
18.785 Number Theory Fall 2025

Problem Set #8 Due: 11/12/2025

Description

These problems are related to Lectures 12–15. Your solutions should be written up in
latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve Problem 0, then pick any combination of problems that sum to 100
points. Collaboration is permitted/encouraged, but you must identify your collaborators
(including any LLMs you consulted) and any references you consulted outside the course
syllabus. Include this information after the Collaborators/Sources prompt at the end
of the problem set (if there are none, you should enter “none”, do not leave it blank).
Note that each student is expected to write their own solutions; it is fine to discuss
problems with others, but your writing must be your own.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) Prove that a cubic field K is Galois if and only if DK is a perfect square.

(b) Prove that our two definitions of a lattice Λ in V ≃ Rn are equivalent: Λ is a Z-
submodule generated by an R-basis for V if and only if it is a discrete cocompact
subgroup of V .

(c) Let n ∈ Z>0 and assume n2 − 1 is squarefree. Prove that n +
√
n2 − 1 is the

fundamental unit of Q(
√
n2 − 1).

Problem 1. Classification of global fields (66 points)

Let K be a field and let MK be the set of places of K (equivalence classes of nontrivial
absolute values). We say that K has a (strong) product formula if MK is nonempty for
each v ∈ MK there is an absolute value | |v in its equivalence class and a positive real
number mv such that for all x ∈ K× we have∏

v∈MK

|x|mv
v = 1,

where all but finitely many factors in the product are equal to 1. Equivalently, if we fix
normalized absolute values ∥ ∥v := |x|mv

v for each v ∈ MK , then for all x ∈ K× we have∏
v∈MK

∥x∥v = 1,

with ∥x∥v = 1 for all but finitely many v ∈ MK .

Definition. A field K is a global field if it has a product formula and the completion
Kv of K at each place v ∈ MK is a local field.

In Lectures 10 and 13 we proved every finite extension of Q and Fq(t) is a global
field. In this problem you will prove the converse, a result due to Artin and Whaples [1].
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Let K be a global field with normalized absolute values ∥ ∥v for v ∈ MK that satisfy
the product formula. As we defined in lecture, an MK-divisor is a sequence of positive
real numbers c = (cv) indexed by v ∈ MK with all but finitely many cv = 1 such that
for each v ∈ MK there is an x ∈ K×

v for which cv = ∥x∥v. For each MK-divisor c we
define the set

L(c) := {x ∈ K : ∥x∥v ≤ cv for all v ∈ MK}.

(a) Let E/F be a finite Galois extension. Prove E is a global field if and only if F is.

(b) Extend your proof of (a) to all finite extensions E/F .

(c) Prove that MK is infinite but contains only finitely many archimedean places.

(d) Assume K has an archimedean place. Prove that L(c) is finite for every MK-
divisor c (we proved this in class for number fields, but here K is a global field as
defined above).

(e) Extend your proof of (d) to the case where K has no archimedean places.

(f) Prove that if MK contains an archimedean place then K is a finite extension of Q
(hint: show Q ⊆ K and use (d) to show that K/Q is a finite extension).

(g) Prove that ifMK does not contain an archimedean place thenK is a finite extension
of Fq(t) for some finite field Fq (hint: by choosing an appropriate MK-divisor c,
show that L(c) is a finite field k ⊆ K and that every t ∈ K − k is transcendental
over k; then show that K is a finite extension of k(t)).

(h) In your proofs of (a)-(g) above, where did you use the fact that the completions
of K are local fields? Show that if K has a product formula and Kv is a local field
for any place v ∈ MK then Kv is a local field for every place v ∈ MK (so we could
weaken our definition of a global field to only require one Kv to be a local field).
Are there fields with a product formula for which no completion is a local field?

Problem 2. Finiteness of global class groups (66 points)

A commutative ring R with finite quotients by all nonzero ideals is a finite quotient
domain; to rule out trivial cases we further assume R is not a field. For such R we define
the absolute ideal norm NR(I) := #R/I for each nonzero R-ideal I, let NR((0)) := 0,
and put NR(r) := NR((r)) for r ∈ R.

Recall our standard AKLB assumption: A is a Dedekind domain, K is its fraction
field, L/K is finite separable, and B is the integral closure of A in L.

(a) Assume AKLB. Show that if A is a finite quotient domain then so is B, and we
have the identity NB(α) = NA(NL/K(α)) for all α ∈ B.

Definition. A PID is basic if it is a finite quotient domain and ∃c1, c2 ∈ Z>0 such that

(i) #{x ∈ A : NA(x) ≤ c1m} ≥ m for all integers m,

(ii) NA(x+ y) ≤ c2(NA(x) + NA(y)) for all x, y ∈ A.
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(b) Show that Z is a basic PID but Z[
√
5] is not. Is Z[i] a basic PID?

(c) Show that Fq[t] is a basic PID.

Definition. A global Dedekind domain (over A) is a Dedekind domain that is free of
finite rank as a module over a subring A that is a basic PID.

(d) Assume AKLB. Show that if A is a basic PID then B is a global Dedekind domain.
Conclude that every global field is the fraction field of a global Dedekind domain.

(e) Let B be a global Dedekind domain over a basic PID A and let e1, . . . en be an
A-basis for B. Prove there exists a homogeneous f ∈ A[x1, . . . , xn] of degree n
such that for any α ∈ B,

NL/K(α) = f(a1, . . . , an),

where α = a1e1 + · · · anen with ai ∈ A. Prove there exists c ∈ Z>0 such that

NB(α) ≤ cmax(NA(a1), . . . ,NA(an))
n

for all α = a1e1 + · · · anen ∈ B.

(f) Let B be a global Dedekind domain. Prove that there is a real number m such that
for every nonzero B-ideal I there is a nonzero α ∈ I for which NB(α) ≤ mNB(I).

(g) Prove that the ideal class group of a global Dedekind domain over Z or Fq(t) is
finite (in fact all global Dedekind domains are global Dedekind domains over one
of these basic PIDs, but you are not asked to prove this).

Remark. Given (d) and the terminology we have chosen, you might wonder if the
fraction field of a global Dedekind domain is necessarily a global field. The answer is
yes! You can find a proof of this in [2, §4], but I urge you to wait until you have solved
this problem before reading it (this problem is adapted from [2, §2-3] and [3, §3]).

Problem 3. Some applications of the Minkowski bound (33 points)

For a number field K, let

mK :=
n!

nn

(
4

π

)s√
|DK |

denote the Minkowski constant and let hK := #clOK denote the class number. You may
wish to use a computer to help with some of the calculations involved in this problem,
but if you do so, please describe your computations (preferably in words or pseudo-code).

(a) Prove that if OK contains no prime ideals p of norm N(p) ≤ mK other than inert
primes, then hK = 1, and show that when K is an imaginary quadratic field the
converse also holds.

(b) Let K be an imaginary quadratic field. Show that if hK = 1 then |DK | is a power
of 2 or a prime congruent to 3 mod 4, and then determine all imaginary quadratic
fields K of class number one with |DK | < 200 (this is in fact all of them).
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(c) Prove that there are no totally real cubic fields of discriminant less than 20 and that
every totally real cubic field K with DK < M can be written as K = Q(α), where α
is an algebraic integer with minimal polynomial x3+ ax2+ bx+ c whose coefficients
satisfy |a| <

√
M + 2, |b| < 2

√
M + 1, and |c| <

√
M .

(d) Determine all totally real cubic fields K that are ramified only at a prime p < 10
and give a defining polynomial for each field that arises. You may find the Sage
function pari.polredabs useful: given a monic irreducible polynomial in Z[x]
it will output another monic irreducible polynomial that defines the same number
field but may have smaller discriminant (it will never be larger).

Problem 4. Minkowski’s lemma and sums of four squares (33 points)

Minkowski’s lemma (for Zn) states that if S ⊆ Rn is a symmetric convex set of volume
µ(S) > 2n then S contains a nonzero element of Zn.

Here symmetric means that S is closed under negation, and convex means that for
all x, y ∈ S the set {tx+ (1− t)y : t ∈ [0, 1]} lies in S.

(a) Prove that for any measurable S ⊆ Rn with measure µ(S) > 1 there exist distinct
s, t ∈ S such that s− t ∈ Zn, then prove Minkowski’s lemma.

(b) Prove that Minkowski’s lemma is tight in the following sense: show that it is false if
either of the words “symmetric” or “convex” is removed, or if the strict inequality
µ(S) > 2n is weakened to µ(S) ≥ 2n (give three explicit counter examples).

(c) Prove that one can weaken the inequality µ(S) > 2n in Minkowski’s lemma to
µ(S) ≥ 2n if S is assumed to be compact.

You will now use Minkowski’s lemma to prove a theorem of Lagrange, which states
that every positive integer is a sum of four integer squares. Let p be an odd prime.

(d) Show that x2 + y2 = a has a solution (m,n) in F2
p for every a ∈ Fp.

(e) Let V be the Fp-span of {(m,n, 1, 0), (−n,m, 0, 1)} in F4
p, where m2 + n2 = −1.

Prove that V is isotropic, meaning that v21 + v22 + v23 + v24 = 0 for all v ∈ V .

(f) Use Minkowski’s lemma to prove that p is a sum of four squares.

(g) Prove that every positive integer is the sum of four squares.

Problem 5. Unit groups of real quadratic fields (66 points)

A (simple) continued fraction is a (possibly infinite) expression of the form

a0 +
1

a1 +
1

a2 + · · ·

with an ∈ Z and an > 0 for n > 0. They are more compactly written as (a0; a1, a2, . . .).
For any t ∈ R>0 the continued fraction expansion of t is defined recursively via

t0 := t, an := ⌊tn⌋, tn+1 := 1/(tn − an),
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where the sequence a(t) := (a0; a1, a2, . . .) terminates at an if tn = an, in which case we
say that a(t) = (a0; a1, . . . , an) is finite, and otherwise call a(t) = (a0; a1, a2, . . .) infinite.
If a(t) is infinite and there exists ℓ ∈ Z>0 such that an+ℓ = an for all sufficiently large n,
we say that a(t) is periodic and call the least such integer ℓ := ℓ(t) the period of a(t).

For an infinite continued fraction a(t) := (a0; a1, a2, . . .), we define Pn, Qn ∈ Z≥0 via

P−2 = 0, P−1 = 1, Pn = anPn−1 + Pn−2;

Q−2 = 1, Q−1 = 0, Qn = anQn−1 +Qn−2.

Note that Pn+2 > Pn+1 ≥ Pn > 0 and Qn+1 > Qn ≥ Qn−1 > 0 for all n ≥ 1.

(a) Prove that a(t) is finite if and only if t ∈ Q, in which case t = a(t).

(b) Prove that if a(t) is infinite then for all n ≥ 0 we have

Pn−2Qn−1 − Pn−1Qn−2 = ±1 and t =
tnPn−1 + Pn−2

tnQn−1 +Qn−2
.

(c) Prove that if a(t) is infinite then Pn/Qn = (a0; a1, . . . , an) with |Q2
nt−PnQn| < 1 and

a(tn) = (an; an+1, an+2, . . .), for all n ≥ 0. Conclude that t = limn→∞ Pn/Qn = a(t).

(d) Prove that if a(t) is infinite then for any P,Q ∈ Z>0 with |tQ − P | < 1/(2Q) we
have P/Q = Pn/Qn for some n ≥ 0.

(e) Prove that a(t) is periodic if and only if t is a real quadratic irrational.
(Hint: show that if At2 +Bt+C = 0 with A,B,C ∈ Z then Ant

2
n +Bntn +Cn = 0

with An, Bn, Cn ∈ Z and B2
n−4AnCn = B2−4AC and |An|, |Cn| ≤ 2|At|+|A|+|B|).

Definition. Let t be a real quadratic irrational with Galois conjugate t′ and continued
fraction a(t) = (a0; a1, a2, . . .) of period ℓ = ℓ(t). We say that t is purely periodic if we
have ai = aℓ+i for all i ≥ 0 and call t reduced if t > 1 and −1 < t′ < 0,

(f) Prove that a real quadratic irrational t is reduced if and only if it is purely periodic.

Now let D > 0 be a squarefree integer that is not congruent to 1 mod 4 and let
K = Q(

√
D). As shown on previous problem sets, OK = Z[

√
D], and it is clear that

(O×
K)tors = {±1}. Every α = x + y

√
D ∈ O×

K has N(α) = ±1, and (x, y) is thus an
(integer) solution to the Pell equation

X2 −DY 2 = ±1 (1)

(g) Prove that if (x1, y1) and (x2, y2) are solutions to (1) with x1, y1, x2, y2 ∈ Z>0 then
x1 + y1

√
D < x2 + y2

√
D if and only if x1 < x2 and y1 ≤ y2. Conclude that the

fundamental unit ϵ = x + y
√
D of O×

K is the unique solution (x, y) to (1) with
x, y > 0 and x minimal.

(h) Let a(
√
D) = (a0; a1, a2, . . .), define tn, Pn, Qn as above, and let ℓ := ℓ(

√
D). Prove

that (Pkℓ−1, Qkℓ−1) is a solution to (1) for all k ≥ 0 and that ϵ = Pℓ−1 +Qℓ−1

√
D.

(i) Compute the fundamental unit ϵ for each of the real quadratic fields Q(
√
19),

Q(
√
570), and Q(

√
571); in each case give the period ℓ(

√
D) as well as ϵ.
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Problem 6. S-class groups and S-unit groups (33 points)

Let K be a number field with ring of integers OK , and let S be a finite set of places of K
including all archimedean places. Define the ring of S-integers OK,S as the set

OK,S := {x ∈ K : vp(x) ≥ 0 for all p ̸∈ S}.

(a) Prove that OK,S is a Dedekind domain containing OK with the same fraction field.

(b) Define a natural homomorphism between clOK,S and clOK (it is up to you to
determine which direction it should go) and use it to prove that clOK,S is finite.

(c) Prove that there is a finite set S for which OK,S is a PID and give an explicit upper
bound on #S that depends only on n = [K : Q] and |discOK |.

(d) Prove the S-unit theorem: O×
K,S is a finitely generated abelian group of rank #S−1.

Problem 7. Survey (1 point)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.

Collaborators/Sources:
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