18.785 Number Theory Fall 2025
Problem Set #6 Due: 10/24/2025

Description

These problems are related to Lectures 9-11. Your solutions should be written up in
latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve Problem 0, then pick any combination of problems that sum to 100
points. Collaboration is permitted /encouraged, but you must identify your collaborators
(including any LLMs you consulted) and any references you consulted outside the course
syllabus. Include this information after the Collaborators/Sources prompt at the end
of the problem set (if there are none, you should enter “none”, do not leave it blank).
Note that each student is expected to write their own solutions; it is fine to discuss
problems with others, but your writing must be your own.

Problem 0.

These are warm-up problems that do not need to be turned in.

(a) Prove (1) all local fields have the same cardinality, (2) all global fields have the same
cardinality, (3) completing a field with cardinality at least #R does not change its
cardinality, (4) taking the algebraic closure of an infinite field does not change its
cardinality.

(b) Prove that an open subgroup of a topological group is always closed, but a closed
subgroup need not be open (give an explicit example).

(c) Prove that there are exactly two non-isomorphic cubic extensions of Qs.

Problem 1. Complete algebraically closed fields (66 points)

The field of complex numbers has the virtue of being both complete and algebraically
closed. One might ask whether there are any nonarchimedean fields with this property.
We proved in lecture that every finite extension of QQ, is a local field, and in particular,
complete. In this problem you will prove that the algebraic closure @p of Q, is not
complete, but the completion C, of @p is both complete and algebraically closed.

(a) Prove that if K is a complete perfect field with nonarchimedean absolute value | |
and algebraic closure K then there is a unique absolute value on K that restricts
to | | (so we may unambiguously view K as a field with absolute value | |). You
may assume that (all variants of ) Hensel’s lemma hold for any complete field with
a nonarchimedean absolute value (the valuation ring need not be discrete).

(b) Let Zy := {z € Q, : |z[, < 1} be the valuation ring of Q,, with maximal ideal
m:={z € Q, : |z], < 1}. Prove that Z,/m is an infinite algebraic extension of F,,
and that it is algebraically closed (hence we may denote it F)).

(c) Prove that the image of | |,: @; — R is the set p@ of fractional powers of p.
Conclude that Z, is not a DVR.
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(d) Prove that Zj, is not compact and Q,, is not locally compact (unlike Z, and Q,).

Recall that a Baire space is a topological space in which every countable intersection
of open dense sets is dense. The Baire Category Theorem states that every complete
metric space (and also every locally compact Hausdorff space) is a Baire space.

(e) Let X, :={z €Q,: [Qp(@ : Qp] < n}. Show that X, is a closed set whose interior
is empty. Conclude that @, is not a Baire space and therefore not complete.

(f) Prove the following form of KRASNER'S LEMMA: Let K be a complete perfect
field with nontrivial nonarchimedean absolute value | | and algebraic closure K, let
a € K, and let

e:=min{|a —o(a)|: 0 € Gal(K/K),o(a) # a}.
Then K(a) C K(B) for all § € B..(a).

(g) Prove the following form of CONTINUITY OF ROOTS: Let K be a complete perfect
field with nontrivial nonarchimedean absolute value | | and algebraic closure K,
and let @ € K have minimal polynomial f(z) = > I, fiz" € K|[z]. Prove that
for every € > 0 there is a § > 0 such that if g(z) = Y. ; gz’ € K] is a monic
polynomial with ). |g; — fi| < 0 then g(x) has a root § for which |a — | < e.

(h) Prove that if K is a complete perfect field with a nontrivial nonarchimedean abso-
lute value then the completion of its algebraic closure is algebraically closed (so in
particular, C, is algebraically closed).

Remark: The simplifying assumption that K is perfect is not necessary; one can prove
alternative versions of (f) and (g) that do not assume K is perfect but still imply (h).

Problem 2. Finite extensions of local fields (66 points)

If K is an archimedean local field, then either K = R, in which case K has exactly
one nontrivial finite extension (up to isomorphism), or K = C, in which case K has no
nontrivial finite extensions. So let us assume that K is a nonarchimedean local field;
then K is a finite extension of Q, or a finite extension of F,,((¢)). For a positive integer n,
we wish to determine the number of degree-n extensions of K (which we count only up
to isomorphism). Let A be the valuation ring of K, and let E, be the set of Eisenstein
polynomials f € A[x] of degree n.

First consider the case where K is a finite extension of Q,:

(a) Show that there is a natural topology on E,, induced by the topology on A and
that F, is compact in this topology.

(b) Prove that for any finite extension L/K, the set
{f € En: K[z]/(f(z)) ~ L}
is open in the topology on E,,.

(c) Prove that K has only finitely many totally ramified extensions of degree n.



