
18.785 Number Theory Fall 2025

Problem Set #9 Due: 11/19/2025

Description

These problems are related to Lectures 16–17. Your solutions should be written up in
latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve Problem 0, then pick any combination of problems that sum to 100
points. Collaboration is permitted/encouraged, but you must identify your collaborators
(including any LLMs you consulted) and any references you consulted outside the course
syllabus. Include this information after the Collaborators/Sources prompt at the end
of the problem set (if there are none, you should enter “none”, do not leave it blank).
Note that each student is expected to write their own solutions; it is fine to discuss
problems with others, but your writing must be your own.

Problem 0.

These are warm-up problems that do not need to be turned in.

(a) In class we gave an elementary proof that ϑ(x) = O(x). Give a similarly elementary
proof that x = O(ϑ(x)) (both bounds were proved by Chebyshev before the PNT).

(b) Prove the Möbius inversion formula, which states that if f and g are functions
Z≥1 → C that satisfy g(n) =

∑
d|n f(d) then f(n) =

∑
d|n µ(d)g(n/d), where

µ(n) := (−1)#{p|n} if n is squarefree and µ(n) = 0 otherwise.

Problem 1. The zeta function of Fq[t] (49 points)

Recall that for a number field K, the Dedekind zeta function ζK(s) is defined by

ζK(s) :=
∑
I

N(I)−s,

where I ranges over nonzero ideals of OK and N(I) is the absolute norm, which is just
the cardinality of the residue field OK/p when I is a prime ideal p.

The definition of N(p) := #OK/p as the cardinality of the residue field makes sense
in any global field and extends multiplicatively to all OK-ideals. In this problem you
will investigate the zeta function ζq(s) :=

∑
I N(I)

−s, where I ranges over nonzero ideals
of the ring of integers OK := Fq[t] of the rational function field K = Fq(t).

Remark. The zeta function ζK of a global function field K defined in Problem 4 differs
from the zeta function of its ring of integers OK , which is what we are considering here.

(a) Show that every nonzero OK-ideal has the form I = (f), with f ∈ Fq[t] monic, and
then N(I) = #(OK/fOK) = qdeg f . Then prove that ζq(s) =

1
1−q1−s for Re(s) > 1.

(b) Prove that ζq(s) has the Euler product

ζq(s) =
∏
p

(1−N(p)−s)−1,

valid for Re(s) > 1.
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(c) Prove that ζq(s) extends to a meromorphic function on C with a simple pole at
s = 1 and no zeros. Give the residue of the pole at s = 1.

(d) Define a completed zeta function Z(s) = G(s)ζq(s), where G(s) is a suitably chosen
meromorphic function, so that Z(s) satisfies the functional equation

Z(s) = Z(1− s)

with simple poles at s = 0, 1 and no other poles.

(e) Let ad denote the number of irreducible monic polynomials in Fq[t] of degree d.
Using (a) and (b), prove that ∑

d|n

dad = qn.

and use this to derive an explicit formula for an.

(f) Prove the prime number theorem for Fq[t], which states that

an =
qn

n
+O

(
1

n
qn/2

)
.

Remark. The error term in (f) is comparable to the error term in the PNT under the
Riemann hypothesis (replace qn with x); note that the analog of the Riemann hypothesis
for ζq(s) is (vacuously) true, by (c).

(g) Let S(n) be the set of monic polynomials of degree n in Fq[t], and let I(n) be the
subset of polynomials in S(n) that are irreducible. Show that #I(n)/#S(n) ∼ 1

n .
Now let R(n) be the subset of polynomials in S(n) that have no roots in Fq. Give
an asymptotic estimate for #R(n)/#S(n).

(h) Let Q(n) denote the subset of S(n) consisting of squarefree polynomials. Prove
limn→∞#Q(n)/#S(n) = 1/ζq(2) and derive an asymptotic estimate for this limit.

(i) For nonzero f ∈ OK define Φ via Φ(f) := #(OK/fOK)×. Prove the following

1. Φ(f) = N(f)
∏

p|f (1−N(p)−1), where p ranges over the irreducible factors of f .

2. For all f, g ∈ OK with (f, g) = 1 we have gΦ(f) ≡ 1 mod f .

Problem 2. Bernoulli numbers (49 points)

For integers n ≥ 0, the Bernoulli polynomials Bn(x) ∈ Q[x] are defined as the coefficients
of the exponential generating function

E(t, x) :=
tetx

et − 1
=

∑
n≥0

Bn(x)

n!
tn.

The Bernoulli numbers Bn ∈ Q are defined by Bn = Bn(0).

(a) Prove that B0(x) = 1, B′
n(x) = nBn−1(x), and Bn(1) = Bn(0) for n ̸= 1, and that

these properties uniquely determine the Bernoulli polynomials.
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(b) Prove that Bn(x+ 1)−Bn(x) = nxn−1 and

Bn(x+ y) =
n∑

k=0

(
n

k

)
Bk(x)y

n−k.

