
18.785 Number Theory Fall 2025

Problem Set #11 Due: 12/5/2025

Description

These problems are related to Lectures 18–20. Your solutions should be written up in
latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve any combination of problems that sum to 100 points, or alterna-
tively, solve any combination of problems that sum to 200 points to receive
credit for two problem sets. Collaboration is permitted/encouraged, but you must
identify your collaborators (including any LLMs you consulted) and any references you
consulted outside the course syllabus. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Note that each student is expected to write their own
solutions; it is fine to discuss problems with others, but your writing must be your own.

Problem 1. Higher ramification groups (49 points)

Let A be a complete DVR with finite residue field; its fraction fieldK is a nonarchimedean
local field (Prop. 9.6). Let L be a finite Galois extension of K, let G := Gal(L/K), and
let B be the integral closure of A in L, with maximal ideal q = (π). Fix α ∈ B so that
B = A[α] (via Theorem 10.14), and let f ∈ A[x] be the minimal polynomial of α.

The decomposition group Dq is equal to G (since σ(q) = q for all σ ∈ G), and the
inertia subgroup is Iq := {σ ∈ G : σ(x) ≡ x mod q for all x ∈ L} with order equal to the
ramification index e := eq. For any integer i ≥ −1 define

Gi := {σ ∈ G : σ(x) ≡ x mod qi+1 for all x ∈ B},

so that G−1 = G and G0 is the inertia subgroup. The group Gi is the ith ramification
group of G (in the lower numbering). Define iG : G→ Z∪{∞} by iG(σ) := vq(σ(α)−α).

(a) Prove that Gi = {σ ∈ G : iG(σ) ≥ i + 1}, show that Gi+1 is a normal subgroup
of Gi, and show that the groups Gi are trivial for all sufficiently large i.

Recall that the different ideal D := DB/A is equal to (f ′(α)) and satisfies the bounds

e− 1 ≤ vq(D) ≤ e− 1 + vq(e),

with e− 1 = vq(D) if and only if vq(e) = 0, by Proposition 12.23 and Theorem 12.26.

(b) Prove Hilbert’s different formula:

vq(D) =
∑
σ ̸=1

iG(σ) =
∑
i≥0

(#Gi − 1).

Let U0 := B× be the unit group of B, and for i > 0 define

Ui := 1 + qi = {x ∈ U0 : x ≡ 1 mod qi}.
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(c) Show that U0/U1 ≃ (B/q)× and that for i > 0 we have Ui/Ui+1 ≃ qi/qi+1 isomorphic
to the additive group of B/q. Conclude that L/K is tamely ramified if and only if
G1 is trivial and totally wildly ramified if and only if G = G1.
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(d) Show that for i ≥ 0 the map ϕ : σ 7→ σ(π)/π defines a homomorphism ϕi : Gi → Ui

that induces an injection Gi/Gi+1 ↪→ Ui/Ui+1 (in other words, the composition of
ϕi with the quotient map Ui → Ui/Ui+1 has kernel Gi+1). Conclude that (i) G0/G1

is cyclic of order prime to p, (ii) G1 is the unique p-Sylow subgroup of G0, (iii)
Gi/Gi+1 an abelian p-group for all i ≥ 1, and (iv) G = Gal(L/K) is solvable.

(e) Suppose that σ ∈ Gi − Gi+1 and τ ∈ Gj − Gj+1 with 1 ≤ i ≤ j. Show that
ϕ(στ) − ϕ(τσ) ≡ (j − i)uπi+j mod qi+j+1 for some u ∈ U0 and that this implies
ϕ(στσ−1τ−1) ≡ 1 + (j − i)uπi+j mod qi+j+1. Then use this to show i ≡ j mod p.

Let K = Qp with p odd, and let L/Qp be a totally wildly ramified abelian extension, so
in the notation above, Gal(L/K) = G = G0 = G1, and D is the different ideal.

(f) Show that vq(D) = 2p− 2 if [L : K] = p and vq(D) = 3p2 − p− 2 if [L : K] = p2.

