18.785 Number Theory Fall 2025
Problem Set #11 Due: 12/5/2025

Description

These problems are related to Lectures 18-20. Your solutions should be written up in
latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Instructions: Solve any combination of problems that sum to 100 points, or alterna-
tively, solve any combination of problems that sum to 200 points to receive
credit for two problem sets. Collaboration is permitted/encouraged, but you must
identify your collaborators (including any LLMs you consulted) and any references you
consulted outside the course syllabus. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Note that each student is expected to write their own
solutions; it is fine to discuss problems with others, but your writing must be your own.

Problem 1. Higher ramification groups (49 points)

Let A be a complete DVR with finite residue field; its fraction field K is a nonarchimedean
local field (Prop. 9.6). Let L be a finite Galois extension of K, let G := Gal(L/K), and
let B be the integral closure of A in L, with maximal ideal q = (7). Fix a € B so that
B = Ala] (via Theorem 10.14), and let f € Alx] be the minimal polynomial of a.

The decomposition group Dy is equal to G (since o(q) = q for all o € G), and the
inertia subgroup is I; := {0 € G : o(x) =  mod q for all € L} with order equal to the
ramification index e := eq. For any integer ¢ > —1 define

G;i:={o € G:0o(x)=xmod g for all z € B},

so that G_1 = G and Gy is the inertia subgroup. The group G; is the ith ramification
group of G (in the lower numbering). Define iq : G = ZU {0} by iq(0) := vg4(o(a) — ).

(a) Prove that G; = {0 € G : ig(c) > i+ 1}, show that G;4; is a normal subgroup
of G;, and show that the groups G; are trivial for all sufficiently large 3.

Recall that the different ideal D := Dp 4 is equal to ( /() and satisfies the bounds
e—1< (D) <e—1+uyy(e),
with e — 1 = v4(D) if and only if vq(e) = 0, by Proposition 12.23 and Theorem 12.26.

(b) Prove Hilbert’s different formula:

v(D) =Y ia(o) =) (#Gi—1).

o#1 i>0

Let Uy := B* be the unit group of B, and for ¢ > 0 define

U:=1+q={z€Uy:z=1modq'}.
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(c) Show that Uy/U; ~ (B/q)* and that for i > 0 we have U; /U; 11 ~ q*/q* ™! isomorphic
to the additive group of B/q. Conclude that L/K is tamely ramified if and only if
G is trivial and totally wildly ramified if and only if G = Gy.!

(d) Show that for i > 0 the map ¢: o — o(w)/m defines a homomorphism ¢;: G; — U;
that induces an injection G;/G;i+1 < U;/U;+1 (in other words, the composition of
¢; with the quotient map U; — U;/U;4+1 has kernel G;11). Conclude that (i) Go/G1
is cyclic of order prime to p, (ii) G; is the unique p-Sylow subgroup of Gy, (iii)
G;/Giy1 an abelian p-group for all i > 1, and (iv) G = Gal(L/K) is solvable.

(e) Suppose that 0 € G; — Giy1 and 7 € G; — G4 with 1 < ¢ < 5. Show that
¢(or) — ¢p(t0) = (j — i)ur™ mod g"+ 1 for some u € Uy and that this implies
¢loro™ 1771 =1+ (j — i)ur™ mod g7+, Then use this to show i = j mod p.

Let K = Q, with p odd, and let L/Q, be a totally wildly ramified abelian extension, so
in the notation above, Gal(L/K) = G = Gy = G1, and D is the different ideal.

(f) Show that vg(D) =2p —2if [L: K] = p and vq(D) = 3p* —p—2if [L: K] = p*.

(g) Prove that G is cyclic (hint: reduce to [L : K] = p? then show that if H < G has
order p then H = Gp11 by computing the different of L/L* using (b) and (f)).

Problem 2. Polar density (49 points)

Let K be a number field and let S be a set of primes of K. Recall the Dirichlet density

N - N —s
d(S) := lim M — lim M’
s—=1% Zp N(p) s—1t log =5

and the natural density

oy P ES:N(p) < 2}

which are defined whenever these limits exist. As shown on Problem Set 9, if §(.5) exists
then so does d(S) = §(S) (you may use this fact even if you did not prove it).

Definition. The partial Dedekind zeta function associated to S is the complex function

Crs(s) =[] =N =)~

pesS

If for some integer n > 1 the function (j ¢ extends to a meromorphic function on a
neighborhood of 1, the polar density of S is defined by

p(S) = —, m = —ords=1 (g 5(5).

(a) Show that p(S) is well defined (so m/n does not depend on the choice of n).

(b) Prove that 6(S) = d(S) = p(S) whenever p(S) exists.

