem

Theorem 29.25. Let G be a finite group and let A be a G-module. If H1(H,A) = 0 and
H2(H,A) = 0 for every subgroup H ≤ G then Ĥn(G,A) = 0 for all n ∈ Z.

Proof. If G is cyclic then Ĥn(G,A) = Ĥn+2(G,A) for all n (by Theorem 23.37) and the
theorem follows.

If G is solvable it has a subnormal series 1 = H0 E H1 E · · · E Hn = G in which each
factor group Hi/Hi−1 is a non-trivial cyclic group. We proceed by induction on the length
of the shortest such series. The base case is covered by the cyclic case, so we now assume
that H is a normal subgroup of G with G/H cyclic and non-trivial. The hypothesis of the
theorem is satisfied by H (since we are assuming it holds for G), so Ĥn(H,A) = 0 for all
n ∈ Z, by the inductive hypothesis. If we now consider the inflation-restriction sequence,
for all n ≥ 1 we have an exact sequence

0 −→ Hn(G/H,AH)
Inf−→ Hn(G,A)

Res−→ Hn(H,A),

with Hn(H,A) = 0. Therefore Hn(G/H,AH) ' Hn(G,A) for n ≥ 1, so H1(G/H,AH) and
H2(G/H,AH) = 0 are both trivial and this implies that Ĥn(G/H,AH) = 0 for all n ∈ Z,
since G/H is cyclic, by Theorem 23.37. Thus Hn(G,A) = 0 for n ≥ 1. We also have
Ĥ0(G/H,AH) = (AH)G/H/NG/HA

H = 0 and Ĥ0(H,A) = AH/NHA = 0, so

AG = (AH)G/H = NG/HA
H = NG/HNHA = NGA,

and therefore Ĥ0(G,A) = 0. We use dimension shifting to address n < 0. By Theorem 29.9
we have Ĥn(H, IG ⊗Z A) ' Ĥn−1(H,A) for all H ≤ G, so IG ⊗Z A satisfies the hypothesis
of the the theorem, and by what we have proved so far, Ĥn(G, IG ⊗ A) = 0 for all n ≥ 0.
Therefore Ĥ−1(G,A) = Ĥ0(G, IG ⊗Z A) = 0. Repeating this argument addresses all n < 0.

If G is not solvable, we can assume that Ĥn(H,A) = 0 for every solvable subgroup
H ≤ G, since the hypothesis of the theorem holds for all such groups and we have now
proved that the theorem holds for solvable groups. So let H by a p-Sylow subgroup of G
(solvable, since it is a p-group), and consider the composition

Hn(G,A)
Res−→ Hn(H,A)

CoRes−→ Hn(G,A),

which by Proposition 29.21 is equivalent to multiplication by [G : H], but also the zero
map, since the middle group is trivial. So every element of Hn(G,A) has order dividing
[G :H], and this implies that Hn(G,A) contains no elements of order p. This holds for every
p-Sylow subgroup H ≤ G, so Hn(G,A) has no elements of prime order. But Hn(G,A) is
torsion, by Proposition 29.11, so it must be trivial.

Theorem 29.26 (Tate’s Theorem). Let G be a finite group and let A be a G-module
such that H1(H,A) = 0 and H2(H,A) is cyclic of order #H for every subgroup H ≤ G,
and let γ be a generator for H2(G,A). Then for all n ∈ Z there is an isomorphism

Φγ : Ĥn(G,Z)
∼−→ Ĥn+2(G,A)

that is uniquely determined by the choice of γ. The isomorphism Φγ is compatible with
restriction and corestriction; that is, for any subgroup H ≤ G, for all n ∈ Z we have
commutative diagrams
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Ĥn(G,Z) Ĥn+2(G,A)

Ĥn(H,Z) Ĥn+2(H,A)

←→
Φγ

←→ Res ←→ Res

←→
ΦRes(γ)

Ĥn(G,Z) Ĥn+2(G,A)

Ĥn(H,Z) Ĥn+2(H,A).

←→
Φγ

←→
ΦRes(γ)

← →CoRes ← →CoRes

Proof. Let ϕ : G2 → A be a 2-cocycle representing γ and define the G-module A(ϕ) as the
direct sum of the abelian group A and the free abelian group with basis {xg : g ∈ G−{1}},
where G acts on the image of ι : A ↪→ A(ϕ) as usual and

gxh := xgh − xg + ϕ(g, h),

where x1 := ϕ(1, 1). This is a group action because ϕ is a cocycle. Indeed, for g1, g2, h ∈ G:

g1g2xh − (g1g2)xh = g1(xg2h − xg2 + ϕ(g2, h))− xg1g2h + xg1g2 − ϕ(g1g2, h)

= xg1g2h − xg1 + ϕ(g1, g2h)− xg1g2 + xg1 − ϕ(g1, g2) + g1ϕ(g2, h)

− xg1g2h + xg1g2 − ϕ(g1g2, h)

= ϕ(g1, g2h)− ϕ(g1, g2) + g1ϕ(g2, h)− ϕ(g1g2, h)

= d2(ϕ)(g1, g2, h) = 0.