(g) Prove that G is cyclic (hint: reduce to [L : K] = p2 then show that if H ≤ G has
order p then H = Gp+1 by computing the different of L/LH using (b) and (f)).

Problem 2. Polar density (49 points)

Let K be a number field and let S be a set of primes of K. Recall the Dirichlet density

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
pN(p)

−s
= lim

s→1+

∑
p∈S N(p)−s

log 1
s−1

,

and the natural density

δ(S) := lim
x→∞

#{p ∈ S : N(p) ≤ x}
#{p : N(p) ≤ x}

,

which are defined whenever these limits exist. As shown on Problem Set 9, if δ(S) exists
then so does d(S) = δ(S) (you may use this fact even if you did not prove it).

Definition. The partial Dedekind zeta function associated to S is the complex function

ζK,S(s) :=
∏
p∈S

(1−N(p)−s)−1.

If for some integer n ≥ 1 the function ζnK,S extends to a meromorphic function on a
neighborhood of 1, the polar density of S is defined by

ρ(S) :=
m

n
, m = − ords=1 ζ

n
K,S(s).

(a) Show that ρ(S) is well defined (so m/n does not depend on the choice of n).

(b) Prove that δ(S) = d(S) = ρ(S) whenever ρ(S) exists.

1The group G1 is sometimes called the wild inertia group.
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(c) Show that ρ(S) = 0 when S is finite and ρ(S) = 1 when S is cofinite.

(d) Show that S ⊆ T implies ρ(S) ≤ ρ(T ) whenever both densities exist.

(e) Let P1 denote the set of degree-1 primes of K (those of prime norm). Prove that
ρ(P1) = 1 and ρ(S ∩ P1) = ρ(S) whenever S has a polar density.

(f) Let L/K be a Galois extension and let Spl(L/K) be the set of primes of K that
split completely in L. Prove that ρ(Spl(L/K)) = 1/[L : K]. Conclude that for G =
Gal(L/K) and any normal subgroup H ⊆ G, the set S of primes p of K for which
the Frobenius conjugacy class Frobp lies in H has polar density ρ(S) = #H/#G.

(g) Prove that if L/K and M/K are Galois extensions of K then Spl(M) = Spl(L) if
and only if M = L.

Problem 3. The Frobenius density theorem (49 points)

Let L/K be a Galois extension of number fields of finite degree n with Galois group
G := Gal(L/K). Recall that for each unramified prime p of K, the Frobenius class
Frobp is the conjugacy class of the Frobenius elements σq for q|p.

The Chebotarev density theorem states that for any set C ⊆ G stable under conju-
gation (a union of conjugacy classes), the set of unramified primes p with Frobp ⊆ C
has Dirichlet density #C/#G.2 In this problem you will prove the Frobenius density
theorem, which says essentially the same thing, but with a different notion of conjugacy.

Definition. Two elements g and h of a group G are quasi-conjugate if they generate
conjugate subgroups ⟨g⟩ and ⟨h⟩.

(a) Show that quasi-conjugacy is an equivalence relation and that each quasi-conjugacy
class in a group is a union of conjugacy classes.

(b) Show that in the symmetric group Sn, each quasi-conjugacy class is actually a
conjugacy class (so the Frobenius density theorem implies the Chebotarev density
theorem in this case), but that this is generally not true for the alternating group An.

(c) Suppose G is cyclic. For each d|n, let Sd be the set of primes p of K for which
the primes q|p have inertia degree fq = d. Prove that the set Sd has polar density
ρ(Sd) = ϕ(d)/[L :K] and conclude that infinitely many primes of K are inert in L.

Fix σ ∈ G, let K ′ = Lσ be its fixed field, let H = ⟨σ⟩ ⊆ G, and let d = #H. Recall that
in any number field, a degree-1 prime is a prime whose absolute norm is prime. For each
prime p of K (resp. K ′) that is unramified in L, let Frobp denote the quasi-conjugacy
class in G (resp. H) that contains the conjugacy class Frobp.