!The group G, is sometimes called the wild inertia group.



(c) Show that p(S) = 0 when S is finite and p(S) =1 when S is cofinite.
(d) Show that S C T implies p(S) < p(T') whenever both densities exist.

(e) Let P; denote the set of degree-1 primes of K (those of prime norm). Prove that
p(P1) =1 and p(SNP1) = p(S) whenever S has a polar density.

(f) Let L/K be a Galois extension and let Spl(L/K) be the set of primes of K that
split completely in L. Prove that p(Spl(L/K)) = 1/[L : K|. Conclude that for G =
Gal(L/K) and any normal subgroup H C G, the set S of primes p of K for which
the Frobenius conjugacy class Froby lies in H has polar density p(S) = #H/#G.

(g) Prove that if L/K and M/K are Galois extensions of K then Spl(M) = Spl(L) if
and only if M = L.

Problem 3. The Frobenius density theorem (49 points)

Let L/K be a Galois extension of number fields of finite degree n with Galois group
G = Gal(L/K). Recall that for each unramified prime p of K, the Frobenius class
Froby is the conjugacy class of the Frobenius elements o for q|p.

The Chebotarev density theorem states that for any set C' C G stable under conju-
gation (a union of conjugacy classes), the set of unramified primes p with Frob, C C
has Dirichlet density #C/#G.2 In this problem you will prove the Frobenius density
theorem, which says essentially the same thing, but with a different notion of conjugacy.

Definition. Two elements g and h of a group G are quasi-conjugate if they generate
conjugate subgroups (g) and (h).

(a) Show that quasi-conjugacy is an equivalence relation and that each quasi-conjugacy
class in a group is a union of conjugacy classes.

(b) Show that in the symmetric group S,, each quasi-conjugacy class is actually a
conjugacy class (so the Frobenius density theorem implies the Chebotarev density
theorem in this case), but that this is generally not true for the alternating group A,.

(c) Suppose G is cyclic. For each d|n, let Sy be the set of primes p of K for which
the primes g|p have inertia degree f; = d. Prove that the set S; has polar density
p(Sq) = ¢(d)/[L: K] and conclude that infinitely many primes of K are inert in L.

Fix o0 € G, let K’ = L be its fixed field, let H = (o) C G, and let d = #H. Recall that
in any number field, a degree-1 prime is a prime whose absolute norm is prime. For each
prime p of K (resp. K’) that is unramified in L, let Frob, denote the quasi-conjugacy
class in G (resp. H) that contains the conjugacy class Frob,.

(d) Let S be the set of degree-1 primes p’ of K’ for which p = p’ N Ok is unramified in
L and for which o € Frob,s. Prove that S” has polar density p(S’) = ¢(d)/d.

(e) Let S be the set of unramified degree-1 primes p of K for which o € Frob,. Show
that map p’ — p’ N Ok defines a surjective map 7: S’ — S.

2It also has this natural density, but this was proved later.



(f) Show that the fibers of 7 all have cardinality [K’ : K]/c, where ¢ is the number of
distinct conjugates of H in G.

(g) Show that S has polar density

p(S) =

(h) Prove that for any set C' C G stable under quasi-conjugation the set of unramified
primes p of K with Frob, C C has polar density #C/#G.

Problem 4. The Hilbert symbol (98 points)

Let K be a local field whose characteristic is not 2.

Definition. The local Hilbert symbol is the map (-,-): K*/K*? x K*/K*? — {+1}

1 if az? + by? = 1 has a solution in K,
(aa b) = .
—1 otherwise.

Here and throughout this problem a,b € K* are understood to represent elements of
K*/K*? whenever the context requires it.

(a) Prove that the Hilbert symbol satisfies:

(i) (a,) = (b,a) (symmetry);
(ii) (a,bc) = (a,b)(a,c) and (ab,c) = (a,c)(b,c) (bilinearity);
(iii) For any a € K*, if (a,b) = 1 for all b € K* then a € K*? (nondegeneracy).
(iv) (a,1—a) =1 (for a # 1) and (a, —a) = 1 (Steinberg relations).

(b) In part (a) where (if anywhere) did you use the fact that K is a local field? Determine

which of (i)-(iv) hold for all fields whose characteristic is not 2, and for those that
do not, give explicit counterexamples.

(c) Prove that for a ¢ K*? we have (a,b) = 1 if and only if b € Nk (yay x (K(Va)*).

