
18.785 Number Theory Fall 2025

Problem Set #2 Due: 09/19/2025

These problems are related to Lectures 3–4. Your solutions should be written up in latex
and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve Problem 0, then solve one (but not both) of Problems 1–2, and
complete the survey, Problem 3. Collaboration is permitted/encouraged, but you must
identify your collaborators (including any LLMs you consulted) and any references you
consulted outside the course syllabus. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Each student is expected to write their own solutions; it
is fine to discuss problems with others, but your writing must be your own.

Problem 0. Warmup (0 points)

These warmup exercises do not need to be written up.

(a) Let I, J,K be nonzero ideals in a noetherian (not necessarily Dedekind) domain.
Show that I ÷ (J +K) = (I ÷ J) ∩ (I ÷K).

(b) Let p be a prime. Prove that there are exactly four (unital) commutative rings of
cardinality p2. Which arise as A/I for some discrete valuation ring A and ideal I?

Problem 1. Characterizing Dedekind domains (98 points)

Recall that we defined a Dedekind domain to be an integrally closed noetherian domain
of dimension at most one, or equivalently, a noetherian domain whose localizations at
nonzero prime ideals are discrete valuation rings (see Proposition 2.9); let (D) denote
either of these equivalent conditions. In Lecture 3 we proved that every Dedekind do-
main A enjoys the following properties:

(a) Each nonzero prime ideal of A is invertible.

(b) Each nonzero ideal of A is a (finite) product of prime ideals.

(c) To contain is to divide: for all ideals J ⊇ I we have J |I.

(d) For each ideal I in A there exists a nonzero ideal J such that IJ is principal.

(e) The quotient A/I of A by any nonzero ideal I is a principal ideal ring.

(f) If a is a nonzero element of an ideal I then I = (a, b) for some b ∈ I.

In this problem you will prove that for any integral domain A, each of the conditions
above implies (D). As explained in Remark 2.15, for integral domains that are not neces-
sarily noetherian, one defines fractional ideals as A-submodules I of the fraction field A
for which there exists a nonzero r ∈ A such that rI ⊆ A (the definition of an invertible
ideal is exactly the same).

You may prove these implications in any order (e.g. it suffices to just prove (a)⇒(b)
in your answer for part (a) so long as you eventually prove (b)⇒(D)). You may want to
first consider the case where A is a noetherian local domain.
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(a) Prove (a)⇒(D).

(b) Prove (b)⇒(D). (Hint: show (b) implies that every invertible prime ideal is maxi-
mal by considering factorizations of p+ (a) and p+ (a2) for some nonzero a ∈ p.)

(c) Prove (c)⇒(D).

(d) Prove (d)⇒(D).

(e) Prove (e)⇒(D).

(f) Prove (f)⇒(D).

(g) Show that the noetherian integral domain A = Z[
√
−3] of dimension one is not a

Dedekind domain in two ways: show that it is not integrally closed and exhibit
a nonzero prime ideal p for which Ap is not a DVR. Then give similarly explicit
demonstrations that A does not satisfy each of the properties (a)-(f) above.

Problem 2. Fermat’s last theorem (98 points)1

Recall that Fermat’s Last Theorem (FLT) states that

xn + yn = zn

has no integer solutions with xyz ̸= 0 for n > 2. By removing common factors we may
assume gcd(x, y, z) = 1, and we may assume that n is a prime p ≥ 5, since the cases
n = 3 and n = 4 were proved by Euler and Fermat (respectively), and we can easily
reduce to the case where either n = p is prime or n = 4 (every solution with n = ab also
gives a solution with n = a and n = b).

So let p ≥ 5 be prime and suppose x, y, z are relatively prime integers for which

xp + yp = zp

with xyz ̸= 0, and let ζp ∈ Q denote a primitive pth root of unity (so ζpp = 1 but ζp ̸= 1).
In order to simplify matters, we will make two further assumptions:

(1) xyz ̸≡ 0 mod p;

(2) the ring Z[ζp] is a UFD.

You will prove below that under these assumptions, no such x, y, z can exist.
The first assumption is not necessary, your proof can be extended to remove this

assumption. This was the basis of Lamé’s “proof” of FLT in 1847, which relied on (2);
unfortunately (2) holds only for p ≤ 19. Kummer later generalized Lamé’s argument to
many cases where Z[ζp] is not a UFD; Kummer’s argument applies whenever the order
of the ideal class group of the ring of integers of Q(ζp) is not divisible by p, which is
expected to hold for infinitely many p (the set of so-called regular primes is believed to
be infinite but this is not known).

For the sake of concreteness, let us fix an embedding of Q(ζp) in C by defining
ζp := e2πi/p, and for any z ∈ Q(ζp) ⊆ C, let z̄ denote its complex conjugate. If S is a set,
then a ≡ b mod S means a− b ∈ S.

1This problem is adapted from [1, I, Ex.17-27] but corrects/clarifies a number of minor issues there.
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(a) Show that ζip − ζjp properly divides p in the ring Z[ζp] for any i ̸≡ j mod p.

(b) Show that if a non-unit α ∈ Z[ζp] divides x + yζip then it does not divide x + yζjp
for any j ̸≡ i mod p.

(c) Show that x+ yζip = uiα
p
i for some αi ∈ Z[ζp] and ui ∈ Z[ζp]×.

(d) Prove that 1 + t + · · · + tp−1 is irreducible in Q[t]; conclude that {1, ζp, . . . , ζp−2
p }

is a basis for Z[ζp] as a Z-module.

(e) Show that in any commutative ring A we have αp + βp ≡ (α+ β)p mod pA for all
α, β ∈ A.

(f) Let α ∈ Z[ζp]. Show (1) αp ≡ a mod pZ[ζp] for some a ∈ Z, (2) αp ≡ ᾱp mod pZ[ζp],
(3) p ̸∈ Z[ζp]×, and (4) if u ∈ Z[ζp]× then u/ū ̸= −ζip for any i.

(g) Show that if α ∈ Q×
is an algebraic integer whose Galois conjugates all lie in the

unit disk in C then α is a root of unity.

(h) Show that if u ∈ Z[ζp]× then u/ū = ζip for some i.

(i) Show that if x+yζp ≡ uαp mod pZ[ζp] with u ∈ Z[ζp]×, then for some 0 ≤ j ≤ p−1

we must have x+ yζp ≡ (x+ yζ−1
p )ζjp mod pZ[ζp].

(j) Show that x+ yζp ≡ (x+ yζ−1
p )ζjp mod pZ[ζp] only if j ≡ 1 mod p.

(k) Show that if x+ yζp ≡ xζp + y mod pZ[ζp] then x ≡ y mod p.

(l) Assuming Z[ζp] is a UFD, show xp+ yp = zp has no solutions with xyz ̸≡ 0 mod p.

Problem 3. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Please feel free to record any additional comments you have on the problem sets and the
lectures, and in particular, ways in which they might be improved.

Collaborators/sources:
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