(d) Let S′ be the set of degree-1 primes p′ of K ′ for which p = p′ ∩OK is unramified in
L and for which σ ∈ Frobp′ . Prove that S′ has polar density ρ(S′) = ϕ(d)/d.

(e) Let S be the set of unramified degree-1 primes p of K for which σ ∈ Frobp. Show
that map p′ 7→ p′ ∩ OK defines a surjective map π : S′ → S.

2It also has this natural density, but this was proved later.
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(f) Show that the fibers of π all have cardinality [K ′ : K]/c, where c is the number of
distinct conjugates of H in G.

(g) Show that S has polar density

ρ(S) =
cϕ(d)

[L :K]
.

(h) Prove that for any set C ⊆ G stable under quasi-conjugation the set of unramified
primes p of K with Frobp ⊆ C has polar density #C/#G.

Problem 4. The Hilbert symbol (98 points)

Let K be a local field whose characteristic is not 2.

Definition. The local Hilbert symbol is the map (·, ·) : K×/K×2 ×K×/K×2 → {±1}

(a, b) :=

{
1 if ax2 + by2 = 1 has a solution in K,

−1 otherwise.

Here and throughout this problem a, b ∈ K× are understood to represent elements of
K×/K×2 whenever the context requires it.

(a) Prove that the Hilbert symbol satisfies:

(i) (a, b) = (b, a) (symmetry);

(ii) (a, bc) = (a, b)(a, c) and (ab, c) = (a, c)(b, c) (bilinearity);

(iii) For any a ∈ K×, if (a, b) = 1 for all b ∈ K× then a ∈ K×2 (nondegeneracy).

(iv) (a, 1− a) = 1 (for a ̸= 1) and (a,−a) = 1 (Steinberg relations).

(b) In part (a) where (if anywhere) did you use the fact thatK is a local field? Determine
which of (i)-(iv) hold for all fields whose characteristic is not 2, and for those that
do not, give explicit counterexamples.

(c) Prove that for a ̸∈ K×2 we have (a, b) = 1 if and only if b ∈ NK(
√
a)/K(K(

√
a)×).

(d) Let L/K be an abelian extension. Let rL/K : K×/NL/K(L×) → Gal(L/K) be the

isomorphism given by Artin reciprocity, and ⟨·, ·⟩ := Gal(K/K)×K×/K×2 → {±1}
the Kummer pairing ⟨σ, a⟩ := σ(

√
a)/
√
a (which can be applied to σ ∈ Gal(L/K)

whenever L ⊂ K contains
√
a). Prove that the Hilbert symbol satisfies

(a, b) =
〈
rK(

√
b)/K(a), b

〉
.

(e) For a, b, c ∈ K× prove ax2 + by2 = c has a solution if and only if (−ab, c) = (a, b).

(f) For a, b ∈ K× define the quaternion algebra Ha,b as the K-algebra K(i, j) with
i2 = a, j2 = b, ij = −ji. Show that (a, b) = 1 if and only if Ha,b ≃ M2(K), the 2×2
matrix algebra over K (such quaternion algebras are said to split). Then show that
Ha,b ≃ Ha,c if and only if [b] = [c] in K×/NK(

√
a)/K(K(

√
a)×) and deduce that the

isomorphism class of Ha,b depends only on the Hilbert symbol (a, b).
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(g) Show that for archimedean K we have (a, b) = −1 if and only if K ≃ R and a, b < 0.

(h) Suppose that K is nonarchimedean with residue field of odd cardinality q. Let O
be its valuation ring, π a uniformizer for O. Define the residue symbol(a

π

)
:=

{
1 if ā ∈ F×2

q ,

−1 if ā ̸∈ F×2
q ,

where Fq := O/(π) is the residue field (which does not depend on the choice of π).
For a, b ∈ K×, let a = uaπ

α, b = ubπ
β with ua, ub ∈ O×. Prove the reciprocity law :

(a, b) = (−1)αβ(q−1)/2
(ua
π

)β (ub
π

)α
.