(d) Let L/K be an abelian extension. Let 7k : K*/Np g (L*) — Gal(L/K) be the
isomorphism given by Artin reciprocity, and (-, -) := Gal(K /K) x K*/K*? — {+1}
the Kummer pairing (o, a) := o(y/a)/+/a (which can be applied to o € Gal(L/K)
whenever L C K contains /a). Prove that the Hilbert symbol satisfies

(a,b) = <7~K( v /K(a),b> .

(e) For a,b,c € K* prove az? + by? = c has a solution if and only if (—ab, c) = (a,b).

(f) For a,b € K* define the quaternion algebra H,; as the K-algebra K(i,j) with
i =a, j> = b, ij = —ji. Show that (a,b) = 1 if and only if H,; ~ My(K), the 2 x 2
matrix algebra over K (such quaternion algebras are said to split). Then show that
Hyp ~ Hg if and only if [b] = [] in K* /Ny ( /z)/k(K(v/a)*) and deduce that the
isomorphism class of H,; depends only on the Hilbert symbol (a,b).
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(g) Show that for archimedean K we have (a,b) = —1 if and only if K ~ R and a,b < 0.

(h) Suppose that K is nonarchimedean with residue field of odd cardinality ¢q. Let O
be its valuation ring, 7 a uniformizer for O. Define the residue symbol

(a) _Jr ifaerFy,
T -1 ifagFe?

where [, := O/(m) is the residue field (which does not depend on the choice of 7).
For a,b € K*, let a = uqn®, b = upn? with u,, up € O*. Prove the reciprocity law:

(a,b) = (—1)*Fla=1/2 (%)6 (@yy‘

s s

(i) Now let K be a global field of characteristic not 2, and for each place v of K let
(a,b), denote the Hilbert symbol of the completion of K at v. Prove the product
formula, which states that

H(a, b)y =1

v

for all a,b € K* (and in particular, (a,b), = 1 for all but finitely many places v).

Useful references for this problem if you get stuck are [4, Ch.III] and [5, §5.6].

Problem 5. Profinite groups (98 points)

Recall that a topological space is totally disconnected if every pair of distinct points
can be separated by open neighborhoods that partition the space; totally disconnected
spaces are obviously Hausdorff.

(a) Show that products and inverse limits of totally disconnected compact topological
spaces are totally disconnected and compact. Conclude that every profinite group
is a totally disconnected compact group.

Let G be a totally disconnected compact group, let G = limG /N be its profinite
completion (so N varies over finite index open normal subgroups of G ordered by con-
tainment), and let ¢: G — G be the natural map that sends each g € G to its images in
the finite quotients G/N.

(b) Show that every open subgroup of G has finite index and contains an open normal
subgroup (which necessarily also has finite index).

(c) Show that ¢(G) is both dense in G and closed, hence equal to G; thus ¢ is surjective.

(d) Show that to prove that ¢ is injective it suffices to show that the intersection of all
open subgroups of G is trivial. Then show that for every g € G — {1} there is a
neighborhood U of 1 that is both open and closed and does not contain g, and it is
enough to show that every such U contains an open subgroup H.

(e) Let U be a neighborhood of 1 that is both open and closed. Show that U con-
tains an open neighborhood of 1 that is closed under multiplication and inversion,
hence a subgroup (this requires some work; you will need to use the fact that the
multiplication map G X G — G is continuous and that U is compact).



(f) Show that ¢ is a continuous open map, hence a homeomorphism. Conclude that G
is isomorphic to its profinite completion, and in particular, a profinite group.

(g) Show that for a profinite group G the following are equivalent: (i) the topology
of G is induced by a metric, (ii) G ~ @Gn, with n € Z>1, the G,, finite, and
Grn41 — Gy, surjective, (iii) the number of open subgroups of G is countable.

(h) Show that the equivalent conditions (i)-(iii) in (g) imply that G contains a countable
dense subset (so G is separable as a topological space), and give an example showing
that the converse does not hold.

(i) Let p be prime, let Z, := Jm Z/p"Z, and let G, := [],, Z/p"Z. Show that G, and
Zy % (Gp/Zy) are isomorphic as groups. Are they isomorphic as topological groups?

(j) Show that Z* ~ Z x [L, Z/nZ as topological groups.

A useful reference for this problem if you get stuck is Ribes and Zalesskii [3].

Problem 6. Arithmetically equivalent number fields (98 points)

Two number fields are said to be arithmetically equivalent if their Dedekind zeta functions
coincide. Isomorphic number fields obviously have the same zeta functions, but as proved
by Gassmann [1], the converse need not hold. A particularly simple example is given
by the fields Q(¥/a) and Q(+/16a); as shown by Perlis [2], for a € Z not square and not
twice a square, these fields are arithmetically equivalent but nonisomorphic (they have
the same Galois closure, which is obtained by adjoining a primitive 8th root of unity).