The 2-cocycle ι ◦ ϕ : G2 → A ↪→ A(ϕ) is the coboundary of the 1-cochain ψ : G → A(ϕ)
defined by g 7→ xg, since

d1(ψ)(g, h) = gxh − xgh + xg = xgh − xg + ϕ(g, h)− xgh + xg = ϕ(g, h),

so γ lies in the kernel of the map ι2 : H2(G,A)→ H2(G,A(ϕ)) induced by ι : A ↪→ A(ϕ); it
follows that ι2 is the zero map, since H2(G,A) = 〈γ〉.

We now define the map

φ : A(ϕ)→ Z[G]

a 7→ 0 (for a ∈ A)

xg 7→ g − 1 (for g ∈ G− {1}).

with kernel A and image IG (the augmentation ideal). We thus have a short exact sequence
of G-modules

0 −→ A
ι−→ A(ϕ)

φ−→ IG −→ 0, (5)

that is also a short exact sequence of H-modules for every subgroup H ≤ G.
For each subgroup H ≤ G the long exact sequence in Tate cohomology induced by the

short exact sequence 0 → IG → Z[G]
ε→ Z → 0 of H-modules has Ĥn(H,Z[G]) = 0 for all

n ∈ Z, since Z[G] is a free Z[H]-module, so for all n ∈ Z we have

Ĥn(H,Z) ' Ĥn+1(H, IG). (6)

In particular,

H2(H, IG) ' H1(H,Z) ' Hom(H,Z) = 0 (7)

H1(H, IG) ' Ĥ0(H,Z) ' ZH/NHZ = Z/(#H)Z, (8)

since Z is a trivial H-module (H1(H,Z) ' Hom(H,Z) because 1-coboundaries are trivial
and 1-cocycles are homomorphisms, and Hom(H,Z) = 0 because H is finite).
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For each subgroup H ≤ G, the long exact sequence in cohomology induced by (5)
contains the exact sequence

H1(H,A)
ι1→ H1(H,A(ϕ))

φ1→ H1(H, IG)
δ1→ H2(H,A)

ι2→ H2(H,A(ϕ))
φ2→ H2(H, IG)

We have H1(H,A) = 0, by hypothesis, and H2(H, IG) ' H1(H,Z) = 0 by (7). As shown
above, ι2 is the zero map, as is φ2, so H2(H,A(ϕ)) = 0. The connecting homomorphism
δ1 is surjective and therefore an isomorphism because H1(H, IG) and H2(H,A) are both
cyclic of order #H, by (8) and the hypothesis of the theorem. It follows that φ1 is the zero
map, and it is also injective (since H1(H,A) = 0), so H1(H,A(ϕ)) = 0. By Theorem 29.25,
we have Ĥn(G,A(ϕ)) = 0 for all n ∈ Z.

If we now consider the long exact sequence in Tate cohomology induced by (5), the
terms Ĥn(G,A(ϕ)) are all zero, so Ĥn(G, IG) ' Ĥn+1(G,A) for all n ∈ Z. Combining this
with (6), for every n ∈ Z we have isomorphims

Ĥn(G,Z)
δ̂−→ Ĥn+1(G, IG)

δ̂γ−→ Ĥn+2(G,A),

where δ̂ and δ̂γ are both connecting homomorphisms in long exact sequences in Tate co-

homology: δ̂ appears in the long exact sequence induced by 0 → IG → Z[G] → Z → 0,
while δ̂γ appears in the long exact sequence induced by 0 → A → A(ϕ) → IG → 0. The

isomorphism δ̂ is canonical, and δ̂γ depends only on the choice of γ (a different choice of the
2-cocycle ϕ representing γ would change A(ϕ), but it would not change any of the maps in
cohomology). We now define Φγ := δ̂γ ◦ δ̂.

Compatibility with restriction and corestriction follows from the fact that Φγ is defined
as a composition of connecting homomorphisms in Tate cohomology and restriction and
corestriction are both morphisms of δ-functors, as noted in Remark 29.19.

Remark 29.27. The isomorphism Φγ can also be defined using the cup product in Tate
cohomology; see Problem Set 1 for details. For our purposes it is more useful to spell out
the definition explicitly in terms of connecting homomorphisms. We will use the 2-cocycle
ϕ constructed in the proof of Tate’s theorem in our proof of local Artin reciprocity.
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