(i) Now let K be a global field of characteristic not 2, and for each place v of K let
(a, b)v denote the Hilbert symbol of the completion of K at v. Prove the product
formula, which states that ∏

v

(a, b)v = 1

for all a, b ∈ K× (and in particular, (a, b)v = 1 for all but finitely many places v).

Useful references for this problem if you get stuck are [4, Ch. III] and [5, §5.6].

Problem 5. Profinite groups (98 points)

Recall that a topological space is totally disconnected if every pair of distinct points
can be separated by open neighborhoods that partition the space; totally disconnected
spaces are obviously Hausdorff.

(a) Show that products and inverse limits of totally disconnected compact topological
spaces are totally disconnected and compact. Conclude that every profinite group
is a totally disconnected compact group.

Let G be a totally disconnected compact group, let Ĝ := lim←−G/N be its profinite
completion (so N varies over finite index open normal subgroups of G ordered by con-
tainment), and let ϕ : G→ Ĝ be the natural map that sends each g ∈ G to its images in
the finite quotients G/N .

(b) Show that every open subgroup of G has finite index and contains an open normal
subgroup (which necessarily also has finite index).

(c) Show that ϕ(G) is both dense in Ĝ and closed, hence equal to Ĝ; thus ϕ is surjective.

(d) Show that to prove that ϕ is injective it suffices to show that the intersection of all
open subgroups of G is trivial. Then show that for every g ∈ G − {1} there is a
neighborhood U of 1 that is both open and closed and does not contain g, and it is
enough to show that every such U contains an open subgroup H.

(e) Let U be a neighborhood of 1 that is both open and closed. Show that U con-
tains an open neighborhood of 1 that is closed under multiplication and inversion,
hence a subgroup (this requires some work; you will need to use the fact that the
multiplication map G×G→ G is continuous and that U is compact).
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(f) Show that ϕ is a continuous open map, hence a homeomorphism. Conclude that G
is isomorphic to its profinite completion, and in particular, a profinite group.

(g) Show that for a profinite group G the following are equivalent: (i) the topology
of G is induced by a metric, (ii) G ≃ lim←−Gn, with n ∈ Z≥1, the Gn finite, and
Gn+1 → Gn surjective, (iii) the number of open subgroups of G is countable.

(h) Show that the equivalent conditions (i)-(iii) in (g) imply that G contains a countable
dense subset (so G is separable as a topological space), and give an example showing
that the converse does not hold.

(i) Let p be prime, let Zp := lim←−n
Z/pnZ, and let Gp :=

∏
n Z/pnZ. Show that Gp and

Zp× (Gp/Zp) are isomorphic as groups. Are they isomorphic as topological groups?

(j) Show that Ẑ× ≃ Ẑ×
∏

n Z/nZ as topological groups.

A useful reference for this problem if you get stuck is Ribes and Zalesskii [3].

Problem 6. Arithmetically equivalent number fields (98 points)

Two number fields are said to be arithmetically equivalent if their Dedekind zeta functions
coincide. Isomorphic number fields obviously have the same zeta functions, but as proved
by Gassmann [1], the converse need not hold. A particularly simple example is given
by the fields Q( 8

√
a) and Q( 8

√
16a); as shown by Perlis [2], for a ∈ Z not square and not

twice a square, these fields are arithmetically equivalent but nonisomorphic (they have
the same Galois closure, which is obtained by adjoining a primitive 8th root of unity).

(a) Show that arithmetically equivalent number fields must have the same Galois closure
(up to isomorphism). Conclude that if K/Q is Galois then K ′ is arithmetically
equivalent to K if and only if K ′ ≃ K.

In view of (a) we now consider two non-Galois extensions K and K ′ of Q with Galois
closure L/Q. Let G := Gal(L/Q) and put H := Gal(L/K) and H ′ := Gal(L/K ′).

(b) Show that if K and K ′ are arithmetically equivalent number fields then for every
prime p there is a bijection between the primes of K lying above p and the primes
of K ′ lying above p that preserves inertia degrees. Conclude that K and K ′ must
have the same degree.

