18.785 Number Theory Fall 2025
Problem Set #9 Due: 11/19/2025

Description

These problems are related to Lectures 16—17. Your solutions should be written up in
latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve Problem 0, then pick any combination of problems that sum to 100
points. Collaboration is permitted /encouraged, but you must identify your collaborators
(including any LLMs you consulted) and any references you consulted outside the course
syllabus. Include this information after the Collaborators/Sources prompt at the end
of the problem set (if there are none, you should enter “none”, do not leave it blank).
Note that each student is expected to write their own solutions; it is fine to discuss
problems with others, but your writing must be your own.

Problem 0.

These are warm-up problems that do not need to be turned in.

(a) In class we gave an elementary proof that J(x) = O(x). Give a similarly elementary
proof that = O(¥(z)) (both bounds were proved by Chebyshev before the PNT).

(b) Prove the Mdbius inversion formula, which states that if f and ¢ are functions
Z>1 — C that satisfy g(n) = > 4, f(d) then f(n) = > 4, n(d)g(n/d), where
p(n) := (=1)#PI"} if n is squarefree and p(n) = 0 otherwise.

Problem 1. The zeta function of F,[t] (49 points)
Recall that for a number field K, the Dedekind zeta function (x(s) is defined by

Ciels) = SN,
1

where I ranges over nonzero ideals of O and N([) is the absolute norm, which is just
the cardinality of the residue field Og /p when I is a prime ideal p.

The definition of N(p) := #Ok /p as the cardinality of the residue field makes sense
in any global field and extends multiplicatively to all Og-ideals. In this problem you
will investigate the zeta function (4(s) := > ; N(I)~*, where I ranges over nonzero ideals
of the ring of integers O := F[t] of the rational function field K = F,(¢).

Remark. The zeta function (i of a global function field K defined in Problem 4 differs
from the zeta function of its ring of integers O, which is what we are considering here.

(a) Show that every nonzero Og-ideal has the form I = (f), with f € F,[t] monic, and
then N(I) = #(Ok /fOk) = q%8/. Then prove that (,(s) = Tll_s for Re(s) > 1.

(b) Prove that (4(s) has the Euler product

Gols) =TT =N@) ™),

p
valid for Re(s) > 1.
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(c) Prove that (4(s) extends to a meromorphic function on C with a simple pole at
s = 1 and no zeros. Give the residue of the pole at s = 1.

(d) Define a completed zeta function Z(s) = G(s)(,(s), where G(s) is a suitably chosen
meromorphic function, so that Z(s) satisfies the functional equation

Z(s)=2(1-3s)
with simple poles at s = 0,1 and no other poles.
(e) Let aq denote the number of irreducible monic polynomials in F,[t] of degree d.
Using (a) and (b), prove that
Z dad = q".
dln
and use this to derive an explicit formula for a,,.
(f) Prove the prime number theorem for F,[t], which states that

n n

Remark. The error term in (f) is comparable to the error term in the PNT under the
Riemann hypothesis (replace ¢ with x); note that the analog of the Riemann hypothesis
for (4(s) is (vacuously) true, by (c).

(g) Let S(n) be the set of monic polynomials of degree n in F,[t], and let I(n) be the
subset of polynomials in S(n) that are irreducible. Show that #I(n)/#S(n) ~ .
Now let R(n) be the subset of polynomials in S(n) that have no roots in F,. Give
an asymptotic estimate for #R(n)/#S(n).

(h) Let Q(n) denote the subset of S(n) consisting of squarefree polynomials. Prove
limy, 00 #Q(n)/#S(n) = 1/(,(2) and derive an asymptotic estimate for this limit.

i) For nonzero f € Ok define ® via ®(f) := #(Ok/fOk)*. Prove the following
(i)

L ©(f) =N() I, 1 - N(p)~1), where p ranges over the irreducible factors of f.
2. For all f,g € Ok with (f,g) = 1 we have g®) = 1 mod f.

Problem 2. Bernoulli numbers (49 points)

For integers n > 0, the Bernoulli polynomials By (z) € Q[z] are defined as the coefficients
of the exponential generating function

tel® Bn(z) ,
E(t,z) = - :go p t".

The Bernoulli numbers B, € Q are defined by B,, = B, (0).

(a) Prove that By(z) = 1, Bl,(z) = nBy_1(z), and B, (1) = B,(0) for n # 1, and that

these properties uniquely determine the Bernoulli polynomials.