(d) Prove that K has only finitely many extensions of degree n.

(e) Derive a formula for the number of degree-g extensions of Q, (up to isomorphism),
where p and ¢ are distinct primes.

Now consider the case where K is a finite extension of F,,((t)):

(f) Show that K has infinitely many non-isomorphic extensions of degree n, for some n
(hint: consider extensions Kz|/(f(z)) with f(z) = 2P —  — « for some «a € K).

(g) Why does your proof above for finite extensions of Q, not apply here? Pinpoint
exactly where the proof breaks down when Q, is replaced by F,((t)).

Problem 3. Completions of F,(¢) (33 points)

Recall from Problem 2 of Problem Set 1 that the absolute values | | on Fy(t) all arise
from discrete valuations, all but one of which corresponds to a prime ideal of Fy[t] that
we can uniquely identify by a monic irreducible polynomial 7; let us use @ = oo to
denote the other discrete valuation v (f) := — deg(f), which one can view as the order
of vanishing at infinity. Let Fy(t)r denote the completion of Fy(t) with respect to the
absolute value | |, where ¢ is any prime power.

(a) Prove that F,(t), is isomorphic to Fr((7)), where F, denotes the residue field
of Fy(t) with respect to | |r and T' € Fy(t) is a uniformizer. For each discrete
valuation 7 give an explicit description of the field F; and the uniformizer T" and
determine the discrete valuations 7 for which F, = F,.

(b) Let m and mp be two discrete valuations for which Fr, ~ Fr, ~ F, and consider
the completions Fy(t)r, and F(t)r,. Are they isomorphic (1) as fields, (2) as
F,(t)-algebras, (3) as topological fields?

(c) Now consider the analogous question for completions of Q: for distinct primes p
and ¢, are Q, and Q, isomorphic as (1) fields, (2) Q-algebras, (3) topological fields?

T

d) Determine the structure of the abelian group F,(¢)X /F,(¢)*"™, where p and n are
p\U)7r /[Lp
primes and 7 is a discrete valuation on F)(t).

Hint for the case n = pin (d): the subgroup UM := 14-F,[[t]] of F,((t))* is a Z,-module:
each z = () € Z, acts on UM by exponentiation (1 + tf(t))* := lim; oo (1 + ().

Problem 4. The absolute Galois group of F, (33 points)

Let F, be a finite field with ¢ elements, let F, be a fixed algebraic closure of Fy, and for
every positive integer n let us fix the finite field

Fpn :={z €F,: 29 =z}

with ¢" elements. For any set S (finite or infinite), we use #S to denote its cardinality
(isomorphism class in the category of sets), and if L/K is any field extension, [L : K]
denotes the cardinality of any K-basis for L (i.e. dimg L). Recall that cardinals are
ordered by monomorphisms of representative sets (so #5 < #7 if and only if an injection
f: 8 — T exists), and for any set S we have the strict inequality 2#° > #S (here 2#°
denotes the cardinality of the set of all subsets of S). We also note the standard cardinals
Ty :=Rg = #7Z, Iy := 20 = #R, and T4 := 27",



(a) Prove that F, = U,>1 Fgn and compute the cardinals #F, and [F, : F,].

Let N denote the set of positive integers partially ordered by divisibility. Consider
the inverse system of groups

(Gal(Fq” /Fq))neN,

where for m|n the homomorphism Gal(Fg» /Fy) — Gal(Fgm /F,) is induced by restriction
(the image of o € Gal(F4» /F,) is obtained by restricting its domain to Fgm ).

(b) Prove that we have isomorphisms of abelian groups

Gal(F,/F,) ~ %Gal(Fqn/Fq) o~ l'&rll\TZ/nZ.
ne ne

and that if we view Z := l&nZ/ nZ as an inverse limit of rings we have a ring

isomorphism
7 ~ H L.
p

(c) Compute the cardinality of Gal(F,/F,). Conclude that #Gal(F,/F,) # [F, : F,].

(d) Compute the cardinality of the set of subgroups of Gal(F,/F,) and the cardinality
of the set of subfields £ C Fq that contain F,. Conclude that the Galois corre-
spondence does not hold for Gal(F,/F,); in particular, many different subgroups
of Gal(F,/F,) have the same fixed field k (ridiculously many, in fact).

In later lectures we will see that the Galois correspondence does hold if we regard

Gal(IF,/FF,) as a topological group and restrict our attention to closed subgroups.

Problem 5. Uniqueness of norms (33 points)

Let K be a field with absolute value | | and let V' be a K-vector space. The absolute
value | | induces a topology on K via the metric d(z,y) := |x — y|, and every norm || ||
on V induces a topology on V' via the metric d(v, w) := ||[v — w]|.