(a) Show that arithmetically equivalent number fields must have the same Galois closure
(up to isomorphism). Conclude that if K/Q is Galois then K’ is arithmetically
equivalent to K if and only if K’ ~ K.

In view of (a) we now consider two non-Galois extensions K and K’ of Q with Galois
closure L/Q. Let G := Gal(L/Q) and put H := Gal(L/K) and H' := Gal(L/K’).

(b) Show that if K and K’ are arithmetically equivalent number fields then for every
prime p there is a bijection between the primes of K lying above p and the primes
of K’ lying above p that preserves inertia degrees. Conclude that K and K’ must
have the same degree.

(c) Given a cyclic C C @, we can partition G into double cosets Ho1C, ..., Ho,C.
When H is not normal these cosets need not have the same size; each will have
cardinality f; - #H for some integer f; > 1. Assume the f; are in increasing order
and call the tuple (f1,..., fy) the coset type of the pair (H,C). Prove that if p is
a prime that is unramified in L and C' is any decomposition group of p in G, then
the coset type of (H,C) is equal to the tuple of inertia degrees of the primes of
K lying above p when arranged in increasing order. Conclude that if K and K’
are arithmetically equivalent then (H,C) and (H',C) have the same coset type for
every cyclic subgroup C of G.



(d) Two subgroups H and H’ of a finite group G are said to be Gassmann equivalent
if for conjugacy class ¢ of elements in G the sets ¢ H and ¢ N H' have the same
cardinality. Show that this holds if and only if for every cyclic group C the coset
types of (H,C) and (H',C) coincide.

(e) Suppose H and H' are Gassmann equivalent. Show that K and K’ have the same
number of real and complex places (hint: consider the “decomposition group” of the
prime p = 0o in G).

Like the Riemann zeta function, the Dedekind zeta function has a meromorphic con-
tinuation to C that satisfies a functional equation. Define T'g(s) := 7*/?I'(s/2) and
Ce(s) :=2(2m)~*I'(s), and let

Zi(s) = | Dic|/2Tg ()" T ()" Cic (s),
where n; and ng are the number of real and complex places of K, respectively. Then
Zr(s) = Zg(1—s)
as meromorphic functions on C (you may assume this in what follows).

(f) Let f(s) = fi(s)/f2(s) be a ratio of Euler products over a finite set of primes
that extends to a meromorphic function on C that satisfies a functional equation
f(s) = g(s)f(1 — s) for some meromorphic function g(s) whose zeros and poles do
not coincide with any zero or pole of f. Prove that g(s) = 1, then use this and the
functional equations for (x(s) and (x/(s) to prove that if H and H' are Gassmann
equivalent then K and K’ are arithmetically equivalent.

(g) A Gassmann triple (or Gassmann-Sunada triple) is a triple (G, X,Y’) in which G is
a group that acts faithfully on sets X and Y such that every element of G fixes the
same number of elements in X and Y but X and Y are not isomorphic as G-sets.
Show that K and K’ are arithmetically equivalent but not isomorphic if and only if
(G,G/H,G/H') is a Gassmann triple, where G/H and G/H' denote sets of cosets
(for consistency with part (c), use right cosets and put the G-action on the right).

(h) Show that if K and K’ are arithmetically equivalent then they have the same normal
core (largest subfield that is a normal extension of Q). Use this to show that K and
K’ contain the same roots of unity and conclude that the unit groups O and OF,
are isomorphic as abelian groups.

(i) Show that if K and K’ are arithmetically equivalent then |disc Ok| = |disc O]
and conclude that hx Rx = hg' R, where h := # Cl O is the class number and
Ry is the regulator of K (and similarly for K').

It is natural to ask whether the class numbers and regulators must also match. This is
not the case; the arithmetically equivalent fields K := Q(+/—15) and K’ := Q(+/—240)
have class numbers 8 and 4, respectively (you do not need to prove this).

(j) You showed in (b) that in arithmetically equivalent fields the multisets of inertia
degrees above any prime p must match (including at ramified primes); it is natural
to ask whether the same is true of the ramification indices. Show that this is not



the case by showing that the polynomials 2% — 97 and x® — 16 - 97 (which you may
assume define arithmetically equivalent fields K and K’), do not have the same
factorization pattern in Qz[z]. Conclude that the different ideals Dy /g and Dg /g
do not necessarily have the same factorization pattern, even though the discriminant

ideals DK/Q = NK/Q(DK/Q) and DK’/Q = NK//Q(DK’/Q) do.

A useful reference for this problem if you get stuck is Perlis’ paper [2].

Problem 7. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest | Difficulty | Time Spent

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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