(b)

(c)

(d)

(e)

(f)

(g)

Prove that By (z + 1) — Bp(7) = nz" ! and

By(z+y) = Z (Z) By (x)y" .

k=0

Use this to show that By can alternatively be defined by the recurrence By = 1 and

n—1
1 n+1
B, =— B
n—i—lZ( k > y

k=0

for all n > 0, and show that B, = 0 for all odd n > 1.

Recall the hyperbolic cotangent function coth z := 22“’_2. Prove that

zZ_e—2

(22)271
zcothz = By, ——.
HZZ% (2n)!

Show that cot z = icothiz and then derive (as Euler did) the identity
2

z

zcotz=1-—2 —_—.
2: 2.2 _ .2

k21k7r z

Use (c¢) and (d) to prove that for all n > 1 we have

B e (27r)2”B "
¢(2n) = (-1) lﬁ%ﬁ,

and then use the functional equation to prove that for all n > 1 we have

Bn+1
n+1

¢(—n) = -

Prove (rigorously!) that for any integer n > 1 the asymptotic density of integers
that are n-power free (not divisible by p" for any prime p) is 1/{(n) and compute
this density explicitly for n = 2,4, 6.

Prove that for all integer n, N > 1 we have
N—1

m=0

Use this to deduce Faulhaber’s formula

pley n 1 . n+ 1 n+1—k
PyN):=Y) m"= HHZ . )BiN
k=0

—_

m=

for summing nth powers. Compute the polynomials P, (V) explicitly for n = 2,3, 4.



Problem 3. Arithmetic functions and Dirichlet series (49 points)

Recall that an arithmetic function is a function a: Z>; — C; we say that a # 0 is
multiplicative if a(mn) = a(m)a(n) holds for all relatively prime m,n, and totally multi-
plicative if this holds for all m,n. Below are some examples; as usual, p denotes a prime,
p¢ denotes a (nontrivial) prime power, and d|n indicates that d is a positive divisor of n.

¢ 0(n)=0, 1(n)=1, id(n) :=n, e(n):=0""1

o () = #{dIn}, o(n) = Sy d

o w(n):=#{pln}, Qn):=#{pIn}, ¢(n) :=#(Z/nZ)*;

o A(n):= (=1)*™), p(n) = (=1)°) . 0902 2 (n) = pu(n)*.

The set of all arithmetic functions forms a C-vector space that we denote A. Associated
to each arithmetic function is a Dirichlet series }_,~; ann™° defined by

D,(s) := Z:a(n)n_S
n>1
The Dirichlet convolution a * b of arithmetic functions a and b is defined by
(axb)(n) := Y a(d)b(n/d),
din
For k € Z>¢ we use f** to denote the k-fold convolution f x---* f, with f*0 :=e.
(a) For arithmetic functions a and b prove that D,., = D, Dy, and show that endowing A

with a multiplication defined by Dirichlet convolution makes A a C-algebra that is
isomorphic to the C-algebra of Dirichlet series (with the usual multiplication).

(b) Show that A is a local ring with unit group A* = {f € A: f(1) # 0} and maximal
ideal Ag = {f € A: f(1) = 0}. Prove that the set of multiplicative functions M
forms a subgroup of A; :={f € A: f(1) =1} C A*. Is this also true of the set of
totally multiplicative functions?

(c) Prove the following identities px1 =€, ¢ x 1 =id, p*xid =¢, 1 x1 =7, idx1 = 0.
Use u * 1 = e to give a one-line proof of the Mébius inversion formula.

(d) For k € Z>; define 7 (n) := znmmnk:n 1,s0m =1and 7 = 7 = 1x1. Prove that
7 = 1** and D,,_(s) = ((s)¥, where ((s) = > n>1 1 is the Riemann zeta function.

(e) Define the exponential map exp: A — A by

exp(f) =3 L e g DL
n=0 ’

Prove that exp defines a group isomorphism from (Ap,+) to (A1, *) with inverse

X 1\yn—1 —e)*n

n

n=1

(f) Define x(n) to be 1/k if n = p* is a prime power and 0 otherwise (for us 1 is not a
prime power). Prove that exp k = 1, and deduce that exp(—«) = p and exp(2k) = 7.

(g) Prove that each f € A; has a unique square-root g € A; for which ¢*2 = f that we
denote f*/2. Prove that 1*'/2 = exp(x/2) and compute exp(x/2)(n) for n up to 10.



Problem 4. The Weil conjectures for global function fields (49 points)

Let K/F4(t) be a global function field, with F, algebraically closed in K. The divisor
group Div K is the free abelian group generated by the places of K; it consists of formal
sums Y pnpP over P € Mg in which only finitely many np € Z are nonzero. This is
the same as the group of Mg-divisors we defined in Lecture 15, but here we view Div K
as an additive group and use P to denote a place rather than v.

Corresponding to each f € K* we have a principal divisor

div(f) := Z ordp(f)P,
P

where ordp: K* — Z is the discrete valuation corresponding to P, which we extend to
Div K by defining ordp (> nq@) = np. Two divisors Dy and D; are linearly equivalent
if D1 — Dy is a principal divisor, and we write D1 ~ Dy to indicate this; this defines an
equivalence relation on Div K and we use [D] to denote the equivalence class of D.

The degree of a place P is the dimension of the residue field of the local field Kp as
an [F,-vector space; it extends to a group homomorphism deg: Div K — Z whose kernel
contains the subgroup of principal divisors (by the product formula); the corresponding
quotient is denoted Pic® K. The norm of a divisor D is defined by N(D) := ¢4°&P; when
D = P this is the cardinality of the residue field and if D is supported only on finite
places this agrees with the absolute norm defined in Problem 1.

We partially order divisors by defining

D1 < Do <~ Ordp(Dl) < OI‘dp(DQ) for all P € Mk.

A divisor D > 0 is said to be effective. The zeta function of K is defined as a sum over
effective divisors
Grls) = YN(D) = 3 gt
D>0 D>0
The Weil conjectures (for global function fields) concern three properties of (x(s):

e (x(s) is a rational function of ¢~*.

e There is a functional equation that relates (i (1 — s) and (x(s).
e The zeros of (i (s) all lie on the line Re(s) = 1/2.

In this problem you will prove the first two; Weil proved the third in the 1940s, and a
generalization to algebraic varieties of higher dimension conjectured by Weil was proved
by Deligne in the 1970s.

Associated to each divisor D € Div K is a Riemann-Roch space
L(D):={f e K* :div(f) > =D} U {0},

which is an [Fg-vector space whose finite dimension we denote /(D) € Z>g. The degree
deg D and dimension ¢(D) of a divisor D depend only on the divisor class [D] and are
related by the following theorem (which you are not asked to prove).

Theorem (Riemann-Roch). Let K be a global function field. There is an integer g > 0
and divisor C' € Div K such that for all divisors D € Div K we have

(D) =deg(D) —g+1+4(C — D).



(a)

(b)

(c)
(d)

(e)

(f)

(g)

(h)

(i)

Prove that ¢(C) = g and deg(C') = 2g — 2, and that for deg(D) > 2g — 2 we have
(D) = deg(D)— g+ 1 unless D ~ C. Conclude that both the integer g (the genus)
and the divisor class [C] (the canonical class) are uniquely determined.

Prove that for any n > 0 the number of effective divisors of degree n is finite, and
the number of divisor classes of degree n is finite (so in particular, the group Pic® K
of divisor classes of degree 0, is finite).

¢ (P)—1
q—1

Prove that for any divisor D the number of effective divisors in [D] is

Prove that the sum defining (x(s) converges on Re(s) > 1 and we have an Euler
product

Cr(s) =[]0 - NPy~

P

Let a, be the number of effective divisors of degree n. Prove that
gD —1

ap = E D

aee((Dp=n ¢
where the sum is over the divisor classes of degree n, and show that if we define
Zg(u) =) ,50anu™ then (k(s) = Zk(q~°) for Res > 1.
Let eZ = deg(Pic K). Prove there is a polynomial Lg € Z[u] of degree 2g for which
L (u®)
(1 —ue) (1 = (qu)*)’
and show that L (0) =1 and Lx (1) = #Pic® K.

ZK(U) =

For n > 1 let K, := K ®g, Fgn. Show that Zg, (u") = [ Zk(¢iu), where
o == €2™/" and use this to prove that we must have e = 1 in part (f).

Prove that Zx (g~*) is meromorphic on C and thus provides an analytic continuation
of (x(s) to C with simple poles at s =0, 1. Are these the only poles?

Let £ (s) := q9=D3Ck(s). Prove that £k (s) satisfies the functional equation
Ex(l—s) =Ex(s).

Problem 5. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing” ),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest | Difficulty | Time Spent

Problem 1
Problem 2
Problem 3
Problem 4

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.

Collaborators/Sources