The goal of this problem is to prove that if K is complete and V has finite dimension
then the topology on V is uniquely determined by the topology on K. One can find
standard proofs for K = R and K = C in most analysis textbooks, and the same
proof works for any locally compact field. But the standard approach does not work in
general because it relies on the assumption that closed balls are compact (as we proved
in Lecture 9, this is equivalent to local compactness). Here we follow the approach of
Cassels [1], which works for any complete field and any finite-dimensional vector space.

(a) Give an example of a complete field that is not locally compact, and give an
example of an infinite-dimensional vector space over a complete field with norms
that induce different topologies.

Two norms || || and || |2 on V are said to be equivalent if there exists a constant
¢ € R such that [|v]|; < ¢[jv]|2 and [Jv]|2 < ¢|jv])1 for all v € V.

(b) Show that equivalent norms induce the same topology.



Let us now fix a complete field K and a vector space V with basis (v1,...,v,), and
for v = zyvy + - - -z, € V define the sup-norm ||v]|o := max; |z;|.

(c) Show that the topology induced by the sup-norm does not depend on the choice
of basis and that V is complete in this topology.

(d) Let ¢ :=nmax; ||v;||. Prove that if || || is a norm on V then ||v|| < ¢||v|| for v € V.

(e) Prove that if || || is a norm on V then there is a constant C' € R such that
[v]|oe < Cllv|| for v € V' (hint: use induction on n). Conclude that every norm
on V is equivalent to the sup-norm and thus induces the same topology.

Problem 6. Cyclotomic number fields (33 points).

Throughout this problem p is a prime, n is a positive integer and (,, denotes a primitive
nth root of unity. For p{n we define ord, (p) as the order of the image of p in (Z/nZ)*.
In each of the problems below you should prove all equalities included in the statements
(they are claims not hypotheses).

(a) Prove that for p{n the field Qp(¢,) = Qp((pr—1) is an unramified extension of Q,
with ring of integers Zy[(,] with [Q,((n) @ Qp] = r = ord,(p).

(b) Prove that Q,((—p)/®=1) = Q,((p) is a totally ramified extension of Q, with ring
of integers Zy[(,] and degree p — 1.

(c) For all r > 1 prove that Q,((pr) is a totally ramified extension of Q, with ring of
integers Z,[(,r] and degree p"~1(p — 1).

(d) Let Q(«) be a finite Galois extension of Q, and suppose that for every prime p|p of
Q(«) the ring of integers of Q(v)y is Zp[a]. Show that Z[a] is the ring of integers
of Q(«) and conclude that Z[(,] is the ring of integers of Q((p).

(e) Derive formulas for the ramification index e,, inertia degree f,, and number of
primes g, of Q((,) above each prime p of Q as functions of p and n.

Problem 7. Cyclotomic function fields (66 points).

(a) Prove that no field of characteristic p contains a primitive pth root of unity and that

for all positive integers n coprime to p we have F,(t)((y) =~ F,(t) with ¢ = pordn(®),

It follows from (a) that adjoining a root of unity to a global function field at most
changes the field of constants, which is not very interesting. But there are global function
fields that play a role very similar to cyclotomic number fields which are often called
“cyclotomic function fields”, even though they do not involve roots of unity.

The nth roots of unity in Q are the elements of @X that lie in the kernel of the
“multiplication-by-n” endomorphism [n] € End(@x). Now Q™ is a multiplicative group,
so [n] is the map a + o™ with kernel pu, := {a& € Q : @™ = 1}. The nth cyclotomic
field is obtained by adjoining the points in u, to Q, which is equivalent to adjoining a
primitive nth root of unity (, since p, = ((,) is cyclic. Notice that the map n — [n]

defines a Z-algebra homomorphism Z — End(Q ™).



We want to replicate this setup in the function field setting, where Q is replaced
by K := F,(t) and Z is replaced by A := F,[t]. Rather than n-torsion points of the

multiplicative group K™ we want to instead consider n-torsion points of the additive
group K. In order to do this we first need to define the “multiplication-by-n" maps, by
describing the endomorphism [n] € End(?ﬂ we associate to each n € A. Note that we
have replaced Z by A, so n is not an integer, it is a polynomial in F,[t]. We first want to
understand what elements of End(k™) look like when k is an arbitrary field. This is an
easy question to answer if we restrict our attention to algebraic endomorphisms defined
by a polynomial in k[z].

Let k be a field of characteristic p > 0. An additive polynomial f € k[z] is one
for which f(x 4+ y) = f(z) + f(y) holds as an identity in k[z,y]. Additive polynomials
correspond to endomorphisms of k™ and include the maps = + ax defined by linear
monomials, and in positive characteristic, the Frobenius map = — xP.