(c) Given a cyclic C ⊆ G, we can partition G into double cosets Hσ1C, . . . ,HσgC.
When H is not normal these cosets need not have the same size; each will have
cardinality fi ·#H for some integer fi ≥ 1. Assume the fi are in increasing order
and call the tuple (f1, . . . , fg) the coset type of the pair (H,C). Prove that if p is
a prime that is unramified in L and C is any decomposition group of p in G, then
the coset type of (H,C) is equal to the tuple of inertia degrees of the primes of
K lying above p when arranged in increasing order. Conclude that if K and K ′

are arithmetically equivalent then (H,C) and (H ′, C) have the same coset type for
every cyclic subgroup C of G.
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(d) Two subgroups H and H ′ of a finite group G are said to be Gassmann equivalent
if for conjugacy class c of elements in G the sets c ∩ H and c ∩ H ′ have the same
cardinality. Show that this holds if and only if for every cyclic group C the coset
types of (H,C) and (H ′, C) coincide.

(e) Suppose H and H ′ are Gassmann equivalent. Show that K and K ′ have the same
number of real and complex places (hint: consider the “decomposition group” of the
prime p =∞ in G).

Like the Riemann zeta function, the Dedekind zeta function has a meromorphic con-
tinuation to C that satisfies a functional equation. Define ΓR(s) := π−s/2Γ(s/2) and
ΓC(s) := 2(2π)−sΓ(s), and let

ZK(s) := |DK |s/2ΓR(s)
n1ΓC(s)

n2ζK(s),

where n1 and n2 are the number of real and complex places of K, respectively. Then

ZK(s) = ZK(1− s)

as meromorphic functions on C (you may assume this in what follows).

(f) Let f(s) = f1(s)/f2(s) be a ratio of Euler products over a finite set of primes
that extends to a meromorphic function on C that satisfies a functional equation
f(s) = g(s)f(1 − s) for some meromorphic function g(s) whose zeros and poles do
not coincide with any zero or pole of f . Prove that g(s) = 1, then use this and the
functional equations for ζK(s) and ζK′(s) to prove that if H and H ′ are Gassmann
equivalent then K and K ′ are arithmetically equivalent.

(g) A Gassmann triple (or Gassmann-Sunada triple) is a triple (G,X, Y ) in which G is
a group that acts faithfully on sets X and Y such that every element of G fixes the
same number of elements in X and Y but X and Y are not isomorphic as G-sets.
Show that K and K ′ are arithmetically equivalent but not isomorphic if and only if
(G,G/H,G/H ′) is a Gassmann triple, where G/H and G/H ′ denote sets of cosets
(for consistency with part (c), use right cosets and put the G-action on the right).

(h) Show that if K and K ′ are arithmetically equivalent then they have the same normal
core (largest subfield that is a normal extension of Q). Use this to show that K and
K ′ contain the same roots of unity and conclude that the unit groups O×

K and O×
K′

are isomorphic as abelian groups.

(i) Show that if K and K ′ are arithmetically equivalent then |discOK | = |discOK′ |
and conclude that hKRK = hK′RK′ , where hK := #ClOK is the class number and
RK is the regulator of K (and similarly for K ′).

It is natural to ask whether the class numbers and regulators must also match. This is
not the case; the arithmetically equivalent fields K := Q( 8

√
−15) and K ′ := Q( 8

√
−240)

have class numbers 8 and 4, respectively (you do not need to prove this).

(j) You showed in (b) that in arithmetically equivalent fields the multisets of inertia
degrees above any prime p must match (including at ramified primes); it is natural
to ask whether the same is true of the ramification indices. Show that this is not
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the case by showing that the polynomials x8 − 97 and x8 − 16 · 97 (which you may
assume define arithmetically equivalent fields K and K ′), do not have the same
factorization pattern in Q2[x]. Conclude that the different ideals DK/Q and DK′/Q
do not necessarily have the same factorization pattern, even though the discriminant
ideals DK/Q := NK/Q(DK/Q) and DK′/Q := NK′/Q(DK′/Q) do.

A useful reference for this problem if you get stuck is Perlis’ paper [2].

Problem 7. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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