Use this to show that Bk can alternatively be defined by the recurrence B0 = 1 and

Bn = − 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk

for all n > 0, and show that Bn = 0 for all odd n > 1.

(c) Recall the hyperbolic cotangent function coth z := ez+e−z

ez−e−z . Prove that

z coth z =
∑
n≥0

B2n
(2z)2n

(2n)!
.

(d) Show that cot z = i coth iz and then derive (as Euler did) the identity

z cot z = 1− 2
∑
k≥1

z2

k2π2 − z2
.

(e) Use (c) and (d) to prove that for all n ≥ 1 we have

ζ(2n) = (−1)n−1 (2π)
2nB2n

2 · (2n)!
,

and then use the functional equation to prove that for all n ≥ 1 we have

ζ(−n) = −Bn+1

n+ 1
.

(f) Prove (rigorously!) that for any integer n > 1 the asymptotic density of integers
that are n-power free (not divisible by pn for any prime p) is 1/ζ(n) and compute
this density explicitly for n = 2, 4, 6.

(g) Prove that for all integer n,N > 1 we have

N−1∑
m=0

(m+ x)n−1 =
Bn(N + x)−Bn(x)

n
.

Use this to deduce Faulhaber’s formula

Pn(N) :=

N−1∑
m=1

mn =
1

n+ 1

n∑
k=0

(
n+ 1

k

)
BkN

n+1−k

for summing nth powers. Compute the polynomials Pn(N) explicitly for n = 2, 3, 4.
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Problem 3. Arithmetic functions and Dirichlet series (49 points)

Recall that an arithmetic function is a function a : Z≥1 → C; we say that a ̸= 0 is
multiplicative if a(mn) = a(m)a(n) holds for all relatively prime m,n, and totally multi-
plicative if this holds for all m,n. Below are some examples; as usual, p denotes a prime,
pe denotes a (nontrivial) prime power, and d|n indicates that d is a positive divisor of n.

• 0(n) = 0, 1(n) = 1, id(n) := n, e(n) := 0n−1;

• τ(n) := #{d|n}, σ(n) :=
∑

d|n d;

• ω(n) := #{p|n}, Ω(n) := #{pe|n}, ϕ(n) := #(Z/nZ)×;
• λ(n) := (−1)Ω(n), µ(n) := (−1)ω(n) · 0Ω(n)−ω(n), µ2(n) := µ(n)2.

The set of all arithmetic functions forms a C-vector space that we denote A. Associated
to each arithmetic function is a Dirichlet series

∑
n≥1 ann

−s defined by

Da(s) :=
∑
n≥1

a(n)n−s

The Dirichlet convolution a ∗ b of arithmetic functions a and b is defined by

(a ∗ b)(n) :=
∑
d|n

a(d)b(n/d),

For k ∈ Z≥0 we use f∗k to denote the k-fold convolution f ∗ · · · ∗ f , with f∗0 := e.

(a) For arithmetic functions a and b prove thatDa∗b = DaDb, and show that endowingA
with a multiplication defined by Dirichlet convolution makes A a C-algebra that is
isomorphic to the C-algebra of Dirichlet series (with the usual multiplication).

(b) Show that A is a local ring with unit group A× = {f ∈ A : f(1) ̸= 0} and maximal
ideal A0 = {f ∈ A : f(1) = 0}. Prove that the set of multiplicative functions M
forms a subgroup of A1 := {f ∈ A : f(1) = 1} ⊆ A×. Is this also true of the set of
totally multiplicative functions?

(c) Prove the following identities µ ∗ 1 = e, ϕ ∗ 1 = id, µ ∗ id = ϕ, 1 ∗ 1 = τ , id ∗1 = σ.
Use µ ∗ 1 = e to give a one-line proof of the Möbius inversion formula.

(d) For k ∈ Z≥1 define τk(n) :=
∑

n1n2···nk=n 1, so τ1 = 1 and τ2 = τ = 1 ∗ 1. Prove that
τk = 1∗k, and Dτk(s) = ζ(s)k, where ζ(s) =

∑
n≥1 n

−s is the Riemann zeta function.

(e) Define the exponential map exp: A → A by

exp(f) :=

∞∑
n=0

f∗n

n!
= e+ f +

f ∗ f
2

+ · · ·

Prove that exp defines a group isomorphism from (A0,+) to (A1, ∗) with inverse

log(f) :=

∞∑
n=1

(−1)n−1(f − e)∗n

n
.

(f) Define κ(n) to be 1/k if n = pk is a prime power and 0 otherwise (for us 1 is not a
prime power). Prove that expκ = 1, and deduce that exp(−κ) = µ and exp(2κ) = τ .

(g) Prove that each f ∈ A1 has a unique square-root g ∈ A1 for which g∗2 = f that we
denote f∗1/2. Prove that 1∗1/2 = exp(κ/2) and compute exp(κ/2)(n) for n up to 10.
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Problem 4. The Weil conjectures for global function fields (49 points)

Let K/Fq(t) be a global function field, with Fq algebraically closed in K. The divisor
group DivK is the free abelian group generated by the places of K; it consists of formal
sums

∑
P nPP over P ∈ MK in which only finitely many nP ∈ Z are nonzero. This is

the same as the group of MK-divisors we defined in Lecture 15, but here we view DivK
as an additive group and use P to denote a place rather than v.

Corresponding to each f ∈ K× we have a principal divisor

div(f) :=
∑
P

ordP (f)P,

where ordP : K× → Z is the discrete valuation corresponding to P , which we extend to
DivK by defining ordP (

∑
Q nQQ) = nP . Two divisors D1 and D2 are linearly equivalent

if D1 −D2 is a principal divisor, and we write D1 ∼ D2 to indicate this; this defines an
equivalence relation on DivK and we use [D] to denote the equivalence class of D.

The degree of a place P is the dimension of the residue field of the local field KP as
an Fq-vector space; it extends to a group homomorphism deg : DivK → Z whose kernel
contains the subgroup of principal divisors (by the product formula); the corresponding
quotient is denoted Pic0K. The norm of a divisor D is defined by N(D) := qdegD; when
D = P this is the cardinality of the residue field and if D is supported only on finite
places this agrees with the absolute norm defined in Problem 1.

We partially order divisors by defining

D1 ≤ D2 ⇐⇒ ordP (D1) ≤ ordP (D2) for all P ∈ MK .

A divisor D ≥ 0 is said to be effective. The zeta function of K is defined as a sum over
effective divisors

ζK(s) :=
∑
D≥0

N(D)−s =
∑
D≥0

q−sdeg(D)

The Weil conjectures (for global function fields) concern three properties of ζK(s):

• ζK(s) is a rational function of q−s.

• There is a functional equation that relates ζK(1− s) and ζK(s).

• The zeros of ζK(s) all lie on the line Re(s) = 1/2.

In this problem you will prove the first two; Weil proved the third in the 1940s, and a
generalization to algebraic varieties of higher dimension conjectured by Weil was proved
by Deligne in the 1970s.

Associated to each divisor D ∈ DivK is a Riemann-Roch space

L(D) := {f ∈ K× : div(f) ≥ −D} ∪ {0},

which is an Fq-vector space whose finite dimension we denote ℓ(D) ∈ Z≥0. The degree
degD and dimension ℓ(D) of a divisor D depend only on the divisor class [D] and are
related by the following theorem (which you are not asked to prove).

Theorem (Riemann-Roch). Let K be a global function field. There is an integer g ≥ 0
and divisor C ∈ DivK such that for all divisors D ∈ DivK we have

ℓ(D) = deg(D)− g + 1 + ℓ(C −D).
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(a) Prove that ℓ(C) = g and deg(C) = 2g − 2, and that for deg(D) ≥ 2g − 2 we have
ℓ(D) = deg(D)− g+1 unless D ∼ C. Conclude that both the integer g (the genus)
and the divisor class [C] (the canonical class) are uniquely determined.

(b) Prove that for any n ≥ 0 the number of effective divisors of degree n is finite, and
the number of divisor classes of degree n is finite (so in particular, the group Pic0K
of divisor classes of degree 0, is finite).

(c) Prove that for any divisor D the number of effective divisors in [D] is qℓ(D)−1
q−1 .

(d) Prove that the sum defining ζK(s) converges on Re(s) > 1 and we have an Euler
product

ζK(s) =
∏
P

(1−N(P )−s)−1.

(e) Let an be the number of effective divisors of degree n. Prove that

an =
∑

deg([D])=n

qℓ(D) − 1

q − 1
,

where the sum is over the divisor classes of degree n, and show that if we define
ZK(u) :=

∑
n≥0 anu

n then ζK(s) = ZK(q−s) for Re s > 1.

(f) Let eZ = deg(PicK). Prove there is a polynomial LK ∈ Z[u] of degree 2g for which

ZK(u) =
LK(ue)

(1− ue)(1− (qu)e)
,

and show that LK(0) = 1 and LK(1) = #Pic0K.

(g) For n ≥ 1 let Kn := K ⊗Fq Fqn . Show that ZKn(u
n) =

∏n
i=1 ZK(ζinu), where

ζn := e2πi/n, and use this to prove that we must have e = 1 in part (f).

(h) Prove that ZK(q−s) is meromorphic on C and thus provides an analytic continuation
of ζK(s) to C with simple poles at s = 0, 1. Are these the only poles?

(i) Let ξK(s) := q(g−1)sζK(s). Prove that ξK(s) satisfies the functional equation

ξK(1− s) = ξK(s).

Problem 5. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.

Collaborators/Sources
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