In fact these two examples generate all additive polynomials.

(b) Prove that f € k[z] is an additive polynomial if and only if f(z) =3/, a;z?" for
some a; € k, with r =01if p = 0.

Now assume p > 0, and let A(k) C End(k") denote the set of additive polynomials
in k[z], viewed as endomorphisms of k*. They form a non-commutative ring under
addition and composition.

(c) Let k{7} denote the twisted polynomial ring in 7, in which 7a = o7 for all a € k.
Show the map 7 — 2P and a +— ax for a € k is a ring isomorphism k{7} — A(k).

We now return to our function field setting with K = Fy(¢) and A = F,[t]. Let L
be a (not necessarily finite) extension of K, and let A(L) denote the set of additive
polynomials that are also F,-linear (for ¢ = p this is all additive polynomials, but for
q # p it is the subring generated by linear monomials and the g-power Frobenius).

A Drinfeld A-module over L is defined by an F,-algebra homomorphism

A— A(L)
a — |al

such that [a] € A(L) C L[x] has linear coefficient a but not every [a] € A(L) is linear.
The map a — [a] allows us to to view LT as an A-module with multiplication defined
by a - a := [a](«); note that this is not the usual multiplication a« in L (which gives a
different A-module structure), we are evaluating the polynomial [a] € L]z] at « € L.

To specify a Drinfeld A-module it is enough to specify [t], the image of t € A = F,[t]
in A(L) C L[z], since this uniquely determines an Fy-algebra homomorphism. The rank
of a Drinfeld A-module is the positive integer log, deg[t] (the degree of an Fy-linear
additive polynomial is a power of q).

The simplest example of a A-Drinfeld module is the Carlitz module, with L = K
and A — A(L) defined by [t] := 29 4 ¢z, which is a Drinfeld module of rank 1. This
is the only Drinfeld A-module we shall consider, and henceforth for any n € A we use
[n] to denote the image of n under the Fy-algebra homomorphism defined by the Carlitz
module. For example, we have

[ = [0 = (2 + ta)? + ta + t2) = o + (19 + t)a? + a.

To simplify matters, we will henceforth work with K = F,(t) and A = F)[t].



(d) Let m € A =F,[t] be monic irreducible. Prove [r —1](a) = 0 mod 7 for all a € A

(hint: prove [r] = 27" mod by showing that if its reduction has any nonzero
roots it must have pd°87 distinct roots, and that this is impossible).

For monic n € A we define the Carlitz n-torsion module A, := {a € K : [n](a) = 0},
and we view K (A,,) as the “nth cyclotomic field” of K. As you may wish to verify, A,, is a
submodule of the Carlitz module (this means [a](a)) € A, for alla € A and a € A,,). The
restriction to monic n corresponds to the restriction to positive n € Z when considering
nth roots of unity, it distinguishes a generator for nA and ensures nA # {0}.

(e) For K = TF,(t) prove K (A;) ~ K((—t)"/®=1) (compare to part (b) of Problem 6).
(f) For a,b € A prove that a = b mod n if and only if [a](a) = [b](«) for a € A,,.

(g) Show that A, is a cyclic (A/nA)-module generated by any A, € A,, that does not
lie in A,, for any m properly dividing n, and that {[a](\,) : @ € A with a L n} is
the set of all generators. Then show that the map a — [a]()y,) defines an A-module
isomorphism A/nA ~ A,,, where the A-module structure on A/nA is the usual one
given by multiplication by elements of A reduced modulo nA.

(h) Foreach of n =t>+1,t>+t+1,t> —t+1 € A = F3[t] give a list of representatives
for A/nA indicating which correspond to generators of A, under the isomorphism
defined in (g) and describe the structure of the abelian group (A/nA)*.

(i) Let n € A be nonzero. Prove that for each o € Gal(K(A,)/K) there is a unique
ar € (A/nA)* for which o(a) = [as](a) for all @« € A,,. Then show the map
o+ a, defines a group isomorphism Gal(K(A,)/K) — (A/nA)*.

It follows from (i) that for each monic n € A we have an abelian extension K(A,)/K
with Galois group (A/nA)*, just as for every n € Z~o we have an abelian extension
Q(pn)/Q with Galois group (Z/nZ)*, and in fact more is true. The Kronecker-Weber
theorem which we will prove in later lectures states that every abelian extension of Q
is a subfield of some Q(u,), and the Carlitz-Hayes theorem states that every abelian
extension of K = F,(t) is a subfield of some K(A,,). This is the motivation for referring
to the fields K(A,,) as cyclotomic function fields.

Problem 8. Survey (1 point)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest | Difficulty | Time Spent

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